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Abstract. This paper presents a methodology for stiffness identification from depth-resolved three-dimensional
(3-D) full-field deformation fields. These were obtained by performing digital volume correlation on optical coher-
ence tomography volume reconstructions of silicone rubber phantoms. The effect of noise and reconstruction
uncertainties on the performance of the correlation algorithm was first evaluated through stationary and rigid
body translation tests to give an indication of the minimum strain that can be reliably measured. The phantoms
were then tested under tension, and the 3-D deformation fields were used to identify the elastic constitutive
parameters using a 3-D manually defined virtual fields method. The identification results for the cases of uniform
and heterogeneous strain fields were compared with those calculated analytically through the constant uniaxial
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1 Introduction
The measurement of material deformation is necessary to assess
the material mechanical properties. Awide variety of techniques
have been developed to measure the deformation of materials
under load, ranging from point-wise sensors, such as the resis-
tive strain gauge1 and optical fiber Bragg gratings,2 to two-
dimensional (2-D) full-field measurements, including digital
image correlation (DIC),3 the grid method,4 speckle interferom-
etry,5 and Moiré interferometry.6 For homogeneous and iso-
tropic materials, these techniques usually provide enough
information to investigate their mechanical behavior. However,
for materials with more complex structures, such as biological
tissues and composites, surface measurements are much less
adequate to address their complete mechanical behavior since
the deformation may vary significantly between the bulk and
the surface. In this case, a depth-resolved three-dimensional
(3-D) full-field measurement of the deformation would be
highly desirable.

Thanks to the development of the various tomographic tech-
niques, digital volume correlation (DVC) has become a popular
measurement technique for depth-resolved 3-D deformation
fields. It is effectively a 3-D extension of DIC, widely applied
to determine the surface deformation fields. DIC was first intro-
duced in the early 1980s3 and has been widely applied in many
disciplines, such as mechanical engineering, material science,
medical science, etc.7–11 It basically determines the deformation
field by tracking a speckle pattern imprinted on the surface of
the sample between a reference and a deformed state. Based on

the same principle, DVC was developed to measure the internal
3-D deformation behavior of materials by tracking internal fea-
tures that resemble 3-D speckle patterns contained in the recon-
structed volumes.12 It requires sufficient speckle contrast in the
reconstructed volumes to ensure the correlation algorithm runs
successfully. DVC has made its way into clinical and industrial
applications,13–20 where it is mainly applied on x-ray computed
tomography data of materials such as composites, metals,
foams, and trabecular bones.13–16 In all these cases, the pattern
contrast of the reconstructed volume is provided by differences
in x-ray absorption of the different constituents or phases of the
material. However, for soft biological tissues dominated by
collagen, such as cornea, arteries, or skin, optical coherence
tomography (OCT) is a more suitable technique to reconstruct
the material microstructure.

OCT is a noninvasive imaging technique that can acquire
micrometer resolution of cross-sectional images from within
semitransparent, light scattering materials. It is an interferomet-
ric technique that uses a broadband light source with short
coherence length to provide depth-resolved information of the
object microstructure. The contrast of the images encodes
refractive index changes in the material (between fibers and
a matrix into which they are embedded, for example). Indeed,
this rapidly developing imaging technique has already been
applied in ophthalmology, cardiology, gastroenterology, and
dermatology,21–24 and many commercially available OCT
systems have been developed for clinical and research pur-
poses.25 With the aid of OCT, the volumetric data that represent
the whole microstructure of the scanned sample can be
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reconstructed. The reconstructed data can then be utilized for
structure analysis or deformation analysis using DVC. To the
best of our knowledge, this is the first time that measurements
of depth-resolved deformations have been undertaken combin-
ing OCT and DVC.

Given a constitutive model, constitutive parameters are con-
stants that describe the mechanical behavior of a material.
Thanks to the development of full-field deformation measure-
ment techniques, several methods have been developed to iden-
tify the material constitutive parameters. Finite element model
updating (FEMU) is a widely applied approach among these
methods. It compares the experimental measurements with
their numerical counterparts obtained from an FE model and
builds up a cost function using the difference between numerical
and experimental values in terms of displacement or strain. By
minimizing the cost function with respect to the sought constit-
utive parameters, the solution of the problem can be reached
iteratively. FEMU has already been shown to be feasible to iden-
tify constitutive parameters in many cases, such as elasticity,
hyperelasticity, etc.26–28 This approach, however, exhibits
some shortcomings. The initial values to start the iteration pro-
cedure, the numerical model, and the quality of the cost func-
tion, for instance, can all affect the convergence time and the
quality of the results. The virtual fields method (VFM) is an
alternative option for solving the identification problem,29

which is based on the principle of virtual work and retrieves
the constitutive parameters by utilizing the full-field defor-
mation measurements. This method is more effective than
FEMU in terms of computation time since for the latter, an
FE model needs to be created and updated iteratively. So far,
the VFM has successfully been applied to the identification
of constitutive parameters for linear elastic materials such as
composites,30–33 elasto-plasticity for metals34–36 as well as
hyperelasticity for soft and biological materials such as artery
walls.37,38

The aim of this study is to develop an effective methodology
to investigate the internal deformation behavior of silicone rub-
ber phantoms under load and to identify their elastic stiffness
parameters. This methodology will eventually be applied to
study the mechanical properties of biological tissues, such as
the vertebrate eye cornea.39 First, a brief description of the
material, the experimental setup, the experimental methods as
well as the identification theory is presented. Then, the perfor-
mance of DVC coupled with OCT is evaluated through station-
ary and rigid body translation tests. After that, DVC results of
the tensile tests are examined and critically discussed. Finally,
the depth-resolved full-field deformation measurement results
are used to identify the material elastic stiffness parameters
using VFM and the identification results are also discussed.

2 Materials and Methods

2.1 Materials

In the present study, two rectangular flat phantom strips were
fabricated using silicone gel (MM240-TV), one of them with
a notch. The material comprises two parts, a rubber base and
a hardener. They were mixed to a ratio of 10∶1. The nominal
Young’s modulus of the silicone rubber is 1.88 MPa, which
can change with the proportion of hardener. Since the silicone
gel does not present suitable speckle contrast for the application
of DVC, copper particles (with an average particle size of
∼1 μm) were seeded into the silicone gel mixture to provide

the speckle contrast. The mixture was then put into molds
and left to cure at room temperature for ∼24 h. The flat strips
were cut from a larger piece using a scalpel to 60 × 1.4×
10 mm3 (length × thickness × width). Figure 1 shows the rec-
tangular and the notched phantom strips and their loading
and observation configurations.

2.2 Experimental Setup and Image Acquisition

The experimental setup consists of a tensile test fixture and a
swept-source OCT system (SS-OCT, Thorlabs OCS1300SS,
Ely, United Kingdom, lateral resolution 25 μm, depth resolution
12 μm in air). For the test, the phantom strip was mounted with
one end fixed to the fixture and the other end loaded by a dead
weight. At first, a dead weight of 50 g was applied as a preload
to insure the phantom strip was taut and vertical. This is a nec-
essary step since the silicone rubber is rather compliant. The
preload state was taken as the reference state. A 10 g dead
weight was then added to the preload and considered as the
deformed state, referred to as load step 1 hereafter.

For both reference and deformed states, a 3-D volume image
sequence of the specimen was acquired using the SS-OCT sys-
tem. It uses a rapidly tuned narrowband light source with central
wavelength of 1325 nm and spectral bandwidth of 100 nm and
records the information with a single photodetector. The fre-
quency of the interference signal is proportional to the optical
path difference between the sample and reference arms of an
interferometer. Depth profiles (A-scans) of the sample are
obtained by evaluating the Fourier transform of the signal for
each wavelength scan. The 5- to 6-mm coherence length of
the laser enables ∼3 mm depth measurement. Adjacent
A-scans are then synthesized to create an image in the xy
plane. Multiple adjacent 2-D images in the z direction then
form the reconstructed 3-D volume. In the present work, a
region with dimensions of 11 × 3 × 11 mm3 was scanned, cor-
responding to x, y, and z directions, respectively. A 3-D data
volume of 1024 × 512 × 1024 voxelswas obtained. The acquis-
ition time for each 3-D volume is ∼5 min. It should be pointed
out that each time before acquiring the volume images, the
specimen was left for 10 min under load to accommodate sig-
nificant short-term viscoelastic creep. Along the lateral scanning
directions x and z, the image voxel size was determined by
dividing the 11 mm dimension by the number of corresponding
1024 voxels, which is equal to 10.7 μm. Regarding the through-
thickness y direction, which corresponds to the optical path, the

Fig. 1 Schematic of the fabricated silicone rubber phantom strips and
the loading configuration.
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voxel size depends on the refractive index of the medium. For
the silicone rubber phantom, the voxel size inside the medium
along the y direction is 4.1 μm, which is determined by dividing
its thickness, 1.4 mm, by the number of corresponding voxels,
here 345. The reconstructed volume and a typical central trans-
verse z-slice (1024 × 512 voxels) of the specimen are given in
Figs. 2(a) and 2(b), respectively. Due to light saturation, the vox-
els at the top surface exhibit very high intensity values, as can be
seen from the white line at the top of the phantom in Fig. 2(b). It
should be pointed out that all the regions outside the phantom
strip and the saturated voxels at the top surface were masked out
in Fig. 2(a) for a better visualization of the 3-D reconstructed
volume. The reconstructed volumes for the reference and
deformed states were recorded and DVC was then used to com-
pute the 3-D displacement and strain fields.

2.3 Digital Volume Correlation

DVC is the 3-D extension of the widely applied DIC used to
measure surface deformations. During the DVC procedure,
the correlated volumes are first divided into subvolumes. The
displacement vector of each subvolume is determined by
tracking and matching the voxels of the subvolumes in the refer-
ence and deformed states. This is performed by maximizing the
correlation coefficient, which measures the degree of similarity
of the gray-level distributions in the subvolumes in the reference
and deformed states. The best prediction of the displacement
leads to the highest degree of similarity of the gray-level distri-
butions and thus the maximal correlation coefficient (a correla-
tion coefficient value close to 1 indicates a perfect match). In the
present study, the displacement fields were calculated using the
DaVis® (LaVision) software package based on a fast Fourier
transform (FFT) algorithm. It evaluates a normalized cross-
correlation coefficient (NCC) defined as

C ¼
PPP

Fðx; y; zÞGðx̂; ŷ; ẑÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPPP ½Fðx; y; zÞ�2 PPP ½Gðx̂; ŷ; ẑÞ�2
p ; (1)

where Fðx; y; zÞ represents the gray level at a voxel ðx; y; zÞ in
the subvolume of the reference state, while Gðx̂; ŷ; ẑÞ represents
the gray level at a point ðx̂; ŷ; ẑÞ in the subvolume of the

deformed state. The coordinates ðx; y; zÞ and ðx̂; ŷ; ẑÞ stand
for the same material point in the reference and deformed states,
respectively, and are related by the 3-D affine transformation
in the form of rigid body motion combined with displacement
gradients.

x̂ ¼ xþ Ux þ
∂Ux

∂x
Δxþ ∂Ux

∂y
Δyþ ∂Ux

∂z
Δz

ŷ ¼ yþ Uy þ
∂Uy

∂x
Δxþ ∂Uy

∂y
Δyþ ∂Uy

∂z
Δz

ẑ ¼ zþ Uz þ
∂Uz

∂x
Δxþ ∂Uz

∂y
Δyþ ∂Uz

∂z
Δz;

(2)

where Ux, Uy, and Uz are the rigid body displacement compo-
nents of the subset center in the x, y, and z directions, respec-
tively. Δx, Δy, and Δz represent the distance between the subset
center and the point ðx; y; zÞ. A double-pass approach was used
whereby large subvolumes were initially used to capture large
displacements. Subsequent to this, these initially calculated
displacements were used to displace smaller subvolumes and,
thus, ensure the pattern was followed and signal-to-noise ratio
increased. Gaussian curve-fitting of the correlation function
peak was used to detect the position of the displacement with
subvoxel resolution. The strains were then determined from the
centered finite difference of the calculated displacement fields,
without any additional smoothing.

2.4 Evaluation of Measurement Performance

The DVC algorithm requires sufficient contrast in a subvolume
in order to determine a displacement vector. The size of the
subvolumes influences the value of the correlation coefficient
and, thus, the displacement and strain uncertainties. In the pre-
sent study, four different subvolume sizes were selected and
compared to determine an optimal size, considering the dis-
placement and strain spatial variation as well as the spatial
resolution. A double-pass approach used initial subvolume
sizes of 243, 483, 723, and 963 in the first pass, followed by
123, 243, 363, and 483 in the second pass, and each has 50%
overlap with the six adjacent neighbors. Thus, the distance

Fig. 2 (a) Three-dimensional (3-D) view of the reconstructed volume. (b) Two-dimensional view of the
central transverse z slice of the rectangular phantom strip generated through the swept-source optical
coherence tomography system.
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between each subvolume center and its immediate neighbors is
6, 12, 18, and 24 voxels, respectively.

Prior to the tensile tests, it is necessary to evaluate the errors
caused by all sources of noise and reconstruction uncertainties.
This can be done by performing DVC on two subsequent recon-
structed volumes of the stationary phantom strip. Since the
stationary specimen was not subjected to any applied force,
the correlation results should show zero displacement and strain
fields over the whole field of view. This is not the case in prac-
tice due to the influence of electronic noise in the SS-OCT
system, environmental vibration, the volume reconstruction
algorithm, etc. Therefore, any nonzero results should be attrib-
uted to the contribution of noise and other reconstruction uncer-
tainties. The standard deviations of the spurious strains were
calculated to evaluate the resolution (uncertainty) of the strain
measurement.

Then, two reconstructed volumes were recorded after intro-
ducing a rigid body translation of 40 μm (∼10 voxels) in the y
direction between the two volumes. This not only tests the effect
of all sources of noise, but also tests the performance of DVC
subvoxel interpolation (tri-linear in the present study) and accu-
racy of the correlation algorithm in determining the displace-
ment fields for a translated specimen. The same procedure of
data processing as for the stationary test was applied to the
rigid body translation test and the strain measurement resolution
was computed. The above tests give an overall idea of the res-
olution of the whole setup so that the significance of the tensile
test results can be better analyzed.

2.5 Virtual Fields Method

VFM, which is based on the principle of virtual work, was
adopted to identify the constitutive parameters of the silicone
rubber phantom. This equation, provided below, is the integral
form of the equilibrium equation for the standard deformable
continuous solid model.

−
Z
V
σ∶ε�dV þ

Z
∂V

T̄ · U�dSþ
Z
V
b · U�dV

¼
Z
V
ρa · U�dV: (3)

In this equilibrium equation, σ is the actual stress tensor, ε� is
the virtual strain tensor, U� is the virtual displacement vector, T̄
is the traction vector acting on the boundary ∂V of the solid vol-
ume V, b is the volume force vector, a is the acceleration vector,
and ρ is the mass per unit volume; “·” indicates vector dot prod-
uct and “:” is the contracted product for second-order tensors
or the matrix dot product. In this study, the phantom strip
was loaded statically and the body forces can be neglected.
Therefore, their contribution to the virtual work can be canceled
out. Thus, the equilibrium equation becomes

−
Z
V
σ∶ε�dV þ

Z
∂V

T̄ · U�dS ¼ 0: (4)

This equilibrium equation is valid for any continuous and
differentiable virtual displacement field. The actual strain
field and the load information are provided by the experiment.
The stress components can be expressed through the material
constitutive parameters and the strain components through an

appropriate constitutive equation. Here, the stress and strain
components are written in columns as

σ∶f σxx σyy σzz σyz σxz σxy gT
ε∶f εxx εyy εzz 2εyz 2εxz 2εxy gT;

(5)

where T is the transpose operator.
For the silicone rubber phantom, isotropic elasticity

was assumed. Thus, the stress-strain relation can be expressed
as

8>>>>><
>>>>>:

σxx
σyy
σzz
σyz
σxz
σxy

9>>>>>=
>>>>>;

¼

2
66666664

Qxx Qxy Qxy 0 0 0

Qxy Qxx Qxy 0 0 0

Qxy Qxy Qxx 0 0 0

0 0 0
Qxx−Qxy

2
0 0

0 0 0 0
Qxx−Qxy

2
0

0 0 0 0 0
Qxx−Qxy

2

3
77777775

8>>>>>><
>>>>>>:

εxx
εyy
εzz
2εyz
2εxz
2εxy

9>>>>>>=
>>>>>>;
;

(6)

where Qxx and Qxy are the two stiffness components to iden-
tify, relating to the elastic modulus E and the Poisson’s ratio ν
through

�
Qxx ¼ ð1−νÞE

ð1þνÞð1−2νÞ
Qxy ¼ νE

ð1þνÞð1−2νÞ
: (7)

After introducing Eqs. (5) and (6) into Eq. (4), the equilib-
rium equation becomes

Z
V
Qxxðεxxε�xx þ εyyε

�
yy þ εzzε

�
zz þ 2εyzε

�
yz þ 2εxzε

�
xz

þ 2εxyε
�
xyÞdV þ

Z
V
Qxyðεxxε�zz þ εzzε

�
xx þ εyyε

�
zz þ εzzε

�
yy

þ εxxε
�
yy þ εyyε

�
xx − 2εyzε

�
yz − 2εxzε

�
xz − 2εxyε

�
xyÞdV

¼
Z
∂V

T̄ · U�dS; (8)

where ε�ij is the virtual strain component deduced from the
virtual displacement. In the present study, the material is
macroscopically homogeneous. Therefore, Qxx and Qxy can
be taken out of the integrals and the equilibrium equation
[Eq. (8)] becomes
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Qxx

Z
V
ðεxxε�xx þ εyyε

�
yy þ εzzε

�
zz þ 2εyzε

�
yz þ 2εxzε

�
xz

þ 2εxyε
�
xyÞdV þQxy

Z
V
ðεxxε�zz þ εzzε

�
xx þ εyyε

�
zz þ εzzε

�
yy

þ εxxε
�
yy þ εyyε

�
xx − 2εyzε

�
yz − 2εxzε

�
xz − 2εxyε

�
xyÞdV

¼
Z
∂V

T̄ · U�dS: (9)

Any new virtual field in the equilibrium equation leads to an
equation involving the stiffness components. Therefore, a proper
choice of the virtual displacement fields enables the identifica-
tion of the unknown stiffness components Qxx and Qxy. There
are different methods for choosing virtual fields. In the present
work, two manually defined polynomial virtual fields were
employed for the two sought constitutive parameters. More
details about other choices of virtual fields, such as virtual fields
minimizing noise effects, piecewise virtual fields, etc., can be
found in Ref. 29. The first virtual displacement field and the
corresponding virtual strain field are

U�ð1Þ
x ¼ x − L; U�ð1Þ

y ¼ 0; U�ð1Þ
z ¼ 0; ε�ð1Þxx ¼ 1;

ε�ð1Þyy ¼ 0; ε�ð1Þzz ¼ 0; ε�ð1Þyz ¼ 0; ε�ð1Þxz ¼ 0; ε�ð1Þxy ¼ 0:

(10)

For the second virtual field,

U�ð2Þ
x ¼ 0; U�ð2Þ

y ¼ xyðx − LÞ; U�ð2Þ
z ¼ 0; ε�ð2Þxx ¼ 0;

ε�ð2Þyy ¼ xðx − LÞ; ε�ð2Þzz ¼ 0; ε�ð2Þyz ¼ 0; ε�ð2Þxz ¼ 0;

ε�ð2Þxy ¼ xy −
1

2
yL; (11)

where L is the length (dimension along the x direction) of
the phantom strips.

After introducing the above two virtual fields [Eqs. (10) and
(11)] into the equilibrium equation [Eq. (9)], a linear equation
system [Eq. (12)] can be formed to directly determine the sought
stiffness components Qxx and Qxy.

AQ ¼ B; (12)

Fig. 3 (a) Comparison of the strain standard deviations for different subvolume sizes, calculated for
a stationary rectangular phantom strip. (b) 3-D views of the subvolumes with different sizes.

Fig. 4 Strain standard deviations obtained with 363 voxels subvolume
and 50% overlap for (a) stationary test and (b) rigid body translation
test.
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A∶

" R
V εxxdV

R
Vðεyy þ εzzÞdVR

V ½xðx − LÞεyy þ ð2xy − yLÞεxy�dV
R
V ½xðx − LÞðεxx þ εzzÞ − ð2xy − yLÞεxy�dV

#

Q∶
�
Qxx

Qxy

�
B∶

�−FL
0

�
;

where F is the tension load at the position x ¼ 0, −L
represents the virtual displacement at the same position
calculated from Eq. (10) for the first virtual field, and
−FL represents the external virtual work done by the
tension load.

It should be pointed out that due to the discrete nature of the
deformation measurement, the integrals above such as in Eq. (9)
must be approximated by discrete sums. For instance, an integral
∫ Vεxxε

�
xxdV can be approximated by

P
n
i¼1 ε

ðiÞ
xx ε

�ðiÞ
xx vðiÞ, where n

is the number of data points, εðiÞxx is the actual strain εxx at data
point ðiÞ, ε�ðiÞxx is the virtual strain ε�xx at data point ðiÞ, and vðiÞ is
the volume of each measurement point. Due to the uniaxial ten-
sion configuration, the strain field should be dominated by low
spatial frequencies. In addition, a relatively small subvolume
size was chosen to enable a high strain spatial resolution.
Therefore, the error involved due to the discretization is small
and considered as acceptable for the current tests. Thus, matrix
A in the linear equation system [Eq. (12)] becomes

A∶

2
64
P

n
i¼1ε

ðiÞ
xx vðiÞ

P
n
i¼1ðεðiÞyyþεðiÞzz ÞvðiÞP

n
i¼1½xðiÞðxðiÞ−LÞεðiÞyy

P
n
i¼1½xðiÞðxðiÞ−LÞðεðiÞxxþεðiÞzz Þ

þð2xðiÞyðiÞ−yðiÞLÞεðiÞxy �vðiÞ−ð2xðiÞyðiÞ−yðiÞLÞεðiÞxy �vðiÞ

3
75:

(13)

For these tests, vðiÞ of each data point is constant because of
the constant subvolume size, which is equal to V∕n. Therefore,
vðiÞ can be taken out of the sum and a sum in matrix A, for in-
stance, becomes

Xn
i¼1

εðiÞxxvðiÞ ¼ V
n

Xn
i¼1

εðiÞxx ¼ Vεxx; (14)

where εxx denotes the arithmetic spatial average of εxx and V is
the total volume of the processed data. Finally, the linear equa-
tion system [Eq. (12)] to solve can be written as follows:

�
εxx εyy þ εzz
xðx − LÞεyy þ ð2xy − yLÞεxy xðx − LÞðεxx þ εzzÞ − ð2xy − yLÞεxy

��
Qxx

Qxy

�
¼

�
−FL
V
0

�
: (15)

3 Results and Discussions

3.1 Strain Noise Analysis

A fundamental condition in image correlation techniques is that
the changes in the intensity pattern are in one-to-one correspon-
dence with the displacements of the surface. DVC results from
OCT volume reconstructions of the reference and deformed
states are likely to be affected by a variety of factors such as
(1) electronic noise of the detectors; (2) light source stability;
(3) reconstruction algorithms; (4) contrast reduction through the
sample thickness due to material absorption, scattering, dispersion,
defocusing, and spectral roll-off; and (5) strain-induced speckle
decorrelation. We studied the combined effect of (1) to (4) by per-
forming a stationary test and a rigid translation of the phantoms.
The effect of strain in speckle decorrelation was explored through
a numerical simulation described below.

3.1.1 Stationary test

From the DVC results of the stationary test, the influence of
subvolume size was analyzed quantitatively by comparing
the standard deviations of the strain components for a central
z-slice ðx; yÞ for the four final subvolume sizes. All six
strain components were derived from the centered finite
differences of the spurious displacements as follows, without
any smoothing:

εij ¼
1

2
ðUi;j þ Uj;iÞ; (16)

where the commas stand for the partial derivatives. To study the
effect of subvolume size, the standard deviations over the whole
field of view are compared in Fig. 3(a) for εxx, εxy, and εyy only,
for the sake of legibility. The standard deviations of the strain
components drop from ∼3 × 10−3 to ∼5 × 10−4 when increasing
the subvolume size from 123 to 243. When further increasing the
subvolume size to 363 and 483 [see Fig. 3(b)], the strain fluc-
tuations are further reduced to ∼2 × 10−4. This is so because the
larger number of features contained in the 483 subvolume assists
the convergence of the volume correlation algorithm and enables
more accurate tracking of the subvolume deformation. A smaller
number of features in the 123 subvolume leads to bigger tracking
errors. In the case of thin specimens such as corneas,39 or the
phantoms studied in this work, 363 subvolumes were found
to be a good compromise in terms of strain and spatial resolu-
tion. Depending on the OCT spatial sampling rate, the speckle
field may be undersampled, leading to aliasing and interpolation
errors.40 This issue will be discussed later on in the paper.

Based on the volume strain fields of the stationary test, the
standard deviation of each strain component was calculated
for each z-slice and the results are plotted in Fig. 4(a). It can
be observed that the standard deviations of all the strain
components generally remain stable along the different z-slices,
with a slight increase toward the ends. This is expected as the
DVC results are usually noisier near edges due to the lack of
data. Although with fluctuation, all the standard deviations
are generally between 1.5 × 10−4 and 2.5 × 10−4 without any
smoothing, which is considered as satisfactory compared with
the strain levels in the tensile tests later on.
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3.1.2 Translation test

Slightly larger values of strain standard deviation, between
2 × 10−4 and 3.5 × 10−4, were obtained for the rigid body trans-
lation test, see Fig. 4(b). This is so as extra sources of error
add to those present in the stationary test, mainly subvoxel

interpolation error as the DVC algorithm tracks the subvolumes
between the reference and displaced states. It was observed that
lateral translations (in the xz plane) lead to strain standard
deviation values between those obtained for the stationary
and the axial translation tests. These levels are still low com-
pared to the strain levels of ∼1% in the tensile tests and
were thus considered satisfactory.

3.1.3 Strain-induced speckle decorrelation

Due to the backscatter illumination/observation configuration,
the complex 3-D point spread function (PSF) of the OCT system
has ∼18 fringes across it along the axial direction [ratio between
the depth resolution, 8.3 μm, and the half wavelength of the
light source in the medium of refractive index 1.45, i.e.,
1.325 μm∕ð2 × 1.45Þ ¼ 0.457 μm�. The magnitude of the mea-
sured OCT signal corresponds to the convolution between
the 3-D PSF and the scattering particles within the phantom.
This magnitude, which determines the brightness of the 3-D
speckle grain at any particular position within the sample,
does not change with rigid body motion of the sample as rel-
ative phase differences between scatterers within the 3-D PSF
remain constant. In case of strain, however, there is a limit
within which the magnitude of the speckle remains nearly

Fig. 6 3-D views of the correlation coefficient maps for (a) rectangular phantom strip and (b) notched
phantom strip, cut at the position z ¼ 25, load step 1.

Fig. 7 Ux displacement distribution obtained for a rectangular phantom strip under tension (load step 1),
showing different subregions of the data volume.

Fig. 5 Normalized cross-correlation of a speckle field in a simulated
B-scan as a function of longitudinal strain εxx .
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unchanged and beyond which an incremental DVC approach
would be required.

In order to estimate the level of OCT speckle decorrelation
due to strain, we performed a 2-D (on the xy plane) numerical
simulation involving the following steps:

1. Generate a 2-D random distribution of scatterers such
that there are many of them (∼100) inside the PSF of
the OCT system.

2. Evaluate the 2-D speckle field due to the spatial dis-
tribution of scatterers considering the numerical
aperture of the system, the central wavelength and
bandwidth of the source, and the refractive index of
the medium. This was done using linear systems
theory41,42 by first calculating the transfer function
of the OCT system and then evaluating the complex
PSF and convolving it with the scatterers. The speckle
field was oversampled to recover phase information
within the PSF. In this way, the correlation coefficient
evaluation is free from undersampling effects. We used
images of 1024 × 1024 pixels with a speckle size
given by the dimensions of the PSF (∼1024∕
4 pixels in the axial direction y and ∼1024∕2 pixels

in the lateral direction x). Using the Rayleigh resolu-
tion criteria, this leads to ∼8 × 4 ¼ 32 speckles in
the simulated subset, which compares well with the
number of speckles observed on the xy face of the
363 subvolume shown in Fig. 3(b).

3. Deform the spatial distribution of scatterers with a
horizontal strain εxx from 0 to 0.5 in steps of 0.001
from 0 to 0.02 and steps of 0.05 thereafter.
Poisson’s contraction in the vertical direction was
also considered, using ν ¼ 0.42 as estimated for our
phantoms in Sec. 3.3. For each deformation state,
the intensity (magnitude) of the corresponding speckle
field was calculated.

Fig. 8 (a) Ux displacement averaged within x slices along the x -
direction and a linear data fit obtained for a rectangular phantom
strip under tension (load step 1). (b) Difference between the averaged
Ux and the linear fit shown in (a).

Fig. 9 Spatial distributions of the strain components obtained for a rectangular phantom strip under
tension (load step 1). The central z slice 25 is shown.
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4. Finally, the normalized cross-correlation as defined in
Eq. (1) was evaluated between the first speckle field
for εxx ¼ 0 and all others in the sequence.

Figure 5 shows that NCC drops to ∼0.987 for εxx ¼ 1% and
to ∼0.961 for εxx ¼ 2%. This latter strain corresponds to a total
maximum through-thickness relative displacement of the scat-
terers in the PSF of ∼70 nm. This is equivalent to ∼1∕6th of
the fringe period inside the PSF and is inversely proportional
to the Poisson’s ratio. NCC drops to ∼0.9 for εxx∼4%, which
corresponds to εyy ∼1.68% using ν ¼ 0.42. This strain level
is probably a good estimate to the maximum strain that we
can measure with OCT and DVC without using an incremental
approach. Above this level, the correlation coefficient is too low
to guarantee a good estimate of displacements. When the
changes in the magnitude of the interference of light scattered
by particles within the PSF are large, the speckle is said to boil,
i.e., its structure changes while only the average speckle size is

preserved. Even though these results correspond to a 2-D case
(B-scan), a 3-D simulation is expected to render results similar
to those reported here. Zaitsev et al.43 have found similar results
performing a numerical simulation and evaluating the zero mean
normalized cross-correlation coefficient as a function of strain.
They report that speckle boiling fully decorrelates the speckle
for axial strain levels of ∼1.5%, which compares well with
our figure of ∼1.68% mentioned above.

3.2 DVC Results for Tensile Tests

3.2.1 Correlation coefficient maps

The 3-D deformation field was measured under tension after
performing DVC on the OCT reconstructed volume data for
the rectangular and notched phantom strips. As DVC was
performed using the subvolume size of 363 voxel and 50%
overlap, the reconstructed volume of interest thus contained

Fig. 10 Spatial distributions of the strain components obtained for a rectangular phantom strip under
tension (load step 1). The central y slice 10 is shown.
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55 × 18 × 50 measurement points, corresponding to the dimen-
sions of 10.5 × 1.4 × 10 mm3. The reliability of the deformation
measurements was assessed in terms of the 3-D correlation coef-
ficient maps shown in Figs. 6(a) and 6(b) for the rectangular and
notched phantom strips, respectively. In order to see the corre-
lation coefficients within the specimens, subvolumes of the
whole fields are represented here and are obtained by cutting
the volumes in the xy plane at z-slice 25. For y-slice 18 at
the top of the rectangular specimen, the mean value of the cor-
relation coefficient is 0.95, while it is 0.92 for y-slice 1 at the
bottom. Similar results were obtained for the notched specimen:
0.95 and 0.84, respectively. This decrease in correlation coeffi-
cient through the thickness can be attributed to a depth-depen-
dent speckle contrast reduction as a result of signal attenuation
due to light scattering, defocusing, and spectral roll-off.

In our experiments, the maximum εxx was ∼1.4% (see results
for load step 2 in Sec. 3.2.2) and therefore speckle boiling was
not an issue. Without further analysis it would seem prudent to
consider NCC values <0.9 as inappropriate to measure strains
with OCT and DVC.

3.2.2 DVC results for rectangular phantom strip

Ux displacement maps for the rectangular phantom strip, which
denote the displacement along the tension direction, are shown
in Fig. 7. In Fig. 7, one can see the evolution of the Ux displace-
ment in cross-sections cut at different z-slices. The absolute
value of Ux increases continuously along the x direction
from the fixed side to the other, ranging from 0 to 0.07 mm,
as expected from the loading configuration. Figure 8(a)
shows that the mean value of Ux evolves linearly along the x
direction. Nevertheless, a sinusoidal oscillation is apparent
when the difference between the actual values and a linear fit
is plotted as a function of x in Fig. 8(b). An analysis of
these displacement oscillations is provided below.

The strain maps were derived using the same procedure as for
the noise analysis (centered finite difference of the displacement
data, without any smoothing). All six strain components for

central z-slice 25 and central y-slice 10 are shown in Figs. 9
and 10, respectively. As expected from the loading configura-
tion, the εxx strain maps for both z- and y- slices show positive
values around 0.007. Strain maps εyy and εzz show negative val-
ues, indicating a Poisson’s contraction along the corresponding
directions. It is interesting to note that εzz is very small (close to
zero) at the right-hand side, where the grip prevents Poisson’s
contraction in the z direction. Regarding εyy, it is not zero at the
right-hand side because the constraint from the grip acts only at
the surface. The reason why εyy is actually larger in magnitude

Fig. 11 Normal strain components obtained at z slice 25 for a rectangular phantom strip under tension
(load step 1) and the corresponding strain noise obtained in the stationary test.

Fig. 12 Spatial distributions of the normal strain εxx obtained for
a rectangular phantom strip under tension (load step 2): (a) central
z slice 25 and (b) central y slice 10.
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may be from some material nonlinearity due to the compres-
sion in the grip. Figure 11 shows that the measured strain com-
ponents are significantly larger than the corresponding strain
noise obtained for the stationary test. Since this is a pure tensile
test for the rectangular strip, all the shear strain components
should be close to noise level, as confirmed in Figs. 9 and
10. Some irregularities, however, can be seen from these
strain maps. The fringes observed in the εxx strain component
in Figs. 9 and 10 could be due to either a spatial variation of
the elastic modulus or interpolation bias.40 In the case of
the FFT-based DIC algorithm used here, the period of the
oscillation due to interpolation bias corresponds to a displace-
ment equivalent to 2 voxels.44–46 This is consistent with 2.5
fringes observed in Fig. 8(b) for a total deformation correspond-
ing to 5 voxels. A bias in displacement directly leads to bias

in strain, proportional to the slope of the displacement bias.
When aliasing arises due to spatial undersampling by the
SS-OCT system, the displacement values obtained when com-
paring subvolumes between reference and deformed states
are likely to suffer from larger interpolation errors, which
are further amplified when strain is calculated. It has been
shown that aliasing typically shows up as a Moiré-like fringe
pattern in the displacement and strain fields and that it is more
obvious in the latter. In order to confirm the nature of the
observed fringes, a second load step was performed on the
same rectangular phantom strip with an extra 10 g dead weight
(we refer to this case as load step 2). The strain maps showed
twice as many fringes in Fig. 12, confirming that these are
due to interpolation bias in this elastic material. One way of
reducing this bias is to perform presmoothing on both the

Fig. 13 Ux displacement distribution obtained for a notched phantom strip under tension (load step 1),
showing different subregions of the data volume.

Fig. 14 Spatial distributions of the strain components obtained for a notched phantom strip under tension
(load step 1). The central z slice 25 is shown.
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reference and deformed volume images using a Gaussian
low-pass filter before correlation to reduce high-spatial fre-
quency components47,48 or to increase the sampling density of
the OCT reconstruction.

3.2.3 Results for notched phantom strip

Ux displacement maps for the notched phantom strip are shown
in Fig. 13. One shows the internal Ux displacement in a cross-
section cut at central z-slice 25, while the other shows the
whole volume. It can be seen that in each z-slice, the absolute
value of Ux increases continuously along the x direction from
the fixed side to the other, as expected from the loading con-
figuration and consistent with the displacement maps for
the rectangular phantom strip as shown in Fig. 7. In Fig. 13,
a slight bending of the strip can be observed from the larger
Ux displacement values at the top half of the strip compared

to those at the bottom half. This is probably due to the slight
geometrical asymmetry between the two notches. The geo-
metrical asymmetry was induced during the manufacturing
process when cutting the strip to a notched shape from a larger
piece.

For the notched phantom strip, all six strain components for
central z-slice 25 and central y-slice 10 are shown in Figs. 14
and 15, respectively. The εxx strain map shows positive values,
while the εyy and εzz strain maps show negative values, as
expected. Larger deformation is expected in the notched region,
which can be observed in the maps of the normal strain com-
ponents in Figs. 14 and 15. In addition, strain concentration is
observed near the top notch tip of the strip for the normal strain
components in Fig. 15. This is consistent with the larger Ux dis-
placement found near the top notch in Fig. 13. The explanation
for this local strain concentration is the geometrical asymmetry
of the notched strip, which has already been stated earlier.

Fig. 15 Spatial distributions of the strain components obtained for a notched phantom strip under tension
(load step 1). The central y slice 10 is shown.
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In Fig. 15, the εxz strain map shows an antisymmetric shear
strain distribution. Regarding the other two shear strain com-
ponents, they are close to zero. These results are consistent
for this type of test. It should be pointed out, however, that
these results also suffer from the interpolation errors due to
aliasing, especially evident in εxx.

3.2.4 Bias reduction using Gaussian presmoothing

Presmoothing using a Gaussian filter has proved effective in
reducing interpolation bias.47,48 A Gaussian filter with a kernel
size of 7 × 7 × 7 voxels and a standard deviation of 1.5 voxel
was applied to the OCT volume reconstructions of the tensile
tests prior to correlation. In Fig. 16, for the rectangular phantom
strip, the plots of the difference between the measured and the
fitted mean Ux displacement of each x-slice as a function of x
position with and without presmoothing are compared. The dif-
ference is substantially reduced after presmoothing, which is
expected according to Refs. 47 and 48. Gaussian smoothing
was also applied to the volume images of the stationary and
rigid body translation tests in order to check its influence in
the strain resolution. The results show an increase in the strain
standard deviations with presmoothing, generally ranging from
4 × 10−4 to 8 × 10−4, as shown in Figs. 17(a) and 17(b) for
the stationary and rigid body translation tests, respectively.
The reason for this increase has been explained in Ref. 48,
which states that the sum of squares of subset intensity gradient
(SSSIG) is reduced after smoothing, and the standard deviation
error is inversely proportional to the SSSIG value. In any case,
these noise levels may still be considered as acceptable com-
pared with the strain levels of the tensile tests (about one order
of magnitude). Figure 18 shows the εxx strain maps with and
without presmoothing for the rectangular and notched phantom
strips. The fringes due to interpolation bias are eliminated after
presmoothing.

3.3 Identification Results

Using the experimental strain results in the linear equation sys-
tem [Eq. (15)], the material stiffness components Qxx and Qxy

can then be directly determined for the two tensile tests. The
identification results with and without presmoothing are listed
in Tables 1 and 2, respectively. From these results, Young’s
modulus E and Poisson’s ratio ν can be calculated through
the relations stated in Eq. (7). In order to provide a reference
for the stiffness parameters obtained through the VFM,
Young’s modulus and Poisson’s ratio were also calculated for
the rectangular strip based on the assumption of constant uni-
axial stress through the relation.

�
E ¼ σx

εx

ν ¼ − εy
εx

; (17)

where uniform stress σx in the yz cross-section of the rectangular
phantom strip was determined through the equation σx ¼ F∕A.
F is the tension load and A is the yz cross-sectional area. εx and
εy are the average values of the corresponding strain compo-
nents over the whole field of view. Thus, both Young’s
modulus and Poisson’s ratio can be derived and the results
are listed in Tables 1 and 2. In both tensile tests, the results

Fig. 16 Difference between the Ux displacement averaged within x
slices along the x -direction and a linear data fit obtained for a rectan-
gular phantom strip under tension (load step 1), with and without
presmoothing.

Fig. 17 Strain standard deviations obtained with 363 voxels subvo-
lume, 50% overlap, and Gaussian premoothing for (a) stationary
test and (b) rigid body translation test.
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obtained from the VFM are consistent with each other and also
with those calculated from the constant uniaxial stress
assumption. This indicates that the 3-D VFM is an effective
tool to identify the constitutive parameters of materials with
nonuniform stress/strain states when the constant uniaxial stress
assumption is no longer applicable. Moreover, the identification
results with presmoothing are in agreement with those without
presmoothing when comparing Table 1 to Table 2.

It is interesting to note that when a larger preload of 115 g
was used in the tensile test, both parameters increased (E from
1.44 to 1.82 MPa and ν from 0.42 to 0.48). In both cases, a load
of 10 g was used.

4 Conclusions
We have shown that DVC can provide, by means of a single
channel OCT system, multicomponent displacement fields
from which all the strain components required by inversion
methods such as the 3-D VFM can be evaluated. OCT+DVC
has low displacement sensitivity compared to phase-sensitive
OCT elastography and seems appropriate for strain as large
as ∼1.68% (in the axial direction) at which point an incremental
approach should be used to avoid speckle decorrelation. A strain
uncertainty in the order of ∼4 × 10−4 to 8 × 10−4 was observed
when Gaussian presmoothing is used to reduce bias noise. Strain
below this uncertainty level would require an alternative

Fig. 18 Spatial distributions of the normal strain εxx obtained at central y slice 10 for phantom strips
under tension (load step 1). (a) Rectangular, no presmoothing. (b) Rectangular, with presmoothing.
(c) Notched, no presmoothing. (d) Notched, with presmoothing.

Table 1 Identified material elastic stiffness parameters without
presmoothing.

Qxx (MPa) Qxy (MPa) E (MPa) ν

Virtual fields method (VFM)
(rectangular, load step 1)

3.45 2.44 1.44 0.41

VFM (rectangular, load step 2) 3.48 2.44 1.47 0.41

Constant stress (rectangular,
load step 1)

3.65 2.64 1.43 0.42

VFM (notched, load step 1) 3.24 2.18 1.49 0.40

Table 2 Identified material elastic stiffness parameters with
presmoothing.

Qxx (MPa) Qxy (MPa) E (MPa) ν

VFM (rectangular, load step 1) 3.39 2.40 1.40 0.41

VFM (rectangular, load step 2) 3.26 2.23 1.45 0.41

Constant stress (rectangular,
load step 1)

3.55 2.57 1.39 0.42

VFM (notched, load step 1) 3.18 2.09 1.51 0.40
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approach, such as phase-sensitive OCT, capable of detecting
subwavelength displacements with low noise. In the cases stud-
ied in this work, one fringe across a 10 mm field of view would
correspond to a relative axial displacement equal to 0.45 μm and
an average strain of 4.5 × 10−5, an order of magnitude better
than the uncertainty we report for OCT+DVC. Even though
most phase-sensitive OCT elastography systems have so far
focused on phase measurements with only axial sensitivity, a
new system with sensitivity to all displacement components
has been recently developed based on a wavelength scanning
OCT system using multiple illumination directions and a single
observation direction.49 In this work, strain was evaluated with
a centered finite difference operator applied to the displace-
ment field. No displacement smoothing was used before strain
calculation in order to achieve maximal spatial resolution with
a view to further studies on thin biological tissues such as the
vertebrate eye cornea. In cases where strain accuracy is para-
mount, a weighted-least squares strain estimator would be more
appropriate.50

Uniform and nonuniform 3-D strain fields measured with
OCT+DVC were used to identify the elastic stiffness compo-
nents of rectangular and notched silicone rubber phantoms
using the VFM with 3-D manually defined virtual fields. The
material moduli extracted from this approach are consistent
with those calculated from the constant uniaxial stress approach.
In order to test the proposed identification methodology, simple
uniaxial tensile tests and isotropic materials were used.

This is the first time that volume strain data are derived by
performing DVC on OCT reconstructed volumes. Future work
will be aimed at applying this methodology to measuring the
internal 3-D full-field deformation of biological tissues under
more complex loading conditions and also identifying spatial
distributions of constitutive parameters.
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