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Abstract. A deconvolution method based on the Gaussian radial basis function (GRBF) interpolation is pro-
posed. Both the original image and Gaussian point spread function are expressed as the same continuous
GRBF model, thus image degradation is simplified as convolution of two continuous Gaussian functions,
and image deconvolution is converted to calculate the weighted coefficients of two-dimensional control points.
Compared with Wiener filter and Lucy–Richardson algorithm, the GRBF method has an obvious advantage in
the quality of restored images. In order to overcome such a defect of long-time computing, the method of graphic
processing unit multithreading or increasing space interval of control points is adopted, respectively, to speed up
the implementation of GRBF method. The experiments show that based on the continuous GRBF model, the
image deconvolution can be efficiently implemented by the method, which also has a considerable reference
value for the study of three-dimensional microscopic image deconvolution. © 2014 Society of Photo-Optical Instrumentation
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1 Introduction
Various factors such as diffraction and aberration of optical sys-
tems could cause certain degradations in the microscopic imag-
ing of biological specimens; such degradations are specifically
known as image blurring or distortion.

The point spread function (psf) model directly influences the
imaging process of biological specimens. Gaussian function is
the most common and widely used psf model in many optical
measurements and imaging systems. In these systems, the psf
model is determined by various factors, but the synthesized
result of all factors always makes the psf tend to be a
Gaussian type. Currently, related researches on Gaussian psf
model mainly focus on the identification of parameter σ,
which is also known as the standard deviation of Gaussian
function. A method proposed in the literature1 makes use of
a property of the Gaussian function and the Gaussian scale
space representation of an image to identify σ. Another explo-
ration is to select the maximum point of the differential coeffi-
cients of restored image Laplacian L1-norm curve.2

The classical deconvolution algorithms for microscopic
images are on the basis that the psf is known or accurately mea-
sured or computed beforehand. According to different deconvo-
lution principles, these algorithms could be generally divided
into linear methods,3,4 filtering methods,5 statistical methods,6

etc. However, under many conditions, the psf is often unknown
or time-variant, which requires conducting a blind deconvolu-
tion process in the absence of priori knowledge. For either of
the classical or blind deconvolution algorithms, the image

and psf are usually expressed as discrete regular grid models
in spatial or frequency domain. On occasions such as superre-
solution analysis or high-resolution image restoring based on a
large set of data, since the image data always have a great cor-
relation or redundancies, including steps of quantitative discrete
convolutional or Fourier transform operations, the pure discrete
grid models are usually quite time-consuming and not so effi-
cient to optimize the whole deconvolution process. Due to the
Gaussian type tendency of the psf in most microscopic systems,
a new deconvolution method based on the Gaussian radial basis
function (GRBF) interpolation is proposed in this paper. Both
the original image and the psf are expressed as the same con-
tinuous GRBF model; thus image degradation is simplified as
convolution of two continuous Gaussian functions, and image
deconvolution is converted to calculate the weighted coefficients
of two-dimensional (2-D) control points. Keeping consistent
and concise continuous representation form during the whole
course of restoring with no time-consuming discrete operations
of convolution or Fourier transform, the whole deconvolution
process can be easily optimized and controlled by computerized
algorithms based on the introduced GRBF interpolation model;
thus the defect of common discrete grid model mentioned above
can be avoided.

Actually, the process of image deconvolution is quite time-
consuming; in order to meet the needs of practical application,
for both the discrete and continuous models, the implementation
of specific algorithm inevitably involves some acceleration
methods which include optimizing and simplifying the algo-
rithm and adopting the multithreaded, distributed hardware
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architecture, etc. In recent years with the high-speed develop-
ment of graphic processing unit (GPU), general purpose com-
puting on GPU (GPGPU) has been widely used. Launched in
2007 by NVIDIA company, compute unified device architecture
(CUDA) makes GPGPU more promising. There are a few
reports7,8 using CUDA to accelerate the incremental Wiener fil-
ter and Lucy–Richardson (LR) algorithm, respectively, in fields
of microscopic and astronomical image deconvolution. For the
implementation of the proposed GRBF method in this paper,
CUDA will be adopted to accelerate parts with an intensive
computing such as calculating the weighted coefficients of con-
trol points and resampling the restored image.

2 GRBF Deconvolution Method
If the optical system is linear shift-invariant, the degradation
procedure of imaging can be mathematically described as

gðx; yÞ ¼ fðx; yÞ · hðx; yÞ þ nðx; yÞ; (1)

where gðx; yÞ, fðx; yÞ, hðx; yÞ, and nðx; yÞ are the observed
blurred image, original image, psf, and additive noise, respectively.
The purpose of the image deconvolution is to restore the fðx; yÞ as
much as possible in the presence or absence of priori knowledge.
As a type of reverse problem, it is often ill-conditioned.

2.1 Continuous Gaussian Modeling

With a single parameter, the 2-D normalized Gaussian psf can be
written in the form below:

hðx; y; σ1Þ ¼
1

2πσ21
e
−x2þy2

2σ2
1 ; (2)

where parameter σ1 is a standard deviation which determines the
shape of Gaussian psf.

For a d-dimension function Φ defined in domain x ∈ Rd, the
function space spanned by linear combination of all Φðx; xjÞ is
called RBF space in which Φðx − xjÞ ¼ Φðkx − xjkÞ. As long
as fxjg is different from each other, fΦðx − xjÞg is linearly in-
dependent. When all fxjg is distributed evenly in whole span of
Rd, the linear combination of fΦðx − xjÞg can approximate
almost any function.9

2-D GRBF is described as

ϕðkx − xik; ky − yjk; σ2Þ ¼ e

�
−
kx−xik2þky−yjk2

2σ2
2

�
; (3)

where k · k denotes Euclidean norm, ðxi; yjÞ is the 2-D coordi-
nate of control points, and σ2 is the parameter of GRBF.

A set of basis functions fϕðx − xi; y − yj; σ2Þgm−1;n−1
j¼0;i¼0 are

obtained through translating control points, then the original
2-D image can be expressed as continuous Gaussian model
fðx; y; σ2Þ by GRBF interpolation

fðx; y; σ2Þ ¼
Xm−1

j¼0

Xn−1
i¼0

ai;j · ϕðkx − xik; ky − yjk; σ2Þ; (4)

where m and n denote the number of 2-D control points in
vertical and horizontal directions, respectively, and ai;j are the
weighted coefficients. Through GRBF interpolation, the original
image is represented in accord with the psf expression form,
thus the process of image degradation can be simplified as
the weighted sum of convolution of two continuous Gaussian
functions according to the deduction in

fðx; y; σ2Þ · hðx; y; σ1Þ

¼
Z þ∞

−∞

Z þ∞

−∞
fðx; y; σ2Þ · hðx − u; y − v; σ1Þdu dv

¼
Z þ∞

−∞

Z þ∞

−∞

�Xm−1

j¼0

Xn−1
i¼0

ai;j · e
−
ðx−xiÞ2þðy−yjÞ2

2σ2
2

�

·
1

2πσ21
· e

−ðx−uÞ2þðy−vÞ2
2σ2

1 du dv

¼ 1

2πσ21
·
Xm−1

j¼0

Xn−1
i¼0

ai;j ·

�Z þ∞

−∞

Z þ∞

−∞
e
−
ðx−xiÞ2þðy−yjÞ2

2σ2
2

· e
−ðx−uÞ2þðy−vÞ2

2σ2
1 du dv

�

¼ 1

2πσ21
·
Xm−1

j¼0

Xn−1
i¼0

ai;j ·
2πσ21σ

2
2

σ21 þ σ22
· e

−
ðx−xiÞ2þðy−yjÞ2

2ðσ2
1
þσ2

2
Þ

¼ σ22
σ23

·
Xm−1

j¼0

Xn−1
i¼0

ai;j · e
−
ðx−xiÞ2þðy−y

j
Þ2

2σ2
3 ; (5)

where σ23 ¼ σ21 þ σ22 is the standard deviation of new Gaussian
function. Substituting Eq. (5) into Eq. (1), the process of image
degradation can be described as

gðx; yÞ ¼ σ22
σ23

·
Xm−1

j¼0

Xn−1
i¼0

ai;j · e
−
ðx−xiÞ2þðy−yjÞ2

2σ2
3 þ nðx; yÞ: (6)

Equation (6) shows that the blurred image gðx; yÞ is
still a continuous GRBF interpolation model. Let discrete
blurred image data fðp; qÞ; Gp;qgM−1;N−1

q¼0;p¼0 ∈ ðN2; RÞ satisfy
gðp; qÞ ¼ Gp;q, where ðp; qÞ is the 2-D coordinate of blurred
image G, and M and N denote the height and width of the
blurred image, respectively. Thus the process of image decon-
volution is actually converted to a problem of calculating ai;j.
The computing complexity of continuous GRBF interpolation
model shown in Eq. (6) is only decided by the space interval
or the number of control points. Therefore, the whole process
of image deconvolution can easily be globally optimized by sim-
ply setting the space interval or the number of control points.

The value of σ3 directly affects the interpolation accuracy.
Along with σ3 increasing, the shape parameter 1∕2σ23 of
GRBF becomes smaller, as a result, the GRBF is becoming rel-
atively flat. When GRBF is made too flat, obvious instability
will appear in the process of interpolation, that is to say,
there exists large vibration in ai;j magnitude. There are two
methods named Contour-Pade/SVD10 and RBF-QR11 reported
to effectively solve the instability of flat RBF interpolation,
but both expose their inherent limitations. In this paper, we
try to increase the space interval, i.e., reducing the number of
control points (normally the number of control points is
equal to or less than the number of image pixels) to solve
the instability problem. But increasing the space interval of con-
trol points will inevitably lead to the decline of accuracy in
restored images; the selection of space interval should be appro-
priate to make a trade-off between interpolation stability and
deconvolution accuracy.

Before establishing the relationship between σ3 and space
interval, we define the mean square error (MSE) as
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MSE ¼ 1

MN
·
XM−1

j¼0

XN−1

i¼0

½gði; jÞ − ĝði; j; σ3Þ�2; (7)

where ĝði; j; σ3Þ is the interpolation image of gði; jÞ. Then a
series of experiments are performed based on various value
combinations of the space interval and σ3, where the experimen-
tal space interval begins at 1.0 and ends in 2.0 with a step length
of 0.1; meanwhile, taking 0.2 as a step length, σ3 begins at 0.2
and ends in 6.0.

Figure 1 shows that in the case of space interval ¼ 1.0, σ3 ¼
2.0 is the critical point of interpolation stability, the MSE is
nearly 0 when σ3 ≤ 2.0, yet MSE sharply increases and vibrates
when σ3 > 2.0. Analyzing a single curve under the condition of
“space interval > 1.0,” it is found that MSE is very large when
σ3 < 1.0, which means the interpolation is instable; then MSE
becomes small and the curve keeps relatively flat as σ3 changes
in the range of 1.0 to 3.0; finally, MSE increases gradually when
σ3 > 3.0. By selecting the σ3 that corresponds to the minimum
value of MSE, the “space interval–σ3” line is fitted.

In Fig. 2, the slope of the fitted line is 1.356 with 95% con-
fidence interval (1.068, 1.644). Figures 1 and 2 show that
increasing the space interval of control points can effectively
solve the problem of interpolation instability caused by flat
GRBF (when space interval is equal to 1.0 and σ3 > 2.0).
Finally, the relational expression between σ3 and space interval
is obtained

σ3 ¼
�
R;R ∈ ð0; 2�; space interval ¼ 1

1.356 space interval; space interval ∈ ð1; 2� : (8)

2.2 Deconvolution with σ1 and σ2

The previous section introduces a method by increasing the
space interval of control points to solve the problem of inter-
polation instability. However, the quality of restored image is
influenced by the interaction of σ1 and σ2, where σ1 is the
parameter of continuous Gaussian psf model hðx; y; σ1Þ, and
σ2 is the parameter of original image continuous GRBF
model fðx; y; σ2Þ.

The whole calculations for deconvolution of large size
images will burden the computer very much and cause an
inconceivable time overhead due to the massive GRBF data.
Therefore, it is necessary to evenly divide the large size
image into several subimages with small size, then put all
the restored subimages together, while main computation is

finished. But the quality of the restored image will decline
because of white artifact lines produced in the joints of restored
subimages. The solution is to let adjacent subimages keep
a overlapping region from each other, where the size of the
overlapping region is decided according to the 3σ principle of
Gaussian function, then utilize a suture algorithm12 among the
overlapping regions of restored subimages

Inew ¼ Ileft · ð1 − coefÞ þ Iright · coef; (9)

where Inew is the synthesized image part of overlapping regions,
Ileft and Iright are the left and right regions of Inew, respectively,
and coef is a weighted factor. The simplest way is to set coef ¼
0 in Ileft and coef ¼ 1 in Iright.

Assuming the blurred image gðx; yÞ with a dimension size of
512 × 512 is divided into several 26 × 26 size subimages, every
subimage keeps an overlap of 5 pixels with the adjacent ones.
When σ1 is known, the σ2 − logðMSEÞ curves are shown in
Fig. 3, where MSE calculates the MSE between original
image fðx; yÞ and restored image f̂ðx; y; σ1; σ2Þ, and the nega-
tive value in f̂ðx; y; σ1; σ2Þ is constrained to 0. It can be found
from Fig. 3(a) when space interval ¼ 1.0 and σ1 is equal to 0.8,
1.0, 1.2, 1.4, and 1.6, respectively, each of the curves exists an
obvious feature point, where σ2 corresponds to 1.9, 1.7, 1.6, 1.5,
and 1.6, respectively. The curve segment on the left side of each
feature point is strictly monotone decreasing, and at each feature
point the curve has a minimum value (except σ1 ¼ 1.6), the
curve segment on the right side of each feature point begins
to vibrate. According to the equation σ23 ¼ σ21 þ σ22, σ3 is
obtained. The corresponding σ3 is equal to 2.0616, 1.9723,
2.0000, 2.0518, and 2.2627, respectively, which just locates
around the critical point of interpolation stability in Fig. 1.
When σ1 ¼ 0.8, σ1 ¼ 1.0, or σ1 ¼ 1.2, the corresponding σ2
of feature point is larger than σ1 and log(MSE) is smaller
than 0, which means the restored image has a good quality.
When σ1 ¼ 1.4 or σ1 ¼ 1.6, the corresponding σ2 of feature
point is close to σ1 and log(MSE) is large, which means the
restored image has a relatively big error compared with the
original image. Increasing the space interval can effectively
improve the quality of restored image when σ1 is large.
Figure 3(b) shows the σ2 − logðMSEÞ curves when space inter-
val is equal to 1.2. There also exist feature points, where σ2 cor-
responds to 1.5, 1.7, 1.8, 2.0, and 2.3, respectively. The curve
segment on the left side of each feature point is steep, while on
the right side the curve segment keeps more flat. The corre-
sponding σ2 of each feature point is larger than σ1, and the cor-
responding σ3 is equal to 1.7000, 1.9723, 2.1633, 2.4413, and
2.8018, respectively, which locates in the middle segment of
the curve in Fig. 1.Fig. 1 The σ3-MSE curves with different space intervals.

Fig. 2 The space interval −σ3 fitted line.
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Through the comparison between Figs. 3(a) and 3(b), it can
be concluded that when σ1 is small, the corresponding log
(MSE) of each feature point in Fig. 3(a) is smaller than that
in Fig. 3(b); when σ1 is large, the corresponding log(MSE)
of each feature point in Fig. 3(b) is smaller than that in
Fig. 3(a). Moreover, in both cases the corresponding σ2 is larger
than σ1.

When psf parameter σ1 is unknown, the estimated value will
greatly affect the quality of restored image. An estimation or
identification method is provided below. Based on the continu-
ous GRBF interpolation model, the grayscale range of restored
image and original image is quite close if only the estimated
value Σ1 is smaller than or equal to the true σ1. However,
the grayscale range of restored image broadens obviously
when Σ1 is larger than σ1. As a result, more large negative
values appear in the restored image. Under this circumstance,
the true σ1 can be better estimated. The estimated criterion is
defined as

err ¼ 1

MN
·
XM−1

j¼0

XN−1

i¼0

ðgði; j; σ1Þ − hðΣ1Þ · jf̂ði; j; σ2;Σ1ÞjÞ2;

(10)

where gði; j; σ1Þ, hðΣ1Þ, and f̂ði; j; σ2;Σ1Þ represent blurred
image, psf, and restored image, respectively. When σ1 is
small, a collection of candidates is provided (Σ1 begins at
0.2 and ends in 1.5 with a step length of 0.1). By setting
space interval ¼ 1.0 and σ2 ¼ 1.0, the relationship curves are
plotted in Fig. 4.

Figure 4 shows that when σ1 is equal to 0.6, 0.7, 0.8, and 0.9,
respectively, the curves exist obvious feature points, where Σ1

corresponds to 0.6, 0.7, 0.8, and 0.9, respectively. The curve
segment on the left side of each feature point has small log
(err), while on the right side of each feature point, the log
(err) increases sharply. The corresponding Σ1 of each feature
point is the optimal estimation of σ1. When σ1 is large enough,
it is needed to set space interval>1.0 and σ2 > σ1. Although
the Σ1 that corresponds to the point of logðerrÞ ¼ 0 is close
to σ1, there exists no obvious feature point due to the influence
of σ2 selection and the loss of interpolation accuracy. In this
case, Eq. (10) is only suitable as a preliminary estimated
criterion.

2.3 GPU Parallel Computing

Based on the continuous GRBF interpolation model, the micro-
scopic image deconvolution requires a large amount of compu-
tation; therefore, it is unable to meet the real-time requirement.
There are two effective ways used to speed up the computation.
One is to increase the space interval of control points, which will
cause a loss of deconvolution accuracy. Another is to adopt the
multithreaded programming model without the loss of deconvo-
lution accuracy. Considering the data distribution is regular in
the process of calculating weighted coefficients of control points
and resampling the restored image, CUDA can take full advan-
tage of GPU multiprocessors to achieve the goal of real-time
implementation for the microscopic image deconvolution.

Without considering the influence of noise nðx; yÞ, Eq. (6) is
expressed as a discrete form of matrix multiplication

G ¼ σ22
σ23

· Φ × A: (11)

Let the number of control points m and n be equal to the
height M and width N of image, respectively; Φ is a mn-by-
mn GRBF symmetric matrix; G is amn-by-1 blurred image col-
umn matrix. According to Eq. (11), the process of calculating
weighted coefficient matrix A is mathematically to solve a large

Fig. 3 σ2 − logðMSEÞ curves with different σ1. (a) Space interval ¼ 1.0. (b) Space interval ¼ 1.2.

Fig. 4 Σ1 − logðerrÞ curves with different σ1.
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system of linear equations, the general methods for solving lin-
ear equations include direct method and iterative method. Since
matrix Φ is not diagonally dominant, the matrix A calculated by
iterative method13 is divergent.

In order to reduce the time overhead and meet the require-
ment of coalesced access14 in CUDA, the column-based
Gaussian elimination method is adopted. Figure 5 takes
c ¼ 1 as an example, where c is the label of column.
Threads 1; 2; : : : and mn − 1 are in charge of the elimination
between the column of ϕ11 and the columns of ϕ12;ϕ13; : : :
and ϕ1;mn, respectively, as a result, ϕ12;ϕ13; : : : and ϕ1;mn
are eliminated to 0. Because these threads access to the adjacent
location in global memory, in a warp, threads only execute one
access; therefore, it greatly reduces the memory access over-
head. CPU controls to repeat a total of (mn − 1) elimination
loops, (mn − c) threads are needed in each elimination loop.
Finally, Φ is eliminated to be a left triangular form, then matrix
A can be calculated by using back-substitution.

In the process of large size image deconvolution, if all the
subimages use column-based Gaussian elimination method to
calculate matrix A, the cumulative time is still very long. We
can combine matrix Φ with identity matrix E, and use parallel
column-based Gauss–Jordan elimination method15 to calculate
the inverse matrix Φ−1. Then each matrix A is calculated by
Φ−1 ×G, which also needs to meet the requirement of coalesced
access.

The continuous GRBF model of restored image is obtained
by putting the weighted coefficients of control points into
Eq. (4). Each pixel resampling only relates to its position coor-
dinate and the weighted coefficients of control points. Thus, the
procedure can set multiple threads; each thread solely executes
a pixel resampling.

3 Experiments and Results
The conventional objective evaluation criteria of a restored
image mostly evaluate the whole image in the spatial domain,16

which cannot effectively distinguish between the high-
frequency component and low-frequency component of the
restored image. In this paper, a frequency objective evaluation
criterion is adopted. The mean of frequency spectrum (MFS) is
defined as

MFS ¼ 1

MN
·
XM2−1
v¼−M

2

XN2−1
u¼−N

2

logð1þjF̂ðu;vÞjÞ; (12)

where F̂ðu; vÞ is the frequency spectrum of restored image, and
the coordinate origin is moved to the center of image. In the
process of image deconvolution, the low-frequency component
changes little, but the high-frequency component increases
significantly. In other words, the clearer the restored image, the
larger the MFS will be.

In order to prove the efficiency of image deconvolution, the
GRBFmethod is compared withWiener filter and LR algorithm.
Based on the stationary random process, Wiener filter is an
ideal deconvolution method that minimizes the MSE between
original image and restored image. LR algorithm17 is an iterative
method based on Bayesian analysis, this algorithm has the
unique solution when the influence of noise can be ignored or
is very small.

In our simulation experiments, CPU is AMD Sempron 140
and GPU is NVIDIAGTX 680 with 1536 stream processors, the
software platforms are MATLAB 2012b and CUDA, respec-
tively. The original image is a 512 × 512 size mice cochlea
laser scanning confocal microscope image. In order to analyze
every spectrum range, the MFS of each concentric circle that
takes the position of F̂ð0; 0Þ as a common center and r as
the radius is calculated.

First, the original image is degraded by Gaussian psf of
σ1 ¼ 1.2. LR algorithm runs 50 iterations. GRBFðt1; t2Þ indi-
cates that the size of subimage is t1 × t2, herein t1 and t2
have not included the overlapping pixels. The optimal space
interval and σ2 are set to be 1.0 and 1.6, respectively, according
to Fig. 3, and the adjacent subimages keep an overlap of 6 pixels.
It can be seen in Fig. 6, along with the increase of radius r, fre-
quency spectrum transits from low-frequency spectrum to high-
frequency spectrum, and the amplitude of spectrum gradually
decreases. When r < 30, the MFS of the blurred image is

Fig. 5 Diagram of parallel column-based Gaussian elimination
method.

Fig. 6 r-MFS curves.

Table 1 Comparison of the results of mice cochlea images imple-
mented on CPU.

Method cpu-MSE cpu-MFS cpu-time (s)

Wiener filter 18.1379 5.3605 0.1867

LR 19.7917 6.2651 9.5121

GRBF(16,16) 0.2856 7.5181 20.4228

GRBF(32,32) 0.6864 7.5557 47.2748
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basically equal to the MFS of the restored image, which means
image deconvolution has little change on the low-frequency
component. As r increases, within each spectrum range, the
MFS of GRBF method is larger than the MFS of Wiener filter
or LR algorithm, which means the GRBF method can better
increase the high-frequency component and improve the clarity
of the restored image. By comparing the MFS of GRBF(16,16)
and GRBF(32,32) method, it is found that the two r-MFS curves
almost overlap together, which means the size of the subimage
has limited impact on the quality of the restored image.

The MSE of GRBF method is smaller than the MSE of
Wiener filter or LR algorithm, and the MFS of GRBF method
is larger than the MFS of Wiener filter or LR algorithm as shown
in Table 1. The two objective evaluation criteria indicate that the
image restored by GRBF method is clearer and much closer to
the original image. However, the running time of GRBF method
is much longer.

Figure 7(b) is the blurred image degraded by Gaussian psf of
σ1 ¼ 1.2, Figs. 7(c)–7(e) are the images restored by Wiener
filter, LR algorithm, and GRBF(16,16) method, respectively.
In order to conveniently display the image, Fig. 7 only shows
the 128 × 128 size areas picked from the 512 × 512 size images.
From appearance, the image clarity of GRBF method is succes-
sively higher than the image clarity of LR algorithm and Wiener
filter.

Based on GPU multithreaded programming model, CUDA
can greatly accelerate the implementation of the GRBF method.

The MSE and MFS calculated on GPU change little
compared with the results calculated on CPU, and the running

time is reduced to 1.2600 and 5.9620 s, respectively, as shown in
Table 2. It is important to note because the σ3 is at the critical
point of interpolation stability in Fig. 1, single-precision floating
point calculations of the GRBF method will bring a great error;
therefore, the program must adopt double-precision floating
point calculations.

Since the original image is expressed as a continuous
Gaussian model, we can easily scale the restored image.
Table 3 shows the results of resampled images with different
sizes. As size increases, the running time is mainly consumed
in image resampling. CUDA can obviously accelerate the
implementation of resampling. Take the 2048 × 2048 size
resampled image as an example: the speedup ratio can exceed
110 times. As size increases, it is found that MFS gradually
decreases, which indicates that increasing the size will inevi-
tably bring a certain degree of blurring in the resampled
image.18,19

Another effective way to reduce the running time is to
increase the space interval of control points, which will cause
a loss of deconvolution accuracy. In Table 4, the original image
is still degraded by Gaussian psf of σ1 ¼ 1.2. According to

Table 2 The results of GRBF method implemented on GPU.

Method gpu-MSE gpu-MFS gpu-time (s)

GRBF(16,16) 0.2809 7.5178 1.2600

GRBF(32,32) 0.5356 7.5550 5.9620

Table 3 Comparison of the results among different size mice cochlea images resampled by GRBF(16,16) method.

Size of resampled image cpu-MSE cpu-MFS cpu-time (s) gpu-MSE gpu-MFS gpu-time (s)

256 × 256 0.2893 7.1064 6.2583 0.2855 7.1064 1.1800

512 × 512 0.2856 7.5181 20.4228 0.2809 7.5178 1.2600

1024 × 1024 0.2856 6.1470 71.2862 0.2809 6.1458 1.5200

2048 × 2048 0.2856 5.1073 283.8564 0.2809 5.1071 2.5800

Fig. 7 Comparison of mice cochlea images. (a) The original image. (b) The blurred image degraded by
Gaussian psf of σ1 ¼ 1.2. (c) The image restored byWiener filter. (d) The image restored by LR algorithm.
(e) The image restored by GRBF(16,16) method.

Table 4 Comparison of the results of GRBF(16,16) method with
different space intervals.

Space interval σ2 cpu-MSE cpu-MFS cpu-time (s)

1.0 1.6000 0.2856 7.5181 20.4228

1.2 1.5659 7.2169 6.9603 13.3974

1.4 1.9640 7.9410 6.0952 9.9561

1.6 2.3407 10.1178 5.6093 7.3428

1.8 2.7050 10.8664 5.0318 6.3881

2.0 3.0612 12.2106 4.8173 4.7937
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Secs. 2.1 and 2.2, the σ2 should be larger than σ1, and σ3 needs
to satisfy Eq. (8). When space interval > 1.0, the upper
bound limit of 95% confidence interval is selected to be the
slope of fitted line; therefore, the calculation formula of σ2 is

σ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1.644 · space intervalÞ2 − σ21

q
: (13)

As space interval increases, the running time gradually
reduces, but the deconvolution accuracy also gradually declines,
specifically, the MSE gradually increases and MFS gradually
decreases.

It is seen from Fig. 8, although the clarity of the restored
image gradually declines, it is higher than the clarity of the
blurred image.

In order to test and verify whether the GRBF deconvolution
method can still be applied to other microscopic images that
have different characteristics. Figures 9 and 10 show the relative
simulation results of mice tibial organ and mice kidney tissue
images, respectively.

The size of the experimental images are still 512 × 512;
Figs. 9(b) and 10(b) are the blurred image degraded by
Gaussian psf of σ1 ¼ 1.2. In the process of GRBF deconvolu-
tion, it is found that σ3 ¼ 2.0 is still the critical point of

Fig. 9 Comparison of mice tibial organ images. (a) The original image. (b) The blurred image degraded
by Gaussian psf of σ1 ¼ 1.2. (c) The image restored by Wiener filter. (d) The image restored by LR algo-
rithm. (e) The image restored by GRBF(16,16) method.

Fig. 10 Comparison of mice kidney tissue images. (a) The original image. (b) The blurred image
degraded by Gaussian psf of σ1 ¼ 1.2. (c) The image restored by Wiener filter. (d) The image restored
by LR algorithm. (e) The image restored by GRBF(16,16) method.

Table 5 Comparison of the results of mice tibial organ images imple-
mented on CPU.

Method cpu-MSE cpu-MFS cpu-time (s)

Wiener filter 37.5818 5.9067 0.1878

LR 50.1779 6.3098 10.2822

GRBF(16,16) 1.8474 6.8627 16.5427

Table 6 Comparison of the results of mice kidney tissue images
implemented on CPU.

Method Cpu-MSE cpu-MFS cpu-time (s)

Wiener filter 231.2586 6.8419 0.1894

LR 247.4211 7.2591 10.5137

GRBF(16,16) 7.0430 8.8219 17.4682

Fig. 8 Comparison of mice cochlea images. (a) The original image. (b) The blurred image degraded by
Gaussian psf of σ1 ¼ 1.2. (c) The image restored by GRBF(16,16) method with space interval ¼ 1.2.
(d) The image restored by GRBF(16,16) method with space interval ¼ 1.6. (e) The image restored by
GRBF(16,16) method with space interval ¼ 2.0.
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interpolation stability when space interval ¼ 1.0. According to
Secs. 2.1 and 2.2, the optimal σ2 is selected to be 1.6. It is seen
from Figs. 9 and 10 that the contrast in restored images obtained
by three deconvolution methods is all enhanced, and the struc-
ture of mice tissue is clear. The data given in Tables 5 and 6
indicate that the images restored by the GRBF method are richer
in high-frequency component and closer to the original images
than the images restored by Wiener filter or LR algorithm.

Figure 11 and Table 7 show the experimental results of
256 × 256 size Derenzo phantom images; the procedure is
as the same as that in microscopic image deconvolution. It
can be seen in Figs. 11(c) and 11(d) that dot artifacts will
appear in the round holes of Derenzo phantom images that
restored by Wiener filter or LR algorithm, while the image
restored by the GRBF method in Fig. 11(e) has no such dot
artifacts.

Fig. 11 Comparison of Derenzo phantom images. (a) The original image. (b) The blurred image
degraded by Gaussian psf of σ1 ¼ 1.2. (c) The image restored by Wiener filter. (d) The image restored
by LR algorithm. (e) The image restored by GRBF(16,16) method.
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4 Conclusion
This paper presents a deconvolution method that expresses the
blurred image gðx; yÞ, original image fðx; yÞ, and psf hðx; yÞ as
continuous models by using GRBF interpolation. On this basis,
the process of image deconvolution is to calculate the weighted
coefficients of control points and resample the restored image.
The deconvolution accuracy and computing scale are greatly
optimized by selecting the proper parameters. Compared with
Wiener filter and LR algorithm, the GRBF method exposes
advantages in the quality of the restored image. In addition,
CUDA can effectively accelerate the implementation of the
GRBF method.

In future research, the GRBF method can also be applied to
three-dimensional (3-D) microscopic image deconvolution.
Further studies are needed for efficiently expressing the 3-D
psf,20 effectively arranging the control points and properly
selecting the GRBF expression21 in 3-D microscopic image
deconvolution.
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