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Abstract. We improved the performance of a functional near-infrared spectroscopy (fNIRS)-based brain–com-
puter interface based on relatively short task duration and multiclass classification. A custom-built eight-channel
fNIRS system was used over the motor cortex areas in both hemispheres to measure the hemodynamic
responses evoked by four different motor tasks (overt execution of arm lifting and knee extension for both
sides) instead of finger tapping. The hemodynamic responses were classified using the naive Bayes classifier.
Among the mean, max, slope, variance, and median of the signal amplitude and the time lag of the signal, sev-
eral signal features are chosen to obtain highest classification accuracy. Ten runs of threefold cross-validation
were conducted, which yielded classification accuracies of 87.1%� 2.4% to 95.5%� 2.4%, 77.5%� 1.9% to
92.4%� 3.2%, and 73.8%� 3.5% to 91.5%� 1.4% for the binary, ternary, and quaternary classifications,
respectively. Eight seconds of task duration for obtaining sufficient quaternary classification accuracy was sug-
gested. The bit transfer rate per minute (BPM) based on the quaternary classification accuracy was investigated.
A BPM can be achieved from 2.81 to 5.40 bits∕min.© 2014Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/

1.JBO.19.6.067009]
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1 Introduction
Recently, brain–computer interface (BCI) has received great
attention as a promising alternative communication method.
People with motor disorders who cannot use typical augmenta-
tive technologies can have opportunities to communicate or con-
trol prostheses using BCI.1–3 BCI has been investigated using
electroencephalography (EEG) and electrocorticography.4–6

Particularly, EEG has many advantages, such as noninvasive-
ness, high temporal resolution, and convenience for the user.
However, susceptibility to electrical interference from the envi-
ronment and difficulties with the fixation of electrodes have
been reported as disadvantages.7,8 Although magnetoencepha-
lography and functional magnetic resonance imaging have been
considered as alternative modalities, they are impractical, since
the instruments are large, expensive, and lack flexibility.9,10

Functional near-infrared spectroscopy (fNIRS) is one of the
promising technologies for BCI. fNIRS is a powerful tool for
monitoring the real-time concentration changes of hemoglobin
in the blood. fNIRS has distinct advantages such as affordability,
portability, and flexibility of use.11 Since the first investigation
of fNIRS for measuring brain activity,12 many studies have been
devoted to overcoming the drawbacks of fNIRS for BCI. Since
the signal quality is affected by motion artifacts, Sato et al.,13

Cui et al.,14 and Scholkmann et al.15 proposed novel methods
for the reduction of motion artifacts. Robertson et al.16 compared
motion artifact reduction methods in previous studies, such as
recursive linear square adaptive filtering, wavelet filtering,

independent component analysis, and linear regression. As
the signal strength is attenuated by hair on the head, Holper
et al.,17 Coyle et al.,18 and Kozel et al.19 brushed out the hair
from the measurement sites, and Young et al.20 measured the
signal from participants with shaved hair. Khan et al.21 sug-
gested novel brush optodes to overcome poor optical contact
with the scalp. Because the physiological interferences (regard-
ing cardiac and respiratory activities) overlap with the signals
activated by stimulation, it is difficult to distinguish between
them. Zhang et al.22,23 used an adaptive filter to effectively
remove the physiological interferences.

Many researchers investigated the classification of the fNIRS
signal, Sitaram et al.,24 Falk et al.,25 Power et al.,26

Gottemukkula and Derakhshani,27 and Ayaz et al.28 investigated
the performance of binary classification methods using a sup-
port vector machine, hidden Markov models, Gaussian mixture
models, the K-nearest neighbor classifier, and the naive Bayes
(NB) classifier, respectively, which are all well-known tradi-
tional classifiers. The information transfer rate (ITR) can be
used to evaluate the practicability of classification.29 It is
clear that the ITR depends on the accuracy of classification,
which decreases with increases in the number of data classes.
Because these investigations considered only the binary classi-
fication, the ITR using fNIRS for BCI was limited to 1 bit/trial.29

Multiclass classification (i.e., ternary and quaternary classifica-
tions) can theoretically provide a better chance to increase the
ITR up to 2 bits/trial, while the multiclass classification makes it
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difficult to obtain higher classification accuracy. It is important
to apply the appropriate data processing methods to improve the
performance of the system. Power et al.30 used ternary classifi-
cation for increasing the performance of fNIRS-based BCI.
Moreover, since the bit transfer rate per minute (BPM) depends
on the time, reducing the task and rest duration is another impor-
tant issue. In this paper, we carried out the experiments with
eight participants. During the experiments, the participants
execute the four kinds of motor executions (overt left/right
arm lifting and knee extension). To increase the ITR of
fNIRS-based BCI, quaternary classification should be applied.
Quaternary classification is usually more difficult to implement
than simple binary classification. Because this is the first inves-
tigation on quaternary classification using hemodynamic
responses measured from fNIRS, it may be necessary to use dis-
tinct hemodynamic responses evoked by overt motor execution
instead of motor imagery.24 The task duration is reduced while
maintaining a sufficient level of classification accuracy. Two dif-
ferent kinds of light-emitting diodes (LEDs) and avalanche pho-
todiodes (APDs) were utilized as the sources and detectors of
the system. The detected signals were filtered with band-pass
and Savitsky–Golay smoothing filters as a simple method to
remove the physiological and system interference.19 The hair
was brushed out from the measurement sites to obtain enough
intensity of the received light.

The hemodynamic responses by the concentration changes
of the oxy-hemoglobin were estimated using the modified
Beer–Lambert law (MBLL). To increase BPM, we tried to
reduce the task duration while maintaining the classification
accuracy of larger than 70%. Various tasks and rest durations
were set to measure the hemodynamic responses. The measured
hemodynamic responses were classified using binary, ternary,
and quaternary classifications. Based on the classification
results, the available ITR and BPM were calculated. So far,
fNIRS studies have addressed the binary classification, whereas
in the present study, binary, ternary, and quaternary classifica-
tions are addressed. Moreover, the effectiveness of quaternary
classification has been determined using only eight channels
for fNIRS-based BCI. The available BPM estimated

demonstrates the possibility of increasing the BPM of the
fNIRS-based BCI.

This paper is organized as follows. The experimental proto-
col, system setup, and the data processing method used in this
study are first introduced in Sec. 2. In Sec. 3, the proper task
duration to increase BPM and the classification accuracy
according to the number of classes of data are explained. In
Sec. 4, the present results are compared with the previous stud-
ies, and the ITR and BPM are calculated based on the estimated
classification accuracy. Finally, in Sec. 5, conclusions are
presented.

2 Methods

2.1 Participants and Experimental Protocols

Eight healthy participants participated in the study (seven males
and one female, age: 26.8 ± 1.6 years). None of the participants
had histories of neurological or psychiatric issues. All the eight
participants performed the experiments related to the four-class
classification while only three participants among them were
able to finish the experiments to determine the task duration.
The experiments were approved by the Institutional Review
Board of Korea University (KU-IRB-10-34-A-2). Written con-
sent was obtained from all participants. Considering quaternary
classification, it is necessary to obtain the hemodynamic
responses evoked by four kinds of distinct behaviors. Since lift-
ing up and down an arm or leg are more active movements than
finger tapping, we adopted the active movements in our experi-
ment. Figure 1 indicates the graphical motions of the active
movements. Hemodynamic responses evoked by the motor
tasks were collected from each participant while performing
overt motor execution. Figure 2 shows the experimental design
for motor execution. The task consisted of 40 cycles of 6, 8, 10,
or 15-s motor task and rest. The durations of the task period (Tt)
and rest period (Rt) were kept the same. The participant sat on a
chair in front of a screen displaying instructions and the progress
of the experiment. In the prewaiting period, a red light was

Fig. 1 Graphical motions of (a) arm lifting and (b) knee extension. Participant sits on a chair and lifts up
and down his/her arm or leg.
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displayed. At the beginning of the task period, a green light was
turned on. During this period, self-paced motor execution was
performed. In the rest period, the color of the light was changed
from green to red. The participant was asked not to think or
move while staying in the rest state. The green and red lights
were turned on and off repeatedly in the task and rest periods.
In the postwaiting period, a yellow light was displayed and a red
light was turned on when all the periods were finished.

A single experimental run was composed of a prewaiting
period, 40 repetitions of rest and task periods, followed by
a postwaiting period. Each participant first completed 20 rep-
etitions of the rest and task periods in the first half. After a short
rest, the participant completed the same number of repetitions
again in the last half. Each half experimental run (20 repeti-
tions) lasted 264, 352, 440, and 660 s for 6, 8, 10, and 15 s
per one task period (Tt), respectively. Each participant con-
ducted a single task repeatedly in each experimental run.
Hence, four sets of experimental runs (i.e., for left/right arm
lifting and knee extension) were completed for each partici-
pant. The tasks were performed in the order of left arm lifting,
right arm lifting, left knee extension, and right knee extension.
Between each experimental run, the participants took a rest for
a minute. Each participant was allowed to do some stretching
and speak lightly, but was not allowed to leave the seat during
the rest period.

2.2 System Setup and Data Processing

All windows of the experiment room were covered by blackout
curtains, and lights were turned off to keep out ambient light. An
eight-channel custom-built continuous-wave fNIRS system was
used to measure the hemodynamic responses. The fNIRS sys-
tem uses LEDs operated at two different wavelengths of 670 nm
(L6112-01, Hamamatsu photonics, Hamamatsu, Shizuoka,
Japan) and 890 nm (L2656-03, Hamamatsu) which are similar
to the wavelength of LEDs used by Coyle et al., because the
fNIRS system used in this investigation was implemented
based on their system.11 The LEDs were placed in direct contact
with the scalp. The lights were modulated with 4- and 5-kHz
sinusoidal waves. The detectors used in the system were
APDs (C5460-01, Hamamatsu), which collected the lights
via 3-mm diameter multimode optical fibers. The detected
light signals were first demodulated by a lock-in amplifier
implemented by LabVIEW software (National Instruments,
Austin, Texas). The data were recorded by a 16-bit data acquis-
ition card (PXI-8106, National Instruments) and downsampled
with a sampling frequency of 12.5 Hz. The whole system archi-
tecture is schematically illustrated in Fig. 3.

Figure 4 shows the arrangement of the fNIRS optodes. An
fNIRS cap was made of elastic Lycra and shaped very similarly
to a conventional EEG cap. The receiver optodes were fixed at a
distance of 30 mm from the source optodes. The optodes were
arranged on both sides of a hemisphere around the motor cortex
areas around the C3, C4, and Cz positions of the international 10
to 20 systems. The source and detector optode pairs consist of

Fig. 2 Experimental design of motor tasks for the measurement of hemodynamic responses using func-
tional near-infrared spectroscopy (fNIRS). Each experiment was composed of a prewaiting time (T t þ Rt
seconds), repetitions of rest periods for Rt seconds and task periods for T t seconds, and postwaiting
time (T t þ Rt seconds). Hemodynamic responses evoked by four kinds of motor tasks (left/right arm
lifting and knee extension) were measured separately.

Fig. 3 Block diagram of an fNIRS-based brain–computer interface
(BCI) system. 670- and 890-nm LEDs are modulated at 4 and
5 kHz, respectively. Avalanche photodiodes collect the lights,
which are demodulated by lock-in amplifiers. The data are recorded
by a 16-bit data acquisition card. Normalization, band-pass filtering,
and Savitzky–Golay smoothing are applied for signal processing.

Fig. 4 Optode arrangements for fNIRS. Yellow and green circles re-
present the source (S1 and S2) and detector optodes (D1 to D7),
respectively. The source and detector are spaced 30 mm apart.
The optodes were placed around the motor cortex area according
to the international 10 to 20 systems.
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eight channel arrangements. The concentration changes of oxy-
hemoglobin were calculated from the changes in raw optical
intensity data received using the MBLL given by31

ΔCHbO ¼ αλ1HbR
ΔAλ2

Lλ2
− αλ2HbR

ΔAλ1

Lλ1

αλ1HbRα
λ2
HbO − αλ2HbRα

λ1
HbO

; (1)

where αHbR and αHbO denote the absorption coefficients of oxy-
and deoxy-hemoglobin at wavelengths λ1 and λ2, respectively.
ΔA denotes absorbance and L [differential path length factor
ðDPFÞ × distance between source and detector] is the total
mean path length at wavelengths λ1 and λ2.

31 Because we did
not estimate a precise DPF value, a DPF of approximately
6.0 was used for both wavelengths.24

Fig. 5 Hemodynamic responses (ΔCHbO) measured from eight participants evoked by left arm lifting
(T t ¼ Rt ¼ 8 s). (a)–(h) ΔCHbO from participants 1 to 8, respectively. Shaded regions represent task
durations. Twenty motor task executions are repeated. Yellow, magenta, cyan, red, green, blue, and
black lines indicate the hemodynamic responses measured at D1, D2, D3, D4, D5, D6, and D7 positions,
respectively.
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The calculated concentration changes of oxy-hemoglobin of
the task and rest periods, X, were normalized by subtracting the
mean EðXÞ of the amplitude of the signal in the whole periods of
each channel, and dividing by the standard deviation σ of the
amplitude of the signal in the whole periods of each channel
[i.e., fX − EðXÞg∕σ]. We used a zero-phase distortion filter
(third-order Chebyshev I with a ripple factor of 0.5 dB) with
a passband of 0.03 to 0.07 Hz to remove the baseline drift
and physiological noise because the fundamental frequency
of the evoked hemodynamic response was expected to be in
the passband. If we increase the bandwidth of the BPF, the
evoked hemodynamic responses can be distorted by low fre-
quency oscillation signals.23,32 The correlation-based signal
improvement method was used for minimizing the effect of
head movements,14 and a third-order Savitzky–Golay smoothing
filter was used to determine the smoothed values for each
point.15 Figure 5 shows the measured hemodynamic responses
(ΔCHbO) from all the participants evoked by left arm lifting.
Participant 1 result shows the clear change of the hemodynamic
responses because the participant has shaved his/her hair so as
not to weaken the intensity of the light. Since participants 2 and
3 have thin hair, we could obtain the relatively distinct evoked
hemodynamic responses. Figure 6 shows the time-frequency
analysis results of ΔCHbO measured from participant 1 using
a continuous-time wavelet transform (Morlet wavelet). The fun-
damental frequency components of ΔCHbO are explicitly
presented.

2.3 Feature Space

Among (1) mean, (2) max, (3) slope, (4) delay, (5) var, and
(6) median, several features were chosen individually to obtain
the highest classification accuracy. Individually chosen features
are presented in Table 1. We set the calculation window with a
length of Tt seconds to calculate the features after 8 s from the
onset of a motor task. For example, when Tt ¼ 15 s, the features
were calculated for 15 s after 8 s from the onset of a motor
task. Forty-two features were calculated for each participant

[6 features × 7 detectors × 1 signal (ΔCHbO)]. To the best of
our knowledge, this is the first investigation using the max,
slope, and median in the four-class classification of fNIRS sig-
nals. Figure 7 shows the grand average of the spatial hemo-
dynamic responses of all the participants evoked by the four
kinds of motor tasks. The contralateral hemispheres were
more activated by the motor tasks. Since the knee and leg
areas of Homunculus are near Cz, the knee extension activated
more around Cz (D4 position) than the arm lifting.33 From this
physiological reason, we can classify the hemodynamic
responses evoked by arm lifting and knee extension using the
ΔCHbO at D4.

2.4 Dimension Reduction Method

A high-dimensional feature set is difficult to handle, since high
dimensionality may increase the noise in the data set, which may
degrade the performance of the classifier. This is known as “the
curse of dimensionality.”34 To prevent this phenomenon, princi-
pal component analysis (PCA) and linear discriminant analysis
(LDA) were used to reduce the dimension of each channel
data.35 PCA converts a set of the correlated data into a set of
the uncorrelated components. LDA maximizes the ratio of
between-class variance to within-class variance in the data
set.36 After that, we considered every possible dimensionality
of the feature set, and the dimensionality of the feature set
which shows the highest classification accuracy was found
and then used. Dimension reduction was performed using the
entire measured data. Figure 8 shows the signal processing
flow of fNIRS signals.

2.5 Classification and Outlier Elimination

The NB classification based on the Bayesian theorem was used.
NB assumes that all the features are independent. Based on the
Bayes’ theorem, the sample data were classified under the maxi-
mum likelihood rule (ML rule). Outliers were eliminated to
remove the unreliable data. Ten out of 40 sample data were
selected as outliers. Outliers were the farthest data from the

Fig. 6 Time-frequency analysis of the hemodynamics response
(ΔCHbO at D2 of participant 1) using a continuous wavelet transform
(Morlet). Low (around 0.1 Hz) and very low (around 0.04 Hz) fre-
quency oscillations are much weaker than the evoked hemodynamic
response.

Table 1 Chosen features of fNIRS signals for classification.

Item Feature Remark

1. Mean Mean value of
signal amplitude

The most frequently chosen
feature in the previous studies

2. Max Maximum value
of signal amplitude

Maximum value of signal amplitude
within the calculation window

3. Slope Average slope of
signal amplitude

Average slope of signal amplitude
within the calculation window

4. Delay Channel activation
delay time

Time lag of the channel activation
until the signal amplitude exceeds
the threshold value of zero

5. Var Variance of
signal amplitude

Expected value of the square
of the deviations

6. Median Median value of
signal amplitude

Middle value in numerical order
in the list of numbers appeared
in the data
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average ΔCHbO of the measured data. After excluding the out-
liers, 10 runs of the threefold cross-validation method were used
to validate the results using the training and validation (test) sub-
sets. Thirty samples were randomly divided into three subsets.
Each subset consisted of 10 samples. Two subsets were desig-
nated as the training subsets and the remaining subset was used
for validation of the trained classifier. In the training step, NB
estimates the parameters of the probability distribution of the
samples by using the training samples in the training subsets.
In the classification step, using the test samples in the validation
subsets, NB calculates the posterior probability of the sample
and determines the class of the test samples in accordance
with the maximum posterior probability (i.e., he ML rule).37

Because NB only requires a small amount of training data to
estimate the parameters necessary for classification, NB is
extremely fast compared to other more sophisticated methods.38

2.6 Data Transfer Rate

The ITR was calculated in bits/trial as follows:29

ITR ¼ log2 N þ P log2 Pþ ð1 − PÞlog2
1 − P
N − 1

; (2)

where N is the number of classes of the data and P is the clas-
sification accuracy to evaluate the performance of BCI. Based
on ITR, the BPM can be given by

BPM ¼ ITR

× ðduration of task and rest periodÞ ðbits∕minÞ.
(3)

Fig. 7 Grand average of the spatial hemodynamic responses (ΔCHbO) of all the participants evoked by
motor task of (a) left arm lifting, (b) right arm lifting, (c) left knee extension, and (d) right knee extension.
(a)–(d) The relatively largeΔCHbO on the contralateral hemisphere channels. (c) and (d) The largeΔCHbO
compared with (a) and (b). Knee extension evokes larger ΔCHbO than arm lifting at D4.

Fig. 8 Signal processing flow of fNIRS signals. Dimensionalities of the data used in each step are rep-
resented. Ndata, Mch, Nsmpl, K feat, Sset, and Pdim are the number of data points, channels, samples, fea-
tures, and dimensions, respectively. k feat is the number of features selected for classification
(1 ≤ k feat ≤ K feat).
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3 Classification Results

3.1 Task Duration

Naseer and Hong39 considered various task durations with con-
stant rest durations based on a binary classification. We estimate
the proper task duration to increase BPM while maintaining a
quaternary classification accuracy of larger than 70%. Figure 9
shows the average quaternary classification accuracy of four dif-
ferent tasks for participants 1–3 as a function of task duration.
The highest classification accuracies were observed at different
task durations. For participant 1, a maximum classification accu-
racy of 91.5% was observed at a task duration of 8 s. At a task
duration of 6 s, the classification accuracy was estimated to be
below 70% for all the participants according to the threshold of
the sufficient classification accuracy for BCI.40–42 Among the
task durations that achieve classification accuracy above
70%, Tt values of 8 s each can be chosen as the task duration.

3.2 Multiclass Classification

The classification performance of the binary, ternary, and
quaternary classifications was investigated at the Tt ¼ 8 s.
For binary classification, the six combinations (4C2 ¼ 6) of
two data classes among four data classes (LA: left arm lifting,
RA: right arm lifting, LK: left knee extension, and RK: right
knee extension) were compared [i.e., LAversus RA), (LAversus
LK), (LA versus RK), (RA versus LK), (RA versus RK), and
(LK versus RK)]. Four combinations (4C3 ¼ 4) of three data
classes [i.e., LA versus RA versus LK), (LA versus RA versus
RK), (LA versus LK versus RK), and (RA versus LK versus
RK)], and one combination (4C4 ¼ 6) of four data classes
[i.e., LA versus RA versus LK versus RK)] were considered
for ternary and quaternary classifications, respectively.

Figure 10 shows the average classification accuracy of four
different classes of the data for eight participants according to
the number of classes of the data. The classification accuracy
decreases with increases in the number of data classes. The
binary classification shows the highest classification accuracy
for each participant, ranging from 87.1% to 95.5%, and the

quaternary classification shows the lowest classification accu-
racy for each participant, from 73.8% to 91.5%. Table 2
shows the average classification accuracies according to the
number of data classes. The features set of each participant
which showed the highest classification accuracy was selected.
Because 10 runs of cross-validation were conducted, the results
are presented as the means� standard deviation. The highest
classification accuracy was obtained using PCA for participants
1, 3, 6, 7, and 8, because the LDA could not be applied to the
high-dimensional feature vector because of the singular scatter
matrix problem.43 However, the classification accuracy obtained
by LDA and applied to a low-dimensional feature vector was
comparable to that obtained by PCA.

3.3 Data Transfer Rate

The ITR for all the participants with the number of data classes
ranging from two to four are presented as a function of classi-
fication accuracy in Fig. 11. The maximum and minimum clas-
sification accuracies were achieved when the number of data
classes was two (N ¼ 2) and four (N ¼ 4), respectively. For
all the participants, the ITR increases as the number of classes
increases. The maximum ITR values were 1.44, 1.08, 1.22, 1.08,
0.75, 0.80, 1.08, and 1.06 bits∕trial for participants 1 through
8, respectively. At Tt ¼ 8 s, the available BPMs were 2.81
to 5.40 bits∕min [0.75 to 1.44 bits∕trial × 3.75 trials∕min
(0.27 min ∕trial)].

4 Discussion

4.1 Comparison to Previous Studies

In many studies, classification has been performed using finger
tapping as the motor imagery task. For an EEG-based BCI,
quaternary classification using motor imagery tasks has been
investigated, while binary or ternary classifications have been
considered for fNIRS-based BCI.29,30 Although motor imagery
is more suitable for BCI, in this study, overt motor execution
was performed for motor tasks to obtain distinct hemodynamic
responses, because overt execution leads to more distinct acti-
vated signals. In spite of the quaternary classification, the

Fig. 10 Average classification accuracies of eight participants
according to the number of data classes (N ¼ 2, 3, and 4) for
T t ¼ Rt ¼ 8 s. Error bar indicates the standard deviation. The highest
and lowest classification accuracies are observedwhen the number of
classes of the data is 2 (N ¼ 2) and 4 (N ¼ 4), respectively.

Fig. 9 Average quaternary classification accuracies as a function of
the task duration. Square, circle, and triangle symbols indicate the
classification accuracies of participants 1, 2, and 3, respectively.
Error bar indicates the standard deviation. At a window length of
6 s, the classification accuracies of all the participants were below
70%.
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classification accuracies achieved in this study were comparable
to those of the binary classification in other studies.17,24,26

4.2 Experimental Consistency

Since the classification results can potentially be affected by the
global changes in the signals by the contact condition of the
optodes, ambient light, participant fatigue, attention, and
physiological change, a custom-built head cap was used to
maintain the optode contact conditions and to totally prevent
the effects of ambient light on the experimental results.
Physiological changes of the participants were filtered out at
the preprocessing step. Because the experiments lasted for a
long time, an exhausted participant could not participate in
some experiments, as shown in Fig. 9.

4.3 Data Transfer Rate

An experiment was designed to investigate four-choice
fNIRS-based BCI, since the achievable BPM using a binary
system is just 1 to 2 bits∕min. The suggested quaternary sys-
tem could achieve a BPM of up to 5.33 bits∕min with lower
accuracy as a trade-off. Although Blankertz et al. achieved
35 bits∕min using a 128-channel EEG system,4 it is impos-
sible for an fNIRS-based BCI system to achieve a comparable
ITR because of the inherent hemodynamic delay. A task dura-
tion and rest duration time longer than 16 s (Tt þ Rt is enough
to obtain sufficient accuracy based on the results. Therefore,
7.5 bits∕min [2 bits∕trial (theoretically maximum B)
×3.75 trials∕min] may be the maximum BPM using a
four-choice fNIRS-based BCI system. This result shows
the limitation of the fNIRS-based BCI using the quaternary
system.

5 Conclusions
The performance of BCI has been improved in terms of the ITR
using fNIRS by reducing the task duration as much as possible.
The task duration should be 8 s while maintaining a sufficient
level of classification accuracy for fNIRS-based BCI. The cal-
culated average classification accuracy was as high as 95.5% for
binary classification, 92.4% for ternary classification, and
91.5% for quaternary classification. Using the four-choice sys-
tem, sufficient classification accuracy to increase the ITR was
obtained. As a result, an available BPM of 2.78 to
5.33 bits∕min was achieved using the BCI. From the experi-
mental results, we have successfully classified the hemo-
dynamic responses evoked by short motor tasks using
multiclass classification to increase the BPM.
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Table 2 Average classification accuracies according to the number of data classes for binary, ternary, and quaternary classifications for
T t ¼ Rt ¼ 8 s. Principal component analysis (PCA) and linear discriminant analysis (LDA) are applied, and the reduced dimensions by PCA
or LDA are represented in the brackets. Among mean (1), max (2), slope (3), delay (4), var (5), and median (6), the feature sets are determined
for obtaining the highest classification accuracy. Because 10 runs of cross-validation were conducted, the classification accuracies are presented
in the form of mean� standard deviation (SD).

Participant number

Dimension
reduction (dim.)

Chosen feature
set

Binary (%)
(mean� SD)

Ternary (%)
(mean� SD)

Quaternary (%)
(mean� SD)

1 PCA (4) 1, 3 95.5� 2.4 92.4� 3.2 91.5� 1.4

2 LDA (3) 2, 3, 6 93.2� 3.4 87.3� 3.5 83.2� 2.3

3 PCA (7) 1, 3 94.4� 1.2 90.5� 1.3 86.6� 1.6

4 LDA (3) 2, 3, 6 93.1� 4.0 87.7� 4.5 83.2� 2.0

5 LDA (7) 3, 6 87.1� 2.4 77.5� 1.9 73.8� 3.5

6 PCA (6) 1, 3, 5 89.0� 1.2 82.4� 1.1 75.4� 4.0

7 PCA (6) 3, 4, 6 92.5� 1.0 86.9� 0.6 83.3� 2.7

8 PCA (7) 3, 6 93.1� 1.7 87.3� 1.5 82.7� 2.3

Fig. 11 Achievable information transfer rates (ITRs) as a function of
the different numbers of data classes for all the participants (N ¼ 2, 3,
and 4). Dash-dotted, dotted, and solid lines are the theoretical values
of the ITR using BCI when the number of data classes is 2, 3, and 4,
respectively.
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