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Abstract. We demonstrate how compressive sampling can be used to expedite volumetric optical coherence
tomography (OCT) image acquisition. We propose a novel method to interpolate OCT volumetric images from
data acquired by radial B-scans in the Cartesian coordinate system. Due to the inherent polar symmetry in
the human eye, the (r, θ, z) coordinate system provides a natural domain to perform the interpolation. We dem-
onstrate that the method has minimal effect on image quality even when up to 88% of the data is not acquired. The
potential outcome of this work could lead to significant reductions in OCT volume acquisition time in clinical
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1 Introduction
Volumetric optical coherence tomography (OCT) is rapidly
emerging as a dominant diagnostic imaging modality in ophthal-
mology. High resolution volume scans in clinical OCT imaging
sessions can last up to several seconds, requiring the subject
being imaged to stay perfectly still, fixating gaze at a single
point. Even small movement of the subject can lead to undesired
motion artifacts in the resulting acquired images. Eye tracking
hardware can also be used to minimize motion artifacts, but this
in turn adds to the cost and complexity of the system. This is the
reason many researchers are working on methods to reduce the
overall OCT scan acquisition time.

Efforts to reduce the overall scan time predominantly con-
centrate on increasing the speed of the hardware of the OCT
system.1 The net increase in speed from this approach is limited
because the system sensitivity (and image quality) is inversely
related to the acquisition rate.2,3 The optical power at the sample
for ophthalmic applications cannot be arbitrarily increased
because the American National Standards Institute (ANSI) sets
strict limits on the maximum permissible optical exposure in
the eye.

Another method of increasing the volumetric data rate is to
change the scanning protocol. The traditional raster scan
approach4 is often wasteful for objects such as the optic
nerve head (ONH) because peripheral lines do not intersect
the features of interest. Recent advances from information
theory, known as compressed sensing (CS),5–7 have allowed
researchers to decrease the overall OCT scan time by reducing
the number of acquired image samples without significant deg-
radations in image quality8–10 in terms of mean squared error
(MSE) and Structural SIMilarity index (SSIM).11 These meth-
ods, combined with fast OCT hardware, are based on pseudo-
randomly acquiring small subsets of the image volume and then

using an efficient CS-based recovery scheme from subcritical
samples, hereafter simply referred to as ‘interpolation,’ to recon-
struct the image samples that were not acquired.

Radial OCT image acquisition12–14,15 has been proposed as a
method to augment the regular raster-scan pattern. Radial scan-
ning inherently collects a denser distribution of image samples
closer to the center of the image, and a sparser distribution
of samples in the peripheral regions of the image. In certain
imaging applications, like imaging of the optic nerve head,
this is the preferred scan pattern since each acquired B-scan
contains a cross-sectional image of the optic cup. Volumetric
reconstruction of the ONH is particularly important for emerg-
ing clinical imaging applications investigating correlations of
morphology of ONH and susceptibility of glaucoma.15 To dis-
play and render the radially acquired samples, the data must be
resampled to a regular Cartesian grid where the subsequent visu-
alization, volumetric rendering and morphometric analysis can
be performed. Resampling the data to a Cartesian grid can be
achieved through a simple radial to Cartesian coordinate trans-
formation. However, accurate interpolation of image samples
collected from a radial grid is a nontrivial task.16–18 The most
common method to interpolate radially sampled data is to
employ radial basis functions. While these methods shows
promise, they lose some of their advantages when there are
large gaps present in the data, which is typical in radial sampling
away from the center.

In this work we describe a novel random-radial sampling
method and a novel technique to reconstruct data acquired by
this sampling scheme to interpolate volumetric OCT image
data. In the context of this work, a random-radial scan pattern
refers to a scan pattern consisting of radial B-scans, with a ran-
dom angular separation between each subsequent B-scan. On
one hand, this technique leverages the concepts of sparse sam-
pling by acquiring randomly spaced angular measurements,
while on the other hand it acquires image samples that can
be directly used for clinical measurements of the ONH suchAddress all correspondence to: Evgeniy Lebed, Simon Fraser University, School
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as retinal thickness.14 In accordance with the principles of CS,
the interpolation on the collected data is performed in a trans-
form domain, which matches the symmetry of the acquired
volume. We demonstrate the proof-of-concept of radial-CS
by analyzing three recovered human ONH datasets and inves-
tigating the resulting morphometric measurements for different
percentages of missing data. The image quality is compared
based on standard morphometric analysis used in the clinic.

2 Methods
In this section, we describe the proposed procedure for volumet-
ric OCT imaging using sparse radial samples. Volume acquis-
ition is performed by randomly spaced radial B-scans. In the
context of this work, random-radial B-scans refer to scans
where the angle of a subsequent B-scan, relative to the previous
B-scan, is drawn from a random distribution. Radial B-scan
spokes, each consisting of a fixed number of A-scans, are
acquired at a random angular spacing within a range defining
the maximum and minimum step size. The sparseness of the
acquisition is determined by the maximum allowable angular
step size. In order to interpolate the data in the regions
which have not been acquired, a mapping is first implemented
which places the acquired radial spoke B-scan images in a three-
dimensional (3-D) Cartesian system. This mapping converts
(r, θ, z) coordinates to (x, y, z) coordinates, where x ¼ θ and
y ¼ r. Essentially, this is the stacking of each radial B-
scan in a 3-D Cartesian grid where the placement in the hori-
zontal direction is based on the angle of the radial scan, as
shown in Fig. 1(a) and 1(b). The missing radial scans then
become equivalent to missing vertical Cartesian raster scans
in the (r, θ, z) space.

Reconstruction of the missing data is now performed by the
CS-based interpolation method described in Ref. 8. Briefly, we
let f denote the full 3-D tissue image, R to be the 3-D restriction
mask that restricts the image samples actually acquired,M to be

the measurement basis and y to be the image samples actually
acquired. Given this, the sparse image acquisition problem can
be formulated as y ¼ RMf þ n where n is the noise in the col-
lected data. If S is some transform domain that offers good com-
pressibility of f, and x ¼ Sf are the transform coefficients of f
then f can be exactly reconstructed by f ¼ SHx, where SH is the
synthesis of S. Instead of directly recovering the image f, we
find a set of coefficients x̃ so that f̃ ¼ SHx̃ is a good approxi-
mation of f. The approximating coefficients x̃ are found by solv-
ing the following constrained optimization problem:

x̃ ¼ argminxkxk1 subject to ky − RSHxk2 ≤ ϵ: (1)

Stated simply, we are looking for a solution that is sparse
(small l1-norm) and simultaneously has a faithful representation
of the collected data (small l2-norm between the observed data
and synthesized coefficients). Results of Ref. 6 show that if x is
sufficiently sparse, then the solution to Eq. (1) is exact, up to the
noise level ϵ, with overwhelming probability. The constrained
optimization problem presented in Eq. (1) can be solved with
Iterative Soft-Thresholding solver, described in Ref. 19.

Following the interpolation step [Fig. 1(c)], the vertically
aligned B-scans in the 3-D Cartesian volume represent the radial
scans that were mapped to lie in this coordinate system. To map
the interpolated data back to the physical 3-D Cartesian volume,
we apply the inverse of the mapping that placed the radial scans
in the (r, θ, z) space (x ¼ r cos θ, y ¼ r sin θ, z ¼ z). The
result is that the 3-D image voxels of the whole field of view
have now been reconstructed in their physically corresponding
positions i.e., the missing data in between the acquired radial
scans has been filled in, and in a way such that the reconstructed
samples are located on the 3-D Cartesian grid (the standard
image storage format) overlaid in the field of view.

The construction of the radial sampling pattern can be done
by choosing the first radial scan to be horizontal, and thereafter

Fig. 1 A schematic outlining the proposed procedure. (a) Acquisition of
several randomly spaced radial B-Scans. (b) Stacked radial B-scans in
the (r, θ) spaces. (c) Interpolated data in the (r, θ)space. (d) Data from (c)
is mapped back to the Cartesian grid to produce and interpolated radial
image.

Fig. 2 Wavelet atoms shown at different scales in the physical domain.
Scale 1 corresponds to the coarsest scale, while scale 5 corresponds to
the finest scale. The dashed lines represent the approximate windows of
support for each wavelet atom.
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incrementing the radial angle in angle increments that are drawn
from some random distribution, with some upper limit on
maximum allowable angle between any two adjacent scans.
For example, one way of choosing the angle increment
would be to draw it from the uniform distribution over
½0; π∕18� i.e., the maximum angle increment is 10 deg. This

maximum allowable angle is chosen depending on the size of
the smallest feature we may want to resolve in the image.
This is a major advantage of the proposed new scan pattern
for OCT as the information of interest, the optic nerve head, or
other features such as the morphology of the fovea or the mac-
ula, can be position to be in the center where they are densely

Fig. 3 Extracted en-face slices from Volume1, recovered with 200, 100, and 60 random-radial scans. Images in the first column show extracted B-scans
form the fully sampled volume1. Images in columns 2, 4 and 6 show B-scans extracted from data volumes sampled with 200, 100, and 60 random
radial B-scans, respectively. Images in columns 3, 5, and 7 show extracted B-scans from volumes recovered with 200, 100, and 60 random radial B-
scans, respectively.
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sampled. The angle increment between B-scans can be made
larger and this would sacrifice the resolvability of features in the
periphery of the field of view but retain high fidelity in the center.

It is important to note that compressive sampling, as intro-
duced by Ref. 7, under certain assumptions, guarantees exact
signal reconstruction from multiple random projections of the
signal being observed. With the OCT image acquisition setup
proposed in this work, we are not acquiring random projections,
but instead acquiring a random subset of the image in the pixel
domain. This requires a reformulation of the sensing matrix to
make our formulation adhere to the principles of compressive
sampling. Specifically, the sensing matrix is factored into
RMSH, where R models our proposed random sampling pattern
in the (r, θ, z) space, M is the Dirac measurement basis, and SH

is the synthesis of the wavelet transform. In Sec. 2.1 we dem-
onstrate that OCT images have a relatively sparse representation
in the wavelet domain.

The other necessary condition to achieve good CS-based sig-
nal reconstruction is that the mutual coherence, μ, between the
sensing and representation bases must be small.20 The smaller
the coherence is between the sensing and representation bases,
the fewer image samples are required to reconstruct the image.
Essentially, μ is the largest correlation between any two atoms of
the sensing and sparsifying transforms. Figure 2 shows several
wavelet atoms in the physical (Dirac) domain, plotted at differ-
ent scales. The figure is generated by applying a wavelet analy-
sis operator to a zero matrix, inserting a unity at several locations
corresponding to different scales, and applying a synthesis oper-
ator to visualize wavelet atoms in the physical domain. At least
qualitatively, we can see the large spread of wavelets, and hence
their incoherence in the Dirac basis. Combining this with the
fact that OCT images appear to be compressible in the wavelet
domain, this makes our formulation commensurate with the
ideas of compressive sampling. There exist many works,
Refs. 21 and 22 to name a few, that have employed similar ideas
to reconstruct images from missing information in the pixel
domain with high fidelity.

2.1 Choice of Sparsifying Transform

Successful CS-based signal recovery largely depends on the
choice of the sparsifying transform S, as defined in Eq. (1).
One of the key factors in choosing a proper sparsifying trans-
form is the transform’s ability to efficiently represent the data—
that is, most of the signal’s energy should be captured by only a
few transform’s coefficients. We investigated three transforms’,
Daubechies wavelets Sw, Curvelets Sc,

23,24 and Surfacelets Ss,
25

abilities of efficiently capturing the energy of our OCT volume.
These three transforms are commonly used in CS-based appli-
cations to reconstruct signals from incomplete measurements.
We investigated this ability by computing the transform’s coef-
ficients xi by applying the analysis operator Si to the model
OCT volume f, shown in Fig. 3. That is, xi ¼ Sif, where
i ∈ ðw; c; sÞ. Figure 4(a) shows the normalized coefficients xi
plotted in magnitude-decreasing order. We also computed the
mean squared error (MSE), defined by kf − f̂k2∕kfk2, of
partial reconstructions f̂ by applying the synthesis operator
SHi to a set of restricted coefficients xi;η. That is, f̂i ¼ SHi xi;η,
where xi;η retains only the η largest coefficients, and thresholds
the rest to 0. Figure 4(b) shows the MSE, as a function of the
number of coefficients η used in the reconstruction. Since
Wavelet coefficients have the fastest decay rate and the smallest
MSE of partial reconstructions, we can say that relative to

curvelets and surfacelets, the OCT volume is compressible
under Wavelets, and thus we use the Wavelet transform in all
further computations.

3 Results
Model data to investigate the performance of CS-OCT
was acquired by raster-scanning the ONH of three healthy
subjects using a custom built Michelson interferometer based
Fourier-domain OCT system. We employed X-Y galvanometer
mounted mirrors (6210H, Cambridge Technology Inc.,
Lexington, Masachusetts) to scan the beam across the area of
interest. The light source was a commercial swept-source laser
with an operating wavelength of 1060 nm from Axsun
Technologies (Billerica, Masachusetts) with an effective 3 dB
bandwidth of 61.5 nm, corresponding to an axial resolution
of lc ¼ 6 μm in tissue. The optical system used a standard
fiber coupler Michelson interferometer topology and the sample
arm optics delivered a spot size of 1.3 mm at the cornea and
17 μm at the retina (assuming the axial eye length is
25 mm). For details on the experimental setup we refer the
reader to Ref. 9. For all three acquired volumes the B-scans con-
sisted of 1024 × 400ðaxial × lateralÞ pixels. The en-face area
covered by the scan for the first subject was 4.4 by 4.4 mm2,
while the en-face scan area for both subjects 2 and 3 was 7.2
by 7.2 mm2. We will subsequently refer to the thee acquired vol-
umes as volume1, volume2 and volume3. Volume1 is a compa-
ratively small scan, nominally centred at the ONH. Volume2 is a
larger scan which includes the ONH and macula in the periphery
of the image. Volume3 is a scan of the same size as volume2,
and is nominally centred on the ONH. Representative B-scans
from the three acquired volumes are shown in the first columns
of Figs. 3, 5, and 6. Note that the scans were approximately cen-
tred at the ONH for volumes1 and 3, while for volume2, the scan
was purposefully off-centre from the ONH.

To simulate the data as it would appear if we were to acquire
it with the proposed sampling pattern, we generated three differ-
ent random-radial sampling masks each consisting of n ¼ 200,

Fig. 4 (a) Normalized relative decay rates of Wavelet, Curvelet and
Surfacelet coefficients of stacked radial B-scans in (r, θ, z) space, sorted
in decreasing order. (b) Mean squared error of reconstruction of the
model volume in (r, θ, z) space, shown in Fig. 3 from a partial set of
transform’s coefficients.
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n ¼ 100 and n ¼ 60 radial B-scans. Correspondingly, each
level of subsampling comprises 61.5%, 80.9%, and 88.3%
missing data. We take the first radial B-scan to lie on the hori-
zontal axis, and each subsequent radial B-scan is incremented
by a random angle, drawn from a uniform distribution over
(0, π∕n). With this type of construction the maximal angular
increment is guaranteed to be θmax ≤ 2π∕n.

After applying the particular radial subsampling masks to
the full volume, we recovered the missing data by the procedure
detailed in the previous section. To interpolate the sparse samples
in (r, θ, z) space we employed the IST solver with 6 inner and
40 outer loop iterations. Total run-time for the interpolation algo-
rithm with these parameters was approximately 2 h on a machine
with an Intel i7 CPU running at 2.67GHz and 20GBs ofmemory.

Fig. 5 Extracted en-face slices from Volume2, recovered with 200, 100, and 60 random-radial scans. Images in the first column show extracted B-scans
form the fully sampled volume2. Images in columns 2, 4 and 6 show B-scans extracted from data volumes sampledwith 200, 100 and 60 random radial
B-scans, respectively. Images in columns 3, 5, and 7 show extracted B-scans from volumes recovered with 200, 100, and 60 random radial B-scans,
respectively.
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For details on how the total computational time of the recovery
algorithm varies as a function of the number of iterations, we
refer the reader to Ref. 10. We note that the implementation of
the recovery algorithm, as implemented in Ref. 10 and used in
ourwork, is implemented inMatlab. Since the recovery algorithm
consists of matrix-vector multiplications and analysis/synthesis
wavelet transforms, we anticipate that a significant reduction in

scan time can be achieved by implementing it in a combination
of C/C++ and utilization of GPU technology.

The results of the interpolation procedure for the three differ-
ent volumes are shown in Figs. 3, 5, and 6. The top panel shows
a typical en-face slice from the data volume. The colored lines
show locations of six extracted B-scans. The left-most column
shows the extracted B-scans from the original raster-acquired

Fig. 6 Extracted en-face slices from volume3, recovered with 200, 100, and 60 random-radial scans. Images in the first column show extracted B-scans
form the fully sampled Volume3. Images in columns 2, 4, and 6 show B-scans extracted from data volumes sampled with 200, 100, and 60 random
radial B-scans, respectively. Images in columns 3, 5 and 7 show extracted B-scans from volumes recovered with 200, 100, and 60 random radial B-
scans, respectively.
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volume. The subsequent images show the corresponding B-
scans as they appear in the data volumes and the resulting
interpolated volumes. The mean squared errors of the resulting
reconstructions from 200, 100, and 60 radial scans from each
volume is reported in Table 1. In the next section we show
that the quality of the reconstructed images remains adequate
to make anatomically meaningful measurements, such as Total
Retinal and Nerve Fiber Layer thickness accurate to within
the intrinsic axial resolution of the OCT system used in this
report.

3.1 Validation

To validate the quality of the CS-based reconstruction algorithm
for interpolating subsampled volumetric OCT images, we
computed and compared for each volume the nerve fiber
layer (NFL) thickness, total retinal (TR) thickness, and cup-
to-disc ratio (c∕d). For these measurements, we segmented
the inner limiting membrane (ILM), the boundary between
the NFL and inner plexiform layer (NFL-IPL boundary),
Bruch’s Membrane (BM), and Bruch’s membrane opening

(BMO). A 3-D graph-theoretic algorithm was used to automati-
cally segment the ILM, NFL-IPL boundary, and BM.26,27 In this
method, a weighted geometric graph is constructed such that
the nodes correspond to the voxels in the volume and arcs
are created based on geometrical proximity, a smoothness
parameter, and minimum and maximum distances between the
surfaces. The target surfaces are segmented by computing a
minimum closed set in this graph by a minimum s-t cut in a
derived arc-weighted digraph. We used the MaxFlow Software28

(v3.02) to compute the minimum cut. The cost function used
here was intensity gradient in the axial direction. Thus the
algorithm found the ILM, NFL-IPL boundary, and BM as
the optimal surfaces given the intensity gradient, smoothness
restriction, and inter-surface distance restriction.

The NFL-IPL boundary had lower contrast compared to
the ILM and BM, and a trained human delineator manually
corrected the NFL-IPL boundary segmentation in the regions
where the automatic algorithm showed inaccuracies. To avoid
bias, the delineator examined and corrected each volume sepa-
rately. The BMO was also segmented manually.

The NFL thickness was defined and measured as the axial
distance between the ILM and the NFL-IPL boundary. The
total retinal thickness was defined and measured as the axial
distance between the ILM and BM. The NFL and TR thickness
maps for each of the recovered volumes are shown in Figs. 7 and
8, respectively. Note that in the thickness calculation, we
excluded the regions where the BM and NFL are not visible.
These regions are below the ONH, and in the case of volume2,
the region below the fovea.

To localize the changes in thickness measurements, we
plotted the differences in thickness between the fully sampled
and the recovered volumes. The differences in NFL and TR

Table 1 Mean squared error (MSE) values of the reconstructed vol-
umes for different levels of subsampling.

200 B-Scans 100 B-Scans 60 B-Scans

Volume1 MSE 0.0095 0.0184 0.0291

Volume2 MSE 0.0099 0.0197 0.0310

Volume3 MSE 0.0091 0.0179 0.0288

Fig. 7 Computed nerve fiber layer (NFL) thickness, shown in μm, on each of the three volumes (first column), and the NFL thickness computed from
volumes reconstructed from 200 (2nd column), 100 (3rd column) and 60 (4th column) radial scans. The regions within the BMO and in the macula are
masked white because NFL and BM are not defined in these areas.
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thickness are shown in Figs. 9 and 10, respectively. We note that
the greatest differences in thickness occur in the peripheral
regions of the image, which are predominantly visible in vol-
ume2 and volume3 (Fig. 9 rows 2 and 3). To quantify the
obtained thickness measurements we averaged the changes in
NFL and TR thickness for each of the reconstructed volumes.
These changes are reported in Table 2. We observed that the
greatest change (7.9 μm) in computed TR thickness occurred
in the reconstruction of volume3 from 60 radial B-scans. The
greatest change in computed NFL thickness occurred in the
same volume, and was 5.9 μm. Both of these changes are on
the order of the intrinsic axial resolution (lc ¼ 6 μm) of the
OCT system.

The optic disc area was defined as the area of the region
bounded by the BMO, and the optic cup area was defined as
the area bounded by the ILM on the plane parallel and
150 μm anterior to the BMO plane.29 The BMO plane was
derived by performing principal component analysis on the
BMO points. The cup-to-disc ratio (c∕d) was calculated as
the ratio of the optic cup area and optic disc area.29 The c∕d
values of the fully sampled and recovered volumes are also
reported in Table 2.

To determine if the changes in c∕d values of the recovered
volumes are significant, we compare our c∕d values to the c∕d
values reported in Ref. 30. The authors of Ref. 30 performed a
repeatability study to assess the intrasession variability of
computing c∕d. The authors reported a test-retest intrasession
variability of 0.024 for healthy subjects. In our results, the great-
est change in c∕d occurred in volume2 (0.35 for the fully
sampled volume and 0.32 for the volume recovered from 60
radial B-scans). This change of 0.35 − 0.32 ¼ 0.03 in c∕d
is slightly greater than the intrasession variability reported by
Ref. 30, but is still of the same order. We thus come to the

conclusion that, in terms of several clinically relevant measure-
ments (TR thickness, NFL thickness and c∕d values), all the
volumes were accurately reconstructed.

4 Discussion
In this work, we have shown that using the theory of CS we can
accurately reconstruct volumetric OCT images acquired from as
few as 60 radial scans. Our method contains the main three
ingredients required by the theory of CS: random sampling,
sparsity of the signal in the representation basis, and the mutual
incoherence between the sensing and sparsifying bases. In the
proposed CS-based interpolation scheme, the OCT samples are
acquired by randomly spaced radial B-scans, followed by a
mapping into the (r, θ, z) space where we perform the interpo-
lation by minimizing the l1-norm of the data’s wavelet coeffi-
cients subject to a data misfit, and then a mapping to the
Cartesian coordinate system. We note that the use of l2 norm
in the data misfit term of Eq. (1) implies Gaussian nature of
noise present in OCT. The main source of noise observed in
OCT is speckle noise,31 and it has been previously demonstrated
that speckle noise can be well modeled as additive white
Gaussian noise with probability density function Nð0; σ2Þ32,33
It has also been previously suggested that the true nature of
noise present in photon-limited image acquisition systems
(like OCT) in fact follows a Poisson distribution,34 and sub-
sequent promising sparsity-promoting image reconstruction
methods from Poisson observations have been developed.35,36

A detailed study on comparing reconstructed OCT images’
qualities from Gaussian and Poisson noise assumptions by spar-
sity-promoting inversion (CS) remain a topic of future research.

The acquisition geometry described in this work can be
implemented with standard galvanometric mirrors used in
commercial OCT systems, and does not require new hardware.

Fig. 8 Computed total retinal thickness (TR) thickness, shown in μm, on each of the three volumes (first column), and the TR thickness computed from
volumes reconstructed from 200 (2nd column), 100 (3rd column) and 60 (4th column) radial scans. The regions within the BMO and below the macula
are masked white.
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Fig. 9 The differences in nerve fiber layer (NFL) thickness, shown in μm, between the NFL thickness computed on the fully sampled volumes and the
NFL thickness computed on volumes that were reconstructed from 200 (first column), 100 (second column) and 60 (third column) radial scans.
lc ¼ 6 μm.

Fig. 10 The differences in total retinal (TR) thickness, shown in μm, between the TR thickness computed on the fully sampled volumes and the TR
thickness computed on volumes that were reconstructed from 200 (first column), 100 (second column) and 60 (third column) radial scans. lc ¼ 6 μm.
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Rapid radial acquisition/interpolation has several advantages
over conventional raster-scanning methods. Prior to image
acquisition the OCT system is aligned in such a way that the
object of interest (in our case the optic nerve head) is located
in the center of the image. Therefore when we acquire the volu-
metric OCT image each radial B-scan contains a depth profile
for the object of interest. This greatly facilitates the morphomet-
ric analysis of the anatomical structures around the object of
interest.15 Such a scan pattern results in dense sampling in
the center of the image and fewer samples collected in the
peripheral regions of the images. Due to the fact that there
are relatively large gaps in data in the peripheral regions, if
we were to perform the interpolation directly on the data
acquired in Cartesian domain, the resulting interpolation quality
would be poor in the regions further from the center. This is the
primary motivation for mapping the radial scans to the (r, θ, z)
space and performing the interpolation there. This type of inter-
polation results in accurate reconstructions of B-scans not only
in the center of the image but also in the peripheral regions,
where the image sample spacing is high.

The reduction in scan time is directly proportional to the
number of radial scans acquired when compared to the number
of original raster scans. The percentage reduction in scan time
can be calculated by the formula ð1 − n∕NÞwhere n is the num-
ber of acquired radial B-scans and N is the number of original
raster scans. For example, the original volume consisted of 382
raster scans, so the volume consisting of 60 radial scans corre-
sponds to an ∼82% reduction in scan time.

CS-based OCT image reconstruction from randomly spaced
radial B-scans results in better image quality compared to regu-
larly sampling a volume by radial B-scans, followed by linear
interpolation. This can be seen from Fig. 11, which shows
B-scans and C-scans extracted from the fully sampled volume,
and from volumes that were acquired by 60 randomly spaced
and 60 regularly spaced radial B-scans. The volume that
was randomly sampled was interpolated with the l1-minimiza-
tion method described in this work, while the regularly sampled
volume was interpolated by linear interpolation in the (r, θ, z)
space. Qualitatively, we observed that the CS-based image
reconstruction technique was able to retain the anatomical
structures of the image much more faithfully than the linear

interpolation method, as can be seen in the structure of the
ILMs shown in Fig. 11. Regular sampling, followed by linear
interpolation resulted in image artifacts that degraded the
smooth structure of the ILM, while random sampling with
l1-minimization recovery was able preserve the smoothness
of the ILM much better. The primary reason for this is because
linear, or any other local interpolation method relies on interpo-
lating from image samples collected form directly adjacent
B-scans, and with the methodology proposed in this paper
this can only be done in one of the three dimensions, while
the CS-based recovery is a 3-D global interpolation method,
relying on image samples from all three dimensions and at
different scales.

In terms of morphometric measurements such as TR thick-
ness and NFL thickness, we found that most of the reconstruc-
tions’ computed parameters were below the intrinsic axial

Table 2 Summary of the computed morphometric parameters: nerve fiber layer (NFL) thickness changes, total retinal (TR) thickness changes and cup
to disc ratio for each of the three volumes, for different levels of subsampling.

Scan area Fully sampled 200 B-Scans 100 B-Scans 60 B-Scans

Volume 1 4.4 × 4.4 mm2

Mean NFL thickness change (μm) — 0.8� 1.1 1.6� 2.0 2.3� 3.2

Mean TR thickness change (μm) — 1.8� 3.1 2.9� 4.3 4.0� 5.2

Cup to disc ratio c∕d 0.18 0.17 0.17 0.17

Volume 2 7.2 × 7.2 mm2

Mean NFL thickness change (μm) — 1.8� 3.5 4.0� 4.9 5.8� 6.9

Mean TR thickness change (μm) — 2.1� 3.8 4.5� 5.1 6.6� 7.1

Cup to disc ratio c∕d 0.35 0.34 0.35 0.32

Volume 3 7.2 × 7.2 mm2

Mean NFL thickness change (μm) — 2.3� 3.7 4.3� 5.5 5.9� 6.6

Mean TR thickness change (μm) — 3.2� 3.9 5.7� 5.6 7.9� 6.2

Cup to disc ratio c∕d 0.21 0.20 0.20 0.20

Fig. 11 (a) Fully acquired volume2. (b) 60 scans with CS-based inter-
polation. (c) 60 uniformly spaced scans with linear interpolation. The
top row shows extracted C-scans while the bottom row shows extracted
B-scans at the location of the yellow line. Notice how the linear inter-
polation degrades recovery whereas CS-based recovery presents a more
faithful representation to the original data.
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resolution (lc ¼ 6 μm) of the OCT system. The TR thickness of
volume2 and volume3 reconstructed from 60 radial B-scans was
slightly higher the intrinsic axial resolution of the OCT system,
but still of the same order as lc. We note that the errors in com-
puted mean thicknesses are a convolution of errors from l1-
based image interpolation and the inaccuracies that arise in
the segmentation algorithm.

5 Conclusions
We have described a CS OCT scan pattern that consists of
random-radial B-scans where the angle of a given B-scan, rel-
ative to the previous B-scan, is drawn randomly from a uniform
distribution. This type of scan pattern is particularly suited for
clinical studies where dense sampling in the center of a region is
important. By acquiring and interpolating the data as described
in Fig. 1, we are greatly facilitating the conversion of radial
spokes to 3-D volumetric data for display and rendering pur-
poses. Interpolation in Cartesian grid of the radial elements is
a way of performing a cylindrical interpolation in the original
radial space, and therefore, information of the underlying geom-
etry, which is the optic nerve head, is propagated along cylin-
drical iso-distance lines leading to better interpolation. We have
shown that recovering the data from a random-radial acquisition
via CS-based interpolation achieves minimal degradation in
the resulting image quality, which can subsequently lead to
improved automatic segmentations37–40 of relevant anatomical
layers, and accurate computations of clinically relevant mea-
surements of TR thickness, NFL thickness and c∕d values,
which are often used as predictors for macular diseases such
a glaucoma.29 Furthermore, rapid volumetric image acquisition
of the ONH is an important tool to investigate the role played by
the morphology of the ONH in determining an individuals sus-
ceptibility to glaucoma.15 Reduction in the volumetric OCT scan
time limits the discomfort of a subject during the scan and
reduces the amount of motion artifacts. Due to the inherent
radial geometry of the eye, this scan pattern is particularly suit-
able for imaging the optic nerve head. Although not demon-
strated here, the technique is likely to have similar benefits
for macular scanning. Extensions of this work could include
investigating other representation bases that exploit the geom-
etry of opthalmic OCT images. For example, due to the radial
symmetry of the optic nerve head, discrete radial Bessel func-
tions41 could be a natural choice to use as the representation
basis of OCT images in the CS-based recovery. We speculate
that the methods described in this paper could be beneficial
for other imaging modalities like side-viewing OCT endo-
scopes,42–44 intravascular ultrasound45 and transrectal ultra-
sound,46 where image samples are acquired in a radial fashion.
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