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Abstract. Multispectral imaging (MSI) was implemented to develop a burn tissue classification device to assist
burn surgeons in planning and performing debridement surgery. To build a classification model via machine
learning, training data accurately representing the burn tissue was needed, but assigning raw MSI data to appro-
priate tissue classes is prone to error. We hypothesized that removing outliers from the training dataset would
improve classification accuracy. A swine burn model was developed to build an MSI training database and study
an algorithm’s burn tissue classification abilities. After the ground-truth database was generated, we developed a
multistage method based on Z-test and univariate analysis to detect and remove outliers from the training data-
set. Using 10-fold cross validation, we compared the algorithm’s accuracy when trained with and without the
presence of outliers. The outlier detection and removal method reduced the variance of the training data. Test
accuracy was improved from 63% to 76%, matching the accuracy of clinical judgment of expert burn surgeons,
the current gold standard in burn injury assessment. Given that there are few surgeons and facilities specializing
in burn care, this technology may improve the standard of burn care for patients without access to specialized

facilities. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JB0.20.12.121305]
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1 Introduction

1.1  Multispectral Imaging Application

Multispectral imaging (MSI) techniques originate from remote
sensing technology that gathers information across the electro-
magnetic spectrum.’ Recently, MSI has been used widely in
various applications such as astronomy,” agriculture,’ geology,”
and medical imaging.” In the field of medical imaging, several
studies have taken advantage of tissue-light interaction proper-
ties at key wavelengths to obtain spectral signatures that can
differentiate epithelial tissue from connective tissue.>> Further-
more, our group has employed this imaging method in ulcer
assessment® and burn classification.”

In this paper, we introduce an application of MSI technology
for burn wound analysis. For burn treatment, it is important to
determine the depth of the initial injury. Shallower burns, known
as superficial partial thickness burns, do not require surgical
therapy and typically heal with supportive therapy. More severe
burns, categorized as deep partial thickness or full thickness
burns depending on their depth, require surgical excision of
all necrotic tissue in order to expose a viable wound bed as a
base for grafting surgery. Currently, the gold standard of burn
wound classification is the clinical judgment of expert burn
surgeons. However, the accuracy of such experts has been esti-
mated to be only 60% to 80%, and the accuracy of nonexperts is
no higher than 50%.% A technological solution to improve the
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accuracy of burn classification, particularly in medical centers
where burn experts are not available, is needed to improve clini-
cal decision making regarding burn treatment. MSI can classify
burn tissue into different clinical categories with a potentially
high degree of accuracy, allowing burn surgeons to more fre-
quently and quickly select appropriate treatment solutions.
During the debridement of necrotic tissue from severe burns,
surgeons aim to minimize the removal of any excess healthy
tissue. MSI has the further potential to aid surgical excision by
categorizing burn tissue intraoperatively to differentiate burn
injury from healthy wound bed, preventing unnecessary exci-
sion of healthy tissue.

Human skin is a multilayer tissue consisting of multiple
chromophore components, of which there are four significant
constituents: blood, water, melanin, and fat.” Blood, water,
melanin, and fat in the various skin layers have well-established
spectral responses to optical illumination with certain wavelengths
of light, especially in the visible and near-infrared bands.>!° By
capturing and analyzing different tissues’ responses to multiple
incident characteristic wavelengths with MSI, one can, e.g.,
identify the presence of blood among other tissues by its unique
spectral response.’ Tissue response to incident light is quantified
by its absorbance. The collection of absorbance data over a
range of wavelengths by MSI allows the classification of differ-
ent tissue types based on the relative amounts of tissue constitu-
ents present within each tissue class.
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1.2 Classification Model Development and Outlier
Detection

Although MST is capable of capturing unique spectral data from
various tissue types, a classification model must be developed to
interpret new spectral images and correctly identify tissues. A
difficulty arises when developing the model, because it must
be built from the same type of data that it will later be used
to classify, through a process called machine learning. There-
fore, during initial model construction, a “training” dataset
must first be collected and manually classified as the “ground
truth.” Establishing the ground truth is a key step in any machine
learning application and is, therefore, one of the most scruti-
nized stages in the development of these applications. A highly
accurate ground truth is necessary to build an accurate classifi-
cation model. The manner by which the ground truth is estab-
lished varies depending on what the classification model is
being constructed to assess. In every instance, however, it
must be established by clinical experts using the current gold
standard to gather the necessary information. For burn wounds,
the gold standard for tissue classification is histopathological
assessment. We present the details of our technique for estab-
lishing the ground truth in Sec. 2.

The training set is then used to develop the classification
model, which is subsequently tested on additional collected
data to determine its accuracy against the ground truth.
Various algorithms have been developed to build classification
models from ground truth training datasets. For example, the
support vector machine (SVM)!! algorithm has been used pre-
viously in kernel-based machine learning>'*'? for hyperspectral
imaging data analysis.

Ultimately, manual demarcation of training data establishes
the ground truth, so there is a potential bias in the resulting
model due to classification errors. For example, if healthy
skin is inappropriately classified as blood in the training data,
the resulting model would subsequently have difficulty in accu-
rately classifying healthy skin versus blood. As the training data
is the sample space used to build the classification model, reduc-
ing any such bias is the key to improving the model’s accuracy.

The inevitable bias in any training set ultimately reduces the
model accuracy when it is tested after development. To reduce
variance and improve model accuracy, the identification and
removal of “outliers” from the training dataset are helpful.
An outlier is defined as an observed variable that is statistically
different from other observed variables.'* Outlier detection (also
known as anomaly detection or novelty detection) is a key
element of statistical pattern recognition research, with applica-
tions in fields such as credit card fraud, sensor events, medical
diagnosis, and network security. There are several established
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methods of outlier detection.'> One commonly implemented
outlier detection technique is the model-based algorithm.

In model-based algorithms, a statistical test estimates the
parameters of the sample distribution. For example, a Gaussian
distribution is described by two parameters: mean and standard
deviation. These parameters are determined by the maximum
likelihood'® or maximum a posteriori estimation.'” In a univari-
ate Gaussian distribution, outliers are the points that have sig-
nificantly extreme probabilities (high or low) of being included
within the model parameters as quantified by a Z—score (standard
score). Traditionally, samples with probabilities greater than 0.95
or less than 0.05 are considered outliers in univariate analysis.

The model-based algorithm correctly identifies outliers in
many cases. However, it is important to note that the parameters
that define these models are sensitive to any potential outliers
when they are initially calculated. That is, the parameters are
generated using the entire sample set, before outliers can be
identified and removed. Therefore, by identifying and removing
outliers before these algorithms are used to generate classifica-
tion models, the accuracy of these models can be increased. In
this research, we present a machine learning algorithm in the
medical space to which we apply the concept of outlier removal.
MSI imaging data was first captured from an established porcine
burn model. Then we assessed the multispectral images and pro-
vided a statistical solution to quantitatively improve the classi-
fication accuracy of a model designed to classify the different
tissues present in the burn injury images.

2 Methodology

2.1 Hardware

The multispectral image data were acquired using a home-made
bench top imaging setup. Figure 1 illustrates the schematics of
this image acquisition system.'® The lighting source and the
image capture module were both placed in a reflective mode
at a distance of 60 = 1 cm away from the target surface. A tung-
sten light (ViP Pro-light, Lowel Inc.) provided a broad spectral
projection on the target surface in DC-mode. One piece of
frosted glass (iP-50, Lowel Inc.) was mounted in front of the
tungsten light to diffuse the light and increased the uniformity
of spatial illumination. Some incident light penetrated through
the target surface, while any back-scattered optical signal was
collected by the image capture module. The image capture mod-
ule consisted of a high-performance IR-enhanced optical lens
(model: Distagon T* F-2.8/25 mm, Zeiss), an eight-slot filter
wheel, and a 12-bit monochromatic camera (BM-141GE, JAI
Inc.). The optical bandpass filters were designed and selected
to isolate a single wavelength of light for the camera. The

Control points

Wound Site Diagram

Fig. 1 (a) Hardware system set, (b) animal burn, and (c) first cut in burn tissue.!”
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following eight bandpass filters were installed in the filter-
wheel. The center wavelength (CWL) and the full width at half
maximum (FWHM) of the eight filters were (CWL-FWHM,
both in nm): 420-20, 542-10, 581-20, 601-13, 726-41, 800-
10, 860-20, and 972-10. Wavelength intensity was normalized
by using a Reflectance Zenith Lite Panel (SphereOptics GmbH),
and the maximum value of a pixel was 4098 (12 bits). The eight
implemented wavelengths were selected based on known skin
tissue absorption behavior at these wavelengths that would
allow for accurate tissue differentiation for useful classification
(see Ref. 7 for details). The camera sequentially captured single-
wavelength images through each of the eight filters as the filter
wheel rotated. Images were saved on the computer in an uncom-
pressed format. All calculations and statistics were performed
using MATLAB® software (version 2014 b).

2.2 Animal Model and Image Acquisition

We used the system above to collect imaging data by following
an animal burn model protocol that was approved by and under
the oversight of an Institutional Animal Care and Use Committer.
In order to approximate human skin (epidermis thickness: 50 to
120 pm), male Hanford swine (epidermis thickness: 30 to
40 um) were selected as the animal model.

Circular burns (diameter = 3.6 cm) were made on the backs
of swine [Fig. 1(b)]. At this stage, three skin tissues were visu-
alized: healthy, burned, and hyperemia (reddening of the skin
due to increased blood perfusion following an injury). Debride-
ment was carried out in serial 1-mm depth tangential excision
layers, and the area of each debridement for each burn was
6 cm X 6 cm [Fig. 1(c)]. During debridement, six different
skin tissues were appreciable: healthy, partial burn or full burn
(depending on burn severity), blood, wound bed, and hyper-
emia. Each tangentially excised layer was stored in 10% neutral
buffered formalin and sent for histopathological examination.
Each specimen was sectioned and stained with hematoxylin
and eosin (H&E). The purpose of the histological examination
was to obtain the “gold-standard” identification of the tissue
types previously mentioned, and their location in the multispec-
tral images. The depth of burn damage and the precise excision
layer at which viable tissue had been reached were determined
by two pathologists.

Three pigs with six burn locations on each pig were used. For
each burn location, we performed image acquisition using all
eight wavelengths during at least five different time points—
baseline images taken prior to injury, burn images taken directly
after thermal injury, an image following the first 1-mm tangen-
tial excision with the dermatome, and two more images follow-
ing the next two tangential excisions.

2.3 Training Data Collection

A supervised learning method was implemented to generate the
classification model. To build a training database consisting of
the six skin tissue classifications, we extracted the pixel intensity
and the location of each of the six tissue types in every acquired
image using the histology data as a reference. As shown in
Fig. 2, each slice of tangentially excised skin was sectioned
to show the burn depth as determined by board-certified path-
ologists according to well-established protocols.!® We devel-
oped a drawing tool to mark the regions of healthy, partial
burn injury, full burn injury, blood, wound bed, and hyperemia.
The pathologists used the following parameters to determine
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Fig. 2 Example of excised debridement layer used to establish the
“ground truth” for tissue classifications. Tissue above the yellow
line (more superficial) represents full burn injury. Tissue between the
yellow and black lines represents partial burn injury. Tissue below the
black line (deeper) represents the healthy wound bed. These regions
were classified by board-certified pathologists.

these regions from the H&E-stained burned eschar: full burn
injury is the zone of maximum damage. There is irreversible
tissue loss due to coagulation of collagen and other tissue com-
ponents. Histologically, this region is characterized by the loss
of cellular detail. Partial burn injury has decreased tissue perfu-
sion, with evidence of vascular occlusion. Collagen generally
retains its structural integrity. However, there is some evidence
of cellular necrosis with pyknotic nuclei. This tissue zone is con-
sidered to have the potential of being salvaged. Healthy wound
bed was demarcated where essentially normal histological find-
ings were present deep to burn tissue. These regions were then
correlated with the previously acquired spectral imaging data,
thereby establishing a ground truth by which our classification
algorithms could be judged.

2.4 Outlier Detection

To reduce the influence of outliers on the model, an outlier
detection algorithm utilizing two novel concepts was developed
from the well-established foundation of maximum likelihood
estimation as previously described.!® First, a subset of samples
located around the median of the sample space was taken as a
subspace to calculate the mean and the standard deviation
parameters for the model using the maximum likelihood estima-
tion. We called this subspace the “first window,” and its size was
adjusted by novel coefficients @; and a, (from O to 0.5, unit-
less), defined as distances to the left and right, respectively, of
the median of the sample space (thus, the width of the first win-
dow equals a; + a,). As the width of the entire sample space
was normalized to 1, setting a; = a, = 0.5 would result in the
entire sample being selected as the “first window.” By properly
adjusting these coefficients, outliers may be excluded before cal-
culating the distribution parameters [mean (x) and standard
deviation (o) in Gaussian distribution] for the classification
models. Second, the probabilities (from Z-score or other distri-
bution function) were weighted (W;) by a novel feature impor-
tance (w;) to generate a threshold for detecting outliers within
the first window. The technical details of these steps are as
follows.

We began with a large sample space consisting of spectral
data collected from the animal model. The foundation of the
algorithm consisted of the well-established maximum likelihood
estimation technique.'® For an independent and identically dis-
tributed sample, the joint density function is

FOxxp,x3, 0 x,[0) = f(x1]6) X f(x2]0) X f(x3]6) -~
X f(x,16).
where x;,x;,X3,...,x, are the samples and € denotes the

parameters of the model. The likelihood of the function is
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L(03x17x27x3’ “"xn) :f('xleZ?x3v '~-,xn“9)
:Hf(xi|9)-
i=1

In practice, the logarithm of the likelihood function, known
as log-likelihood, can be applied as follows:

In L(6;x, x5, X3, -+, X,) = Zlnf(xi|9)~
i=0

To estimate 6, the value of 9 that maximizes the following
equation is calculated

0 C arg max L(0;x;,xy,X3, -+, X,).

We can calculate the parameter 6, from the method of maxi-
mum likelihood.'® If the sample distribution is Gaussian, the
mathematical equations that describe the maximum likelihood
parameters are as follows:

BN i (e —x)?
2 i=1 i
=— X, 0" ===",
where x; is the value of the sample around the median. Our first
novel outlier detection and removal method calls for these
parameters to be controlled by the coefficients «; as follows:

n=(a; XN)+ (ay XN).

At this juncture, we apply the second of our novel outlier
detection and removal methods. We designate weights to replace
probabilities when detecting outliers. First, the probabilities (p;)
and feature importance (w;) are determined. The probabilities,
p;» can be calculated with the distribution parameters of the sam-
ple distribution function. For example, for Gaussian distribution,
p; is generated from a standard Z-score, which is calculated as
follows:

where p is the mean of the samples and o is the standard
deviation of the samples. The Z-score determines p; as follows:

D(z) = p(Z<z) = /_Z L e

For our outlier detection algorithm, we adjusted the proba-
bility p; values according to the following:

pi=2Xp; if 0.05 < p; <0.5,
pi=2%(p;—05) if 0.5<2xX p;<0.95,
pi=0 if 0.95> p; or p; <0.05.

The feature importance, w;, can vary depending on the
desired application?®*!' and can be adjusted to improve the accu-
racy of any model. In our case, the feature importance was deter-
mined by the relative utility of each of the eight wavelengths
implemented in the MSI machine toward distinguishing differ-
ent tissue classes from one another. In the area of machine
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learning, the wavelength with more discriminant information
was given higher weight values.

After calculating the probabilities, p;, and feature impor-
tance, w;, in the steps above, the sample weights (W) are cal-
culated as follows:

Wi:plxwl +P2XW2+ +pn—lan—l +pnan

n
= ZP, X w;.
i=1

Finally, a threshold weight (W eshoia) 18 assigned to generate
a “second window” of data. If W, is greater than Wy, .qo1q fOr a
given sample, this sample is assigned to the training set (the

Table 1 A summary of the classification and outlier detection algorithm.

Input: Dataset
1. Random selected N samples in whole dataset.
2. Sort the samples in each wavelength
3. Find the median index of these samples.
4. Set the “first window:”
The left bound is:
left = median index— (a; x N)
if left < 0
left =0
The right bound is:
right = median index + (ax x N)
If right > N:
right = N

5. Calculate the means [uq, uo, y3. . . 1] and standard derivations
[61,02,03...0,] from “first window” data.

6. Assign feature importances w4, wo, ws. .., W, according to desired
method

7. Calculate the weight W; from the probability and feature importance
of each wavelength in each sample

For each sample in dataset:

Wi =pi X Wy + P2 X Wat -+ +Ppg X Wp_y +PpX Wy
=2 LipiXwW;

8. Set threshold value to detect outlier.
If W; > Winreshold
Will be considered to build the model
Else:

Will be considered as outlier and removed from the
training set.
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second window). Otherwise, this sample point is considered an
outlier and is removed from the training set.

Empiric testing was repeated to find effective values for the
algorithm coefficients (ay, @, w;, and Wy, reshola)- A summary of
the described algorithm is presented in Table 1.

3 Results
3.1 Model Accuracy

Prior to implementing the data classification and outlier removal
algorithm, unfiltered spectral imaging data was analyzed by
SVM and k-nearest neighbors (KNN) classification algorithms
to train multiple burn classification models. When these models
were given test data to classify after training, the average accu-
racy of classification was 63% overall as compared to the
ground truth. After establishing this baseline accuracy for the
burn model, the data classification and outlier removal algorithm

was applied to the spectral imaging datasets before they were
used to train these same classification algorithms.

Through empiric testing, effective values of the algorithm
coefficients were foundtobe: ay = a, =02, w; =w, = ... =
wg = 1, and Wiyeanoia = 7. With these parameters assigned, the
mean and the standard deviation parameters of the “first win-
dow” were calculated for each of the eight wavelengths imple-
mented by MSI (Table 2).

The results of the data classification algorithm after outlier
detection and removal are presented in Fig. 3. For purposes
of presentation, the sample space (red) is shown in two-dimen-
sions with only two of the eight implemented wavelengths
represented. After outlier detection and removal, the second
window subspace (blue) used to train the burn classification
model became more homogenous and tightly clustered, theoreti-
cally allowing for greater accuracy in the resulting model.

To visualize the results of the data classification and outlier
detection algorithm across all eight MSI wavelengths, boxplots

Table 2 Mean and standard deviation (STD) of implemented wavelengths.

Wavelengths (nm) 420 542 581 601 726 800 860 972
Mean 2128.9 2164.7 2169.9 2202.9 2234.9 2241.0 2233.3 2172.2
3xSTD 21.3421 28.5486 22.8444 29.9799 23.2660 20.7308 22.1283 40.0605
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Fig. 3 Two-dimensional (2-D) representation of the experimental sample space before (red) and after
(blue) outlier identification and removal for the six skin tissue classes: (a) healthy tissue, (b) wound bed,
(c) blood, (d) hyperemia, (e) partial burn injury, and (f) full burn injury. Absorption at one of the eight total
wavelengths were plotted on the x and y axes (542 and 860 nm, respectively) to generate 2-D plots
representative of the eight-dimensional spaces used in the complete analysis. These wavelengths
were selected arbitrarily, and any combination of two wavelengths would, in effect, generate similarly

representative plots.
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Fig. 4 Boxplots depicting sample spaces (a) before and (b) after outlier detection and removal for all
eight wavelengths with each tissue classification. Boxes represent the interquartile range. Red plus
signs demarcate data outlier. The number of outlier remaining in the sample space after outlier detection
was significantly reduced in all tissue classes, most notably in the blood class.

representing the samples collected for all wavelengths in each
tissue classification were plotted before and after outlier detec-
tion and removal. In the initial sample space [Fig. 4(a)], all tissue
classifications, especially blood, included a significant number
of outliers. After outlier and detection removal, the number of

outliers remaining in the subspace was drastically reduced
[Fig. 4(b)].

Representative two-dimensional sample spaces with spectral
data for all six tissue classifications plotted together are repre-
sented in Fig. 5. Before outlier detection and removal, data from

Journal of Biomedical Optics 121305-6 December 2015 « Vol. 20(12)



Li et al.: Outlier detection and removal improves accuracy of machine learning approach...

(a) 2300 — . :
I Healthy
Wound bed
== Partial injury
= Full injury
22507 mm Blood
== Hyperemia
£
c
o 2200
©
@
<
©
c
K
 2150|
=
2100
2050 -

2050 2100 2150 2200 2250 2300 2350

Wavelength-542 nm

( ) 2300 T
Healthy
Wound bed
Partial injury
Full injury
2250 Blood
== Hyperemia |
€
c
3 22001
@
ES
=)
c
<
Q 2150+
©
=
2100~
2050 -

2050 2100 2150 2200 2250 2300 2350
Wavelength-542 nm

Fig. 5 Six classes in 2-D feature spaces (a) with outliers and (b) without outliers.

the various tissue classes were generally plotted in clusters, with
the notable exception of blood, but a significant amount of over-
lap between the various clusters was appreciable. After applying
the outlier detection and removal algorithm, a better separation
between tissue classes was clear. After removal of outliers, new
burn classification models were generated using the same clas-
sification algorithms (SVM, KNN, and so on). The overall aver-
age model accuracy improved from 63% to 76%.

The improvement in model classification accuracy is demon-
strated in Fig. 6. Prior to outlier removal, the classification mod-
els could not accurately detect healthy skin or the hyperemic
zone that physiologically surrounds a burn. The model also pre-
dicted several different classes of tissue where, in reality, healthy
skin was present. In place of the hyperemic zone around the

(a1)

(b1)

(a3)

burn, the models predicted the presence of blood. Further-
more, healthy skin beyond the hyperemic zone was incorrectly
classified as full burn injury. However, after outlier removal, the
models accurately classified both healthy skin in the control
image and burn image, as well as a hyperemic zone around
a burn.

4 Discussion

4.1 Multispectral Imaging Burn Model Classification
Before and After Outlier Detection

Several points from this experiment are worth highlighting.
First, the assigned values for the algorithm coefficients (o,

Physiologic Classes

Il Healthy skin
I Hyperemia
Il Deep injury
[ Wound bed
1 Blood

[ Partial injury

Fig. 6 Examples of burn classification model outputs. Series A represents: (a1) a healthy control image,
(a2) model classification of the control prior to outlier removal, and (a3) model classification of the control
after outlier removal. Series B represents: (b1) a full burn surrounded by a zone of hyperemia and healthy
tissue, (b2) model classification of this image prior to outlier removal, and (b3) model classification of this
image after outlier removal. Outlier detection and removal significantly increased the model accuracy in

these cases.
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ay, w;, and Wiyeaola) were determined through an empiric
approach in a recursive process. The values were selected
because they effectively increased the accuracy in the particular
MSI application presented in this manuscript. However, with
other applications, these values would likely need to be adjusted
to achieve the desired result.

Interestingly, the optimal feature importance (w;) for all
wavelengths was set to a value of 1 after empiric testing to iden-
tify the best value for each wavelength. That all of the feature
importances (w;) were ultimately assigned a value of 1, reflects
the fact that each of the eight wavelengths employed in our MSI
device were selected to provide unique spectral information
independently from one another. This result was not surprising
given that the wavelengths were selected according to previ-
ously described®® optical characteristics of skin tissue and
burn tissue.

The most challenging tissue to accurately classify was blood.
This was evident given the heterogeneous sample space col-
lected for blood as represented in both Figs. 3 and 5. The
bimodal distribution of spectral data characterizing blood is a
result of blood’s unique absorbance spectrum in the visible
and near-infrared light bands, which is also bimodal. Each of
the other tissue classes has a single absorbance peak, resulting
in somewhat more homogenous distributions of spectral data in
these other cases.

Ultimately, the outlier detection and removal algorithm sig-
nificantly improved the accuracy of the MSI application for skin
tissue classification. The algorithm successfully reduced the
variance in the sample space for each of the tissue classes.
By restricting the variance in this fashion, the overlap in spectral
characteristics was reduced in a corresponding manner. With
reduced overlap, the training of classification models was
improved with a discernable increase in classification accuracy.
By achieving a final accuracy of 76%, we improved our model
to, at a minimum, meet the current clinical standard in burn tis-
sue classification, clinical judgment by burn experts.® This
model has the potential to aid decision-making for physicians
treating burn victims in settings where burn experts may not
be readily available.

4.2 Application of Outlier Detection Algorithm to
Multispectral Imaging and Beyond

Although the outlier classification algorithm we have proposed
can theoretically be applied to any number of machine learning
applications,?” we elected to apply it to MSI burn imaging clas-
sification. We made a key assumption regarding the spectral data
acquired by MSI in order to simplify the outlier detection prob-
lem in this case. Namely, we have assumed the spectral data
collected at each intensity-normalized wavelength represent a
Gaussian distribution. This is a reasonable assumption because
the sample spaces were sufficiently large to fit a Gaussian dis-
tribution according to the central limit theorem. The mean and
the standard deviation of each sample space were, therefore, cal-
culated using the appropriate equations for Gaussian distribu-
tion. In an application with data that does not conform to a
Gaussian distribution, other methods such as maximum a pos-
teriori estimation'’ can be used to extract these descriptive
parameters.

Another key assumption in this case was that light—tissue
absorption interactions at the eight wavelengths implemented in
the MSI device were independent and identically distributed. To
consider each wavelength as independent allowed for univariate
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analysis when determining the feature importance rank, which,
as above, can be adjusted to achieve the desired data output for
any given application. In other applications, in which the wave-
lengths (or any other input) cannot be considered independent
and identically distributed, multivariate analysis would be
required to assign feature importance ranks. Although we imple-
mented only absorption data for each wavelength in our classi-
fication model, other descriptors of light—tissue interactions,
such as scattering, could be additionally collected and incorpo-
rated into future models.

Ultimately, the extension of the proposed outlier identifica-
tion and removal algorithm to other machine learning algorithms
is possible, even if the simplifying assumptions used in this
manuscript are not applicable in other cases. The algorithm suc-
cessfully increased the accuracy of our burn model classification
system.

5 Conclusions

Outlier detection and removal from training datasets is a key
component of machine learning algorithms in order to improve
the accuracy of the model. We have developed an outlier detec-
tion algorithm with two unique components. First, we identify a
subsample from the initial sample space by selecting data points
within a certain range of the median of the complete sample
space. From this subsample, the distribution parameters (mean
and standard deviation) can be determined. Second, instead of
relying on traditional probability values to directly identify sta-
tistically significant outlier, we have developed a method to
assign weights to each data feature according to the feature
importance. Each of these mechanisms increases the accuracy
of classification models generated from training datasets by
facilitating the identification and removal of outliers. Finally,
we demonstrate proof-of-concept with the application of MSI
to classify skin and burn tissues. Burn model classification accu-
racy was significantly increased by the proposed algorithm.
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