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Abstract. This study aimed to evaluate the concept of using high-resolution optical coherence tomography
(OCT) imaging to rapidly assess surgical specimens and determine if cancer positive margins were left behind
in the surgical bed. A mouse model of breast cancer was used in this study. Surgical specimens from 30 animals
were investigated with OCT and automated interpretation of the OCT images was performed and tested against
histopathology findings. Specimens from 10 animals were used to build a training set of OCT images, while the
remaining 20 specimens were used for a validation set of images. The validation study showed that automated
interpretation of OCT images can differentiate tissue types and detect cancer positive margins with at least 81%
sensitivity and 89% specificity. The findings of this pilot study suggest that OCT imaging of surgical specimens
and automated interpretation of OCT data may enable in the future real-time feedback to the surgeon about
margin status in patients with breast cancer, and potentially with other types of cancers. Currently, such feed-
back is not provided and if positive margins are left behind, patients have to undergo another surgical procedure.
Therefore, this approach can have a potentially high impact on breast surgery outcome. © 2014 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.19.5.056001]
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1 Introduction
Breast cancer is one of the most common cancers found in
women and the second leading cause of cancer deaths after
lung cancer.1 As with all malignancies, early detection of breast
cancer is the only way to effectively manage patients who suffer
from this disease. According to the American Cancer Society,
the five-year survival rates for women with breast cancer
who are appropriately treated are as follows: 100% for stage
0, 100% for stage I, 92% for stage IIA, 81% for stage IIB,
67% for stage IIIA, 54% for stage IIIB, and 20% for stage
IV.2 Therefore, improved methods are needed to detect and
treat this cancer in its early stage when survival rates are high.

Most patients diagnosed with early-stage breast cancer
choose to undergo breast conserving surgery (BCS). This
method of treatment is also known as a lumpectomy and
involves the local removal of the breast cancer (ideally) with
clear tumor-free margins. However, removal of breast cancer
with BCS, even when followed by radiation therapy, may not
be successful in controlling breast cancer recurrence because
microscopic amounts of tumor tissue can be left at the surgical
bed, increasing the probability of cancer recurrence.3–9 One way
to avoid this problem is to perform intraoperative evaluation of
the surgical margins.

Current techniques for intraoperative pathologic assessment
involve touch prep of the lumpectomy perimeter onto glass
slides to assess for cancer cells and frozen section analysis of
shaved peripheral margins.10 Touch prep seems to be marginally

effective in detecting positive margins, while frozen section
assessment is fraught with problems.11,12 Breast specimens
have a high percentage of fat tissue, and thus, they are very dif-
ficult to freeze and cut in thin slices for histopathological analy-
sis during the surgery. In addition, freezing artifact hampers
optimal evaluation of the tissue for cancer cells following rou-
tine processing. Therefore, in most cases, the lumpectomy speci-
men is sent to the pathology laboratory for routine histology
without intraoperative analysis of the surgical margins. A survey
of breast surgeons found that no intraoperative assessment is
completed in 52% of patients, frozen section is used by 28%,
and touch prep by 15%.11

Techniques used to make the extent of the tumor more evi-
dent to the surgeon during lumpectomy include the hematoma-
directed ultrasound-guided technique,13 intraoperative ultra-
sound,14 and dye injection at the tumor site.15 Each of these tech-
niques has had minimal impact in reducing positive margin
rates. In addition, these techniques require the patient to undergo
additional procedures that carry further risk and discomfort.

Optical methods have been tested as well for identifying tis-
sue types with the idea of using them for surgical guidance.
Among various techniques developed to date, spectroscopic-
based methods have shown real promise for tissue-type dis-
crimination.16–28 However, the resolution of the diffuse reflec-
tance or fluorescence spectroscopy methods is limited, and
thus, they can only detect relative large areas of cancer infiltra-
tions on the surgical specimen margins. The use of fiber optic
probes helped to identify cancer infiltration at lower scale.
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Pioneering optical studies were carried out by Bigio et al.29

However, the drawback of this approach is its very limited
field of view, and therefore, it is time consuming when survey-
ing large-size specimens.30 Raman spectroscopy has also shown
promise in detecting tumor sites.31,32 Unfortunately, Raman im-
aging is very slow and, thus, not adequate for intraoperative use.
More recently, optical coherence tomography (OCT) and its
higher-resolution variant, full-field OCT (FFOCT), have been
applied to tissue discrimination with the goal of providing an
optical biopsy33 as a means for aiding diagnosis or even guiding
biopsies or surgeries in various organs.34–45 For example, Hsiung
et al.41 has shown that OCTmay be used to differentiate between
benign and malignant lesions in the human breast. Zhou et al.42

have evaluated the complementarities of OCT and optical coher-
ence microscopy (OCM) for differentiating between normal and
cancer breast specimens. The two imaging modalities have been
integrated into one instrument. OCM provided complementary
information to OCT images, allowing tracking features from dif-
ferent levels to identify low-contrast structures that were diffi-
cult to appreciate from single images alone. More recently,
Assayag et al.43 have investigated the use of large-field, high-
resolution FFOCT for evaluating human breast specimens.
Although FFOCT provides enhanced resolution compared to
OCT, its penetration depth is limited to a few hundred of
microns. McLaughlin et al.44 have shown OCT probe implemen-
tation into a hypodermic needle, thus making it possible to dif-
ferentiate tissue types at the biopsy site. All these studies
demonstrate the potential of OCT for differentiating between
tissue types and helping clinicians to provide more reliable
diagnosis.

Since OCT is capable of imaging tissue structure to a depth
of the order of 1.5 to 2 mm at a very high speed (nowadays

hundreds of frames per second are possible) and has a decent
instantaneous field of view (up to 15 × 15 mm with large
field of view objectives), it might be a more suitable tool
than OCM or FFOCT for investigating surgical specimens
for cancer presence at the margins. However, one of the impor-
tant technological aspects toward achieving this goal is to rap-
idly analyze a large surgical specimen, automatically interpret
the OCT data in real time, and provide the results to the surgeon
in a very simple and easy to comprehend manner. Trying to
reach toward this goal, we present in this paper a preliminary
study on the use of an OCT-based approach for rapid collection
and nonbiased automated analysis of surgical specimens.
Preliminary evaluation of this approach on a mouse model of
breast cancer is discussed in detail.

2 Materials and Methods

2.1 Instrumentation

A typical OCT instrument based on the Fourier domain spectral
approach (see simplified schematic in Fig. 1) was chosen to
investigate small animal surgical specimens for presence of
cancer positive margins. This instrument uses a 1310 nm super-
luminescent diode (Exalos, Austria) with a bandwidth of 78 nm
as light source. The theoretical axial resolution provided by this
source is of the order of 7 μm in tissue (Δz ¼ 0.44λ2∕nΔλ,
where Δλ is the bandwidth of the light source and n is the refrac-
tive index of tissue). Light from this diode is sent to the
Michelson interferometer through a fiber optic circulator,
which helps to maximize the light collected back from the sam-
ple. The retro-reflected light from the sample and reference arm
of the interferometer is combined by the 2 × 2 fiber optic splitter
and an interference pattern is obtained when the two arms of the

Fig. 1 (a) Simplified schematic of the optical coherence tomography (OCT) instrument. (b) Schematic
representation of the tissue holder. (c) Initial design of a holder for larger tissue specimens.
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interferometer are matched within the coherence length of the
light source. The light collected by the spectrometer is dispersed
by a diffraction grating (1200 lines∕mm) and projected onto a
linear array detector (SUI 1024 LDH2, Sensors Unlimited, New
Jersey). In this way, the modulated spectrum carrying the depth
information of the investigated sample is obtained. The custom-
designed spectrometer (Wasatch Photonics, North Carolina)
provides a spectral resolution δλ of ∼0.1 nm, which was
used necessarily to allow for a reasonable imaging range Δz ≥
3.0 mm (Δz6 dB ¼ 0.22λ2∕δλ). The electrical signal from the
output of the linear array detector is processed to extract sample
depth information (reflectivity profile).

The imaging arm of the instrument was designed to enable
rapid investigation of the tissue specimens and provide correla-
tion of the images with the anatomical site. It consists of a scan-
ning engine (6210 galvanometer pair, Cambridge Technologies,
Massachusetts) with 6 mm mirror aperture, and a commercially
available 5× magnification scan lens (Thorlabs, Newton, New
Jersey, Model LSM03) with an effective focal length of
36 mm. This lens allows for tissue imaging with a lateral res-
olution of the order of 25 μm. A specially designed tissue holder
[5 mm cuvette (BrandTech) attached to a rotary mount) was
used [see schematic in Fig. 1(b)] to enable rapid imaging of
the entire specimen. Normally, on larger specimens, all six fac-
ets of the excised lump have to be investigated. However, since
the specimens used in our study were rather small (averaging
4 mm), we designed the specimen holder to image four facets
only because the imaging depth of OCT (∼1.5 mm) is sufficient
to resolve the thickness of specimens and, thus, to incorporate
the information from the two orthogonal facets.

For larger specimens, a corner cube cup holder can be used
[see preliminary design in Fig. 1(c)] and rotated in three sequen-
tial positions to enable rapid examination of first three tissue
facets, while the remaining three facets can be examined by flip-
ping the tissue specimen inside of the cup. This holder design
will be adopted for the OCT instrument planned to be used in
subsequent human studies.

2.2 Animal Model

A tumor xenograft animal model was used in this study. The
xenograft models are widely used to investigate the factors
involved in malignant transformation, invasion, and metastasis,
as well as to examine response to therapy.45 In such models,
human tumor cells are transplanted into immunocompromised
mice that do not reject human cells.

Following the procedures reported by other investigators for
developing xenograft models,45 we developed an animal proto-
col that was approved by the Institutional Animal Care and Use
Committee. The goal of our study was to develop a model that
replicates the development of in situ ductal breast carcinoma.
Therefore, in order to develop a system that models such breast
tumors, we injected aggressive basal MDA-MB-231 human
ductal breast carcinoma cells (∼107 in 200 microL) into the
mammary fat pads of severely immunocompromised mice
females (four to six weeks old). Since the MDA-MB-231 is a
metastatic cell line, the animals have to be sacrificed at a rela-
tively short time after the cancer starts developing. In our case,
mice started to develop tumors within three to four weeks since
cell implantation. Once the tumor masses reached a size of at
least 4 mm in diameter, the animals were considered ready
for the proposed study and sacrificed with CO2 inhalation.
The tumors were excised with the intent of leaving negative

margins (healthy tissue) around each specimen. In addition to
the excised tumors, muscle tissue was also excised and used
in the animal study for preliminary testing of the tissue differ-
entiation algorithm. The main reason for this was the insufficient
fibrous stromal tissue, which is present in the human breast but
not in sufficient quantity in the mouse model used in this study.
The muscle tissue is structurally different from tumor tissue, but
somewhat closer to stromal tissue in terms of scattering proper-
ties, and therefore, this tissue class was chosen as a third tissue
class in this preliminary study.

Following the approach of the current clinical procedures
where each facet of the surgical specimen is marked with
dyes of different colors, such that direct correlation with the ana-
tomical site can be rapidly made by the pathologist, we marked
with dyes each surface of the excised specimen.

2.3 Measurement Protocol

The specimens were then placed in the cuvette holder such that
the colors on the specimens matched those painted on the top
area of each facet of the cuvette.

Each tissue sample was kept hydrated in saline solution dur-
ing the measurements. A small amount of saline was placed in
the cuvette to keep the sample moist and minimize the backre-
flection artifacts caused by the interfaces between the sample
surface and cuvette wall. Raster scans (4 mm × 2.5 mm)
were taken from each facet of the 20 tissue specimens used
in our validation set. Each raster contained 250 OCT frames
corresponding to a sampling step of 10 microns
(250 frames × 10 microns ¼ 2.5 mm, which was our size of
the C scan). Each OCT data set was associated to the dye
color of the marked surface, such that histology correlation
can be performed after completing the OCT measurements.
Histologic preparation consisted of specimen fixation, H&E
staining, embedding in paraffin, and cutting of 2-mm-thick sli-
ces along each surface. Then each subspecimen was cut in slices
along the OCT B-scan direction. Finally, histopathology results
were compared with OCT findings.

2.4 Data Processing

A specially designed signal processing scheme, presented in
detail elsewhere,41 was used to differentiate tissue types by ana-
lyzing all the 1024 reflectivity profiles from each image. The
processing scheme processes each reflectivity profile (axial-
line or A-line) and derives a set of four parameters based on
signal intensity and variance directly from the reflectivity pro-
file, as well as a set of two parameters from the Fourier analysis
of this signal.

First, the slope of the reflectivity profile is calculated. It pro-
vides information related to the depth attenuation of the signal,
which is a function of tissue optical properties. Different slopes
at different depths might indicate the presence of two or more
tissue types within the same depth reflectivity profile. Therefore,
linear fitting is performed on several windows, each window
corresponding to a portion of the depth reflectivity profile
that has the same slope. When different slopes are found within
the same A-line, all the subsequent parameters are calculated in
each window that was found in this initial step of the signal
processing algorithm.

Second, the standard deviation (Std) of the depth profile var-
iations around the linear fit is calculated. These variations may
provide information about the scattering characteristics of the
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tissue being investigated. Adipose tissue produces strong reflec-
tion peaks with low reflectivity zones between them because of
the relatively high differences between the refractive indices of
the fat cell cytoplasm and membrane, while fibrous and tumor
tissues produce lower peaks. Since the mean distance between
these peaks is expected to be a characteristic size of the cell size
and distance between the cells, the MeanPeakDistance is used as
a third parameter. This parameter is expected to be relatively
large for adipose tissue, medium for fibrous tissue, and small
for tumor, since tumor cells are very densely packaged making
the tissue stiffer. The fourth parameter is the standard deviation
of the peak spreading over depth (StdPeakDistance). A more
homogeneous tumor tissue is expected to have a reduced spread
of the peaks than a heterogeneous one. The next two parameters
are obtained from the Fourier analysis of the OCT signal.
Therefore, power spectrum calculation is the next step in our
signal processing algorithm. The power spectrum is normalized
to its maximum and a peak detector is used to identify the main
frequency components of the spectrum or frequency peaks. The
weighted mean frequency (MeanFrequency) and the area of the
peaks (PeakArea) are the last two parameters that are evaluated.
The power spectrum is expected to have a dominant small fre-
quency for adipose tissue corresponding to large spatial distan-
ces between the fat cell walls, while for tumors it is expected to
exhibit multiple high frequencies (a broad spectrum with rela-
tively high mean and standard deviation). The peak area is cal-
culated with the purpose of identifying the spread of the
dominant frequencies. Sharp peaks (smaller area) or broad
peaks (larger area) for the same number of dominant frequencies
may indicate the presence of different tissue types within the
reflectivity profile. For example, breast cancerous tissue is gen-
erally denser and stiffer than the surrounding tissue, and there-
fore, the OCT signal exhibits an increased number of dominant
frequencies resulting in a broad normalized spectrum with large
PeakAreas.

The calculated parameters are compared with the mean val-
ues of these parameters previously calculated from training sets
of adipose, fibrous, and tumor tissues.

The mean value x̄i of each tissue class from the training set is
a column vector with six elements. Covariance matrices are also
calculated for each tissue type accounting for all six parameters
derived from each A-line.

Si ¼
1

ni

Xni

j¼1

ðxi;j − x̄iÞðxi;j − x̄iÞT; (1)

where ni is the number of elements in each tissue class within
the training set and the superscript T indicates matrix-transpose.

For each sample to be diagnosed, the mean values and the
covariant matrices are used to calculate a quadratic discrimina-
tion score.

dQi ¼ −
1

2
ln jSij −

1

2
ðx − x̄iÞTS−1i ðx − x̄iÞ; (2)

where jSij indicates the matrix determinant, S−1i is the inverse
matrix of Si, and x is the column vector made of the six calcu-
lated parameters for that sample. Three quadratic discrimination
scores are obtained for each pixel corresponding to the three
tissue classes and the maximum score is selected to assign
each pixel of the image to the correct tissue type. The quadratic
discrimination score is the logarithm of the probability that the

tissue at that pixel belongs to a tissue class and the maximum
probability is used for tissue assignment.

This algorithm was applied to every A-line in the OCT
image. However, since speckle noise and backreflections
from tissue surface can create artifacts, a 25 A-lines neighboring
averaging was applied to eliminate such artifacts.

3 Results
The collected OCT data were processed with the goal of iden-
tifying the presence of cancer positive margins. Again, a cancer
positive margin is an area of the tissue specimen where cancer
cells are still present on the surface proximity (within a depth of
maximum 2 mm from the surface).

The processing algorithm presented in brief above was used
in our analysis. The algorithm was first trained on multiple sets
of OCT images. Multiple images for each tissue type (cancer, fat
pad, and muscle) were taken from the 10 tissue specimens with
known histology (training set). The training set was established
with direct feedback from a pathologist, who analyzed the his-
tology of the imaged specimens, so that a direct correspondence
between tissue type and OCT data was obtained. Representative
cases of OCT images of the three major tissue classes used in
our evaluation (adipose, muscle, and cancer) are shown in Fig. 2.

As seen in Fig. 2(a), the adipose tissue consisted of large fat
cells, >50 microns in size. The relatively large difference
between the refractive indices of the membrane and cytoplasm
makes the fat cells easy to be differentiated with OCT. The cell’s
membrane scatters light intensively, while the cytoplasm does
not. Therefore, the cytoplasm shows up dark in the OCT
image. The images of the fibrous tissue (muscle in this case)
showed the organization of the fiber bundles in those cases
where the OCT frame was taken in a plane perpendicular to
the muscle fiber bundles [see Fig. 2(b)]. However, when the
OCT imaging frame was taken along the muscle fiber bundles,
the striations were no longer visible [see Fig. 2(c)]. This is the
case when even a highly trained OCT reader may not be able to
recognize the nature of the investigated tissue specimen. The
OCT images of the cancer infiltrated tissue [see Fig. 2(d)]
showed relatively uniform scattering, which decreases with
depth. This seems to be caused by the enlarged nuclei, which
make the tissue both optically and mechanically denser. The
enhanced scattering and the absorption of the dense microvas-
culature feeding the tumor cells contribute to smaller penetration
depth than in the case of muscle or fibroadipose tissue.

The differentiation of tissue type becomes more difficult
when more than one tissue type is present within the same
OCT frame. It is already known that breast tumor tissue is usu-
ally very heterogeneous (cancer cells are admixed with adipose
or fibroadipose cells). Therefore, even a highly trained OCT
reader may have a hard time to reliably detect the presence
of infiltrated cancer in fibroadipose tissue.

To eliminate OCT reader subjectivity, our approach was to
analyze each tissue reflectivity profile (A-line) within the
OCT image instead of defining criteria for tissue differentiation
based on specific texture features. In our earlier research,36,37 we
found that breast tissue types can be reliably differentiated by
analyzing various metrics of the reflectivity profiles of the tis-
sue. A typical example is shown in Fig. 2. By examining the
reflectivity profiles of each tissue type [see Figs. 2(a’) to 2(d’)],
one can observe clear differences between the slopes of the pro-
files, as well as between signal variances. Therefore, as dis-
cussed above, our approach was to analyze these reflectivity
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profiles and derive several parameters that could be used to sub-
stantiate the differences among various tissue types present
within the same OCT frame. Specific metrics within each reflec-
tivity profile were derived and compared with those from the
training set of tissue types. Our previous studies40,41 have
shown that this approach can provide reliable tissue differentia-
tion and, thus, can be used to eliminate the potential subjectivity
of the OCT reader.

Each OCT frame was automatically analyzed with our soft-
ware algorithm and the findings were correlated with histology
results. If at least one single frame was showing cancer infiltra-
tions within the 1-mm margins, the specimen was labeled as
having positive cancer margins. Although apparently, after vis-
ual examination of each surface, the specimens did not show
clear areas of high vascularization or increased mechanical stiff-
ness, which are some of the characteristics of cancer infiltrations
within the margins, the processed OCT data have indicated the
presence of positive margins (infiltrated cancer cells) on multi-
ple specimens examined in our pilot validation study, as sum-
marized in Table 1.

The analysis was performed accounting for multiple images
acquired from each facet of the tissue specimen. The specimens
were placed in the cancer negative class or true negative (TN)
class when all the processed OCT frames from the four facets of
the tissue specimen showed normal healthy tissue (adipose,

fibrous, or fibroadipose), and in the true positive (TP) class
when at least one frame showed cancer infiltrations within
the 1-mmmargins. These results of the OCT findings were com-
pared with histopathology results. The miscorrelations were
placed in the false negative (FN) class when specimens with
tumor infiltrations were attributed by the algorithm to the TN
class, and in the false positive (FP) class when specimens
with no cancer infiltrations were attributed to the TP class.
The overall sensitivity was 81%, while the specificity was
89%. These results suggest that further improvements are still
needed in our processing algorithm and possibly in imaging res-
olution to improve OCT-histology correlation.

Representative cases of our findings are sown in Figs. 3 and
4. Figure 3 summarizes the case of a surgical specimen with
adipose appearance of the surgical margins. The CCD images
of the surgical specimen did not show any sign of high vascu-
larization or superficial changes in morphology, suggesting that
this specimen may have negative (safe) surgical margins.
However, the cross-sectional OCT images [see Figs. 3(c) and
3(d)] showed an adipose rim followed by an optically denser
tissue, which scatters light intensively, similar to the behavior
of cancer tissue analyzed in the training set. The enface OCT
image from Fig. 3(b), representing a slice through the specimen
at a depth of ∼150 μm relative to its surface, also revealed an
adipose rim followed by denser tissue. The tissue differentiation

Fig. 2 Representative cases of tissue reflectivity profiles: (a) adipose tissue, (b) and (c) muscle tissue
with muscle bundle orientations on perpendicular and parallel planes to the imaging plane, (d) tumor
tissue.
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Fig. 3 Representative case of OCT findings on a surgical specimen with adipose appearance of the
margins. (a) CCD image of the surgical specimen. (b) Enface OCT image at depth of ∼150 μm from
its surface. (c) and (d) Cross-sectional OCT images corresponding to the yellow/red-dotted lines
from (b). (c’) and (d’) Tissue type classification maps. (c”) and (d”) Histological appearance of the speci-
men on the areas marked with red/yellow-dotted lines in (b).

Table 1 Summary of optical coherence tomography (OCT) histology correlation.

Histology-based diagnosis

OCT automated analysis findings

Misclassifications
Normal
adipose

Normal
fibroadipose

Adipose with
cancer infiltrations

Fibroadipose
with cancer
infiltrations

Normal adipose 3 3 TN 100% correlation

Normal fibroadipose 6 5 TN 1 FP 1FP: cancer infiltrations
falsely predicted

Adipose with cancer
infiltrations

3 1 FN 2 TP 1 FN: cancer infiltrations
not detected

Fibroadipose with cancer
infiltrations

8 1 FN 7 TP 1 FN: cancer infiltrations
not detected

Total specimens 20 Results: 8 TN; 9 TP; 1 FP; 2 FN
Sensitivity ¼ TP∕ðTPþ FNÞ ¼ 0.81; Specificity ¼ TN∕ðTNþ FPÞ ¼ 0.89

Note: TN, true negative; FP, false positive; FN, false negative; TP, true positive.
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algorithm indicated cancer presence within the 1-mm margins,
as it can be observed from Figs. 3(c’) and 3(d’). The tumor,
which occupies a large area within the specimen, almost reaches
its surface. In addition, some focal infiltrations are present in
peripheral or slightly deeper central areas. Similar findings
were found on several more frames taken from the other two
surfaces of the specimen. These findings were confirmed by
the histological analysis, as shown in Figs. 3(c’’) and 3(d’’).
These histological sections show a mass of cancer cells infiltrat-
ing the specimen ∼0.1 mm beneath the rim of adipose tissue. In
a real clinical case, a specimen like this would be categorized as
having nonsafe surgical margins. The presence of the cancer
cells very close to the specimen surface indicates that some clus-
ters of cancer cells could also have been left in the surgical bed.

Another representative case is shown in Fig. 4 where the
gross appearance of the surgical specimen, again, did not
show signs of high vascularization or superficial changes in
morphology, suggesting that this specimen might have safe

surgical margins. The cross-sectional OCT images [see
Figs. 4(c) and 4(d)], however, show a very thin adipose layer
followed by a thick layer of optically denser fibrotic-like tissue.
A rim of adipose cells followed by a bundled muscle-like
appearance in Fig. 4(c) suggests that this specimen has a mus-
cular surgical layer underneath the adipose rim. However, the
OCT image from Fig. 4(d) shows additional changes in the mor-
phology, especially on the left side of the specimen. The enface
image taken at a depth of ∼750 μm relative to its surface also
indicates the presence of an adipose rim on the top of the image
followed by a fibromuscular appearance with some denser infil-
trations. Algorithm findings suggest that while the tissue mainly
appears noncancerous, small foci of infiltrating tumor (T) are
still present within the 1-mm margins, especially on the left
sides of the specimen, as indicated in Fig. 4(d’). Histological
analysis confirms cancer presence on the second slice [see
darker staining at the interface fibrous-adipose, as well as within
the adipose layer on Fig. 4(d’’)]. Similar features were found on

Fig. 4 Representative case of OCT findings on a surgical specimen with fibroadipose-like margins.
(a) CCD image of the surgical specimen. (b) Enface OCT image at a depth of ∼750 μm from specimen
surface. (c) and (d) Cross-sectional OCT images corresponding to the red/yellow-dotted lines from (b).
(c’) and (d’) Tissue type classification maps. (c”) and (d”) Histological appearance of the specimen (his-
tology slides were cut from the red/yellow-dotted marks in (b).
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a few more OCT frames taken from this surface of the specimen.
No infiltrations within the 1-mm margins were found on the
other three surfaces. Again, the presence of the cancer cells
very close to the specimen surface indicates that some clusters
of cancer cells could also have been left in the surgical bed.

Although in most of the analyzed cases a good match
between the OCT and histology findings was found, in a few
cases OCT findings did not match histology, as indicated in
Table 1. One of the cases was that of an FP finding, where
the algorithm has wrongly estimated cancer presence on a
fibroadipose specimen with safe surgical margins (see Fig. 5).
The top surface of the specimen had a small fibrotic area. The
denser optical appearance of this area was inflated by the specu-
lar reflectance, resulting in a magnification of its optical density,
which was wrongly interpreted by the algorithm as being cancer.
The two FN cases correspond to very small cancer infiltrations
in adipose or fibroadipose specimens (see an example in Fig. 6).
The FN cases may be attributed to OCT incapability of resolving
small infiltration of the cancer cells within the 1-mm margins
due to OCT limited axial and lateral resolution. The FP finding

may also be attributed to insufficient training of the OCT algo-
rithm. A larger training set might help to better train the algo-
rithm and further minimize the number of FN and FP.

4 Discussion and Conclusions
A novel approach for rapid analysis of the surgical margins is
presented. It is based on the OCT scanning of the surgical speci-
men facets and real-time analysis of the acquired images to deter-
mine cancer presence within the margins. A cancer positive
margin is an area of the tissue specimen where cancer cells
are still present within several millimeters to the surface proxim-
ity. Currently, there is no general consensus among surgeons of
what the depth of safe surgical margins should be. Some studies
suggest that a surgical specimen has to be free of cancer cells on at
least 1 mm in depth from its surface,46 while other studies con-
sider surgical margins >3 mm.47 However, it is clear that if
cancer cells are found within several millimeters from the lum-
pectomy specimen surface, additional tissue has to be removed to
make sure that cancer cells were not left within the surgical bed.

Fig. 5 Representative case of a false positive diagnosis. (a) Cross-sectional OCT frame of a mainly
adipose specimen. (b) Tissue classification map. (c) Histology showing the normal adipose appearance
with some fibrotic infiltrations.

Fig. 6 Representative case of a false negative diagnosis. (a) Cross-sectional OCT frame of a mainly
adipose specimen. (b) Tissue classification map. (c) Histology showing the infiltration of the cancer clus-
ters within the 1-mm margin.
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A feasibility testing of this approach on mouse animal model
of breast cancer was performed. Distinction between normal and
cancer tissue was demonstrated with >80% sensitivity and
specificity. The automated analysis of the OCT images has
proven to quite reliably differentiate between three tissue
types: adipose, fibrous, and tumor. The algorithm failed to high-
light the presence of cancers within the safe margins (FN) in
cases when only a few cells were present within the investigated
area. The FN may be reduced if higher axial/later resolution
OCT imaging and noise reduction/speckle averaging approaches
are used to more reliably pick up cellular-scale tissue features.
These improvements on imaging performance might eliminate
the need for postprocessing averaging of the algorithm findings
on adjacent A-lines. The algorithm has also provided an FP
result in the case of a fibroadipose specimen, where a small
fibrotic area was labeled as being cancer. The FP/FN findings
may be further diminished if a larger training set is used to
increase the statistics on the training set parameters.

The tissue differentiation algorithm may be further refined to
improve its accuracy by considering the addition of new metrics
provided by a complementary optical modality to OCT, such as
absorption spectroscopy, fluorescence imaging, Raman spec-
troscopy, etc., which can be implemented with the same optical
instrument to provide coregistered data. It is also to be noted that
this algorithm cannot be applied from one organ to another or
from animals to humans without establishing a proper training
set of tissue types.

Although this approach is offering a notable step forward
toward intrasurgical analysis, it is still not suitable for real-
time feedback during surgery due to relatively long processing
time. The CPU processing time for an individual OCT frame
currently takes ∼10 s. This processing speed is not adequate
when relatively large lumpectomy specimens (>3 cm in size)
have to be investigated. The speed of the algorithm could be
improved by performing all the calculations in the graphical
processing unit. Our preliminary estimate is that a 10-fold
increase in the processing speed will be possible.

In summary, we have shown that high-resolution OCT imag-
ing and automated processing of the OCT data can be used to
nonsubjectively detect cancer foci on surgical margins that
appear grossly normal. Refinement of algorithm to more reliably
detect cancer presence, as well as substantial decrease in the
processing time may enable the use of this technology to intra-
operatively provide real-time feedback to surgeon about margin
status in patients with breast cancer, and perhaps in patients with
other types of cancer.
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