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Abstract. Test-retest reliability of neuroimaging measurements is an important concern in the investigation of
cognitive functions in the human brain. To date, intraclass correlation coefficients (ICCs), originally used in inter-
rater reliability studies in behavioral sciences, have become commonly used metrics in reliability studies on
neuroimaging and functional near-infrared spectroscopy (fNIRS). However, as there are six popular forms of
ICC, the adequateness of the comprehensive understanding of ICCs will affect how one may appropriately
select, use, and interpret ICCs toward a reliability study. We first offer a brief review and tutorial on the statistical
rationale of ICCs, including their underlying analysis of variance models and technical definitions, in the context
of assessment on intertest reliability. Second, we provide general guidelines on the selection and interpretation
of ICCs. Third, we illustrate the proposed approach by using an actual research study to assess intertest
reliability of fNIRS-based, volumetric diffuse optical tomography of brain activities stimulated by a risk deci-
sion-making protocol. Last, special issues that may arise in reliability assessment using ICCs are discussed
and solutions are suggested. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.20.5.050801]
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1 Introduction
Test-retest reliability is one of the basic aspects in the examina-
tion of scientific measurements and physiological or psycho-
logical quantifications. In the field of behavioral sciences,
the intraclass correlation coefficient (ICC) has been a common
parameter or index used to estimate measurement reliabilities
induced by human errors and variations among judges or raters.
Shrout and Fleiss reviewed a class of ICCs and provided
guidelines for use in inter-rater reliability in behavioral sciences
research.1 McGraw and Wong gave a more complete review of
various forms of ICC and inference procedures in the same con-
text for behavioral sciences research.2 Weir discussed issues in
the use of ICCs for quantifying reliability in movement scien-
ces.3 These studies provided a statistical foundation for reliabil-
ity assessment and emphasized that there are different forms of
ICC, which may lead to different results when being applied to
the same data. Therefore, it is important to choose an appropri-
ate form of ICC which matches with the experimental design
and concerns in a specific study.

In the neuroimaging field, numerous groups have adapted
different forms of ICC for assessing test-retest reliability in dif-
ferent applications of functional brain imaging. For example,

Plichta et al. and Bhambhani et al. applied ICC(1,1) and ICC
(1,2) in quantification of test-retest reliability in functional
near-infrared spectroscopy (fNIRS) studies.4,5 Braun et al. used
ICC(3,1) and ICC(2,1) to study the reliability of a functional
magnetic resonance imaging (fMRI)-based graph theoretical
approach.6 Table 1 lists a few examples of recently published
papers on fMRI and fNIRS studies, where ICCs were used to
measure test-retest reliability.

There are two limitations for the listed studies. First, different
forms of ICCs are used in these studies without reasoning the
choice of selected ICC forms. As a result, it is not clear whether
the chosen ICC metrics appropriately fit the study, and it will
also be difficult to compare results among different studies.
Second, most literature on ICCs is in the context of inter-
rater reliability studies in which a set of targets are rated by
several judges, while neuroimaging researchers are concerned
about the intertest reliability of a certain image modality in
repeated tests. No explanation on this essential difference is
given in the literature.

Since the ICCs are derived under different assumptions, their
values would be meaningful only if those assumptions are met.
In addition, it is important and critical to correctly interpret
results and draw inference when different forms of ICC are
used to assess instrument-based intertest reliability. To our best
knowledge, no work in the fNIRS field has been done to address
those issues. In this paper, we wish to achieve three objectives:*Address all correspondence to: Li Zeng, E-mail: lzeng@uta.edu; or Hanli Liu,
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the first is to give a brief review and tutorial on the statistical
rationale of ICCs and their application for assessment of intertest
reliability; the second objective is to provide general guidelines
on how to select, use, and interpret ICCs for assessing intertest
reliability in neuroimaging research; the last objective is to
assess intertest reliability of multichannel fNIRS under a risk
decision-making protocol, as an example, to demonstrate the
appropriate ICC-based reliability analysis.

The remainder of the paper is organized as follows. In Sec. 2,
we first present the statistical rationale of ICCs, followed by
guidelines in Sec. 3 on the selection of ICCs in test-retest reli-
ability assessment. In Sec. 4, as a demonstrative and explicit
example, we briefly introduce the methodology used and
show hemodynamic images measured twice by multichannel
fNIRS in response to a risk decision-making protocol using
the Balloon Analog Risk Task (BART), followed by comprehen-
sive ICC analysis and result interpretation. Finally, we will dis-
cuss several issues possibly encountered in ICC-based reliability
assessment in Sec. 5, followed by conclusion in Sec. 6. While
this study focuses on fNIRS-based functional brain imaging,
it represents a common subject on test-retest reliability of
neuroimaging measurements and, thus, has broad applicability
to various neuroimaging modalities.

2 Intraclass Correlation Coefficient
Before utilizing ICCs for assessing test-retest reliability of
fNIRS-derived brain images of oxygenated hemoglobin changes
(ΔHbO) and deoxygenated hemoglobin (ΔHbR) recorded
during a risk-decision task, in this section, we first introduce
a unified analysis of variance (ANOVA) model as the statistical
foundation of the ICCs (Sec. 2.1), then review the six forms of
ICC that are commonly used in reliability assessment (Sec. 2.2),
followed by clear descriptions of ICC criteria used to assess
reliability of measurements (Sec. 2.3).

2.1 Unified ANOVA Model

In order to assess test-retest reliability, data as shown in Table 2
are usually collected. Assume that n subjects (j ¼ 1; : : : ; n) are
used in this study, and k repeated tests (i ¼ 1; : : : ; k; k ¼ 2 for
a test-retest case) are conducted on each subject. Let yij be the
recorded quantity of the j’th subject in the i’th test/measure-
ment. Note that in the context of inter-rater reliability assess-
ment, as considered in most ICC literature, a set of targets is
rated by several judges; the reliability of the raters is determined.
In contrast, in the context of test-retest reliability assessment,
a set of subjects is measured in two or more repeated tests
or measures; the intertest reliability of the tests is the character-
istic the researcher will quantify. Thus, “subjects” and “tests or
measures” in our study correspond to “targets” and “judges,”
respectively, in the inter-rater reliability study.

Appropriate ANOVA models are the basis of ICCs.
Equation (1) below expresses the unified ANOVA model for
the data in Table 2:

Table 1 Examples of functional near-infrared spectroscopy (fNIRS)/functional magnetic resonance imaging (fMRI) reliability studies using intra-
class correlation coefficients (ICCs).

References Modality ICC type Topic of measurement

4 fNIRS Not provided Handgrip exercise in healthy and traumatic brain-injured subjects

5 fNIRS ICC(1,1), ICC(1,k ) Visual stimulation by a period of checkerboard

7 fNIRS ICC(1,1), ICC(1,k ) Motor cortex stimulation by finger tapping

8 fNIRS ICC(1,1), ICC(1,k ) aResting-state functional connectivity

9 fMRI ICC(1,1), ICC(1,k ) bResting-state brain networks

10 fMRI ICC(3,1) Combination of an emotional, a motivational, and a cognitive task

6 fMRI ICC(2,1), ICC(3,1) bResting-state brain networks

11 fNIRS ICC(1,1), ICC(1,k ) Repetitive transcranial magnetic stimulation

12 fMRI ICC(2,1) bResting-state brain networks

13 fNIRS ICC(1,k ) bResting-state brain networks

14 fMRI ICC(2,1) aResting-state functional connectivity

15 fMRI ICC(2,1) bBrain networks in working memory, emotion processing, and resting state

aSeed-based analysis.
bGraph-theory-based analysis.

Table 2 Dataa used in test-retest reliability assessment.

Test (i ¼ 1; : : : ; k )

Subject (j ¼ 1; : : : ; n)

j ¼ 1 j ¼ 2 . . . j ¼ n

1 y11 y12 . . . y1n

2 y21 y22 . . . y2n

. . . . . . . . . . . . . . .

k yk1 yk2 . . . ykn

aIn our study, yij represents fNIRS readings from the j ’th subject in
the i ’th measurement.
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yij ¼ μþ Sj þ Ti þ eij; (1)

where μ is the overall population mean, Sj is the deviation from
the population mean of the j’th subject, Ti is the systematic error
in the i’th test, and eij is the random error in the measurement of
the j’th subject in the i’th test. This model rests on the idea that
the measurement is a combination of the true status of the sub-
ject (i.e., μþ Sj) and measurement errors (i.e., Ti þ eij).

3

Different systematic errors in the tests (i.e., T1; T2; : : : ; Tk)
may be caused by different measurement conditions in the
tests (e.g., different devices are used in the tests, or the tests
are conducted at different locations or time slots) or the learning
effects in repeated testing (e.g., subjects tend to become more
and more skilled in later tests). The random error is the error
due to uncontrollable random factors, such as patient factors,
environmental factors, and operator errors.

Assumptions on each term in the model are as follows:
A1: Subject is a random factor and Sj represents the random

effect of this factor, which is assumed to follow a normal dis-
tribution with mean 0 and variance σ2S:

Sj ∼ Nð0; σ2SÞ: (2)

Here, the term random factor means that subjects involved in
this study are viewed as randomly selected from a larger pop-
ulation of possible subjects. Accordingly, the variance σ2S rep-
resents the heterogeneity among this population.

A2: Test can be treated as a random factor or a fixed factor,
and Ti is the systematic error in the i’th test. When it is treated as
a random factor, Ti represents the random effect of this factor,
which is assumed to follow a normal distribution with mean 0
and variance σ2T . When it is treated as a fixed factor, Ti repre-
sents the fixed effect of this factor, and it is assumed that the sum
of the effects is 0. Equations (3) and (4) explain these two effects
in mathematical expressions:

Random effect∶Ti ∼ Nð0; σ2TÞ; (3)

Fixed effect∶
Xk

i¼1

Ti ¼ 0: (4)

The difference between random factor and fixed factor is that
in the former case, the repeated k tests conducted in the study are
viewed as random samples from a larger population of possible
tests/measurements, and accordingly, the variance σ2T represents
the variability of this population. In the latter case, the repeated k
tests are not representative of possible tests; the concern is only
the effect of these particular tests conducted in the study instead
of a generalization to the underlying population of possible tests.

Note that Ti is a random variable in the case of random factor
and a fixed, unknown quantity in the case of fixed factor.

A3: The random error is assumed to follow a normal distri-
bution with mean 0 and variance σ2e:

eij ∼ Nð0; σ2eÞ: (5)

A4: The effect of interaction between the subject and test
(i.e., Subject × Test) is assumed to be insignificant and thus
is ignored in Eq. (1). This means that the systematic error of
each test is similar for all subjects, which is reasonable in
most cases. In situations where this assumption is violated
(i.e., the systematic error varies from subject to subject), this
interaction effect is mingled with the random error and not iden-
tifiable using the data shown in Table 2 since there is no replicate
under each combination of subject and test. In this case, the
equations of ICCs are the same as in the case without the inter-
action effect.

Based on the unified ANOVA model, several special models
can be obtained by adopting different assumptions regarding
whether the effect of the test is significant and whether to treat
the test as a random or fixed factor in A2 above. Different forms
of ICC can be derived from those special models as shown in
the following section.

2.2 Six Forms of ICC

The ICCs reviewed by Shrout and Fleiss are based on three spe-
cial models derived from the unified model: one-way random-
effect model (model 1), two-way random-effect model (model
2), and two-way mixed-effect model (model 3).1 These models
are listed in Table 3. If we assume that the effect of test is not
significant (i.e., systematic error is negligible or systematic
errors in the repeated tests do not differ significantly), the
term Ti can be removed from the unified model, which leads
to the one-way random-effect model. When the effect of the
test cannot be ignored and the test is treated as a random factor
given in A2 by Eq. (3), the unified model becomes a two-way
random-effect model. If the test is treated as a fixed factor as
given in A2 by Eq. (4), the unified model becomes a two-
way mixed-effect model. The name ‘mixed effect’ comes from
the fact that the model contains both random effect (i.e., Sj) and
fixed effect (i.e., Ti).

Table 4 shows the variance decomposition in each of the
three models, including the degrees of freedom, mean squares
(MS), and expected mean squares of each variance component.
Specifically, in the one-way random-effect model, the total
variance of measurements is decomposed into two components:
between-subjects variance and within-subjects variance, which
are estimated by the between-subjects mean squares (MSB) and
within-subjects mean squares (MSW), respectively.

Table 3 Analysis of variance (ANOVA) models as basis of ICCs.

Model Form Assumptions

One-way random-effect model y ij ¼ μþ Sj þ eij i ¼ 1; : : : ; k ; j ¼ 1; : : : ; n Sj ∼ Nð0; σ2SÞ; eij ∼ Nð0; σ2eÞ
Systematic error of test is insignificant.

Two-way random-effect model y ij ¼ μþ Sj þ T i þ eij i ¼ 1; : : : ; k ; j ¼ 1; : : : ; n Sj ∼ Nð0; σ2SÞ; T i ∼ Nð0; σ2T Þ; eij ∼ Nð0; σ2eÞ

Two-way mixed-effect model y ij ¼ μþ Sj þ T i þ eij i ¼ 1; : : : ; k ; j ¼ 1; : : : ; n Sj ∼ Nð0; σ2SÞ;
Pk

i¼1 T i ¼ 0; eij ∼ Nð0; σ2eÞ
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MSB ¼ k
n − 1

Xn

j¼1

ðȳ:j − ȳ::Þ2;

MSW ¼
Xk

i¼1

Xn

j¼1

ðyij − ȳ:jÞ2;

where ȳ:j is the mean of measurements on the j’th subject (i.e.,
data in the j’th column of Table 2), and ȳ:: is the mean of all the
measurements across all the subjects in Table 2. In the two-way
random-effect and mixed-effect models, the total variance is
decomposed into three components: between-subjects variance,
between-tests variance, and random error variance, which are
estimated by the between-subjects mean squares (MSB),
between-tests mean squares (MST), and residual mean squares
(MSE). MSB has the same equation as in the one-way random-
effect model, and MST and MSE are defined by

MST ¼ n
k − 1

Xk

i¼1

ðȳi: − ȳ::Þ2;

MSE ¼ 1

ðn − 1Þðk − 1Þ
Xk

i¼1

Xn

j¼1

ðyij − ȳi: − ȳ:j þ ȳ::Þ2;

where ȳi: is the mean of measurements in the i’th test (i.e., data
in the i’th row of Table 2). It is worth mentioning that the mean
squares can be obtained automatically from the software output
in ANOVA analysis.

The ICC is rigorously defined as the correlation between the
measurements on a subject in the repeated tests.1 Intuitively, if
this correlation is high, that means the neuroimaging modality
yields very similar measurements in the tests (or test and retest
when k ¼ 2), an indicator of high reliability. A more technical
interpretation of ICC is that it is a measure of the proportion of

variance due to subjects2 among the total variance. Following
this interpretation, ICC can be further defined into two catego-
ries: as measure of test (absolute) agreement and as measure of
test consistency.2 Equations (6) and (7) are the expressions of
the two definitions:

Reliability ðAgreementÞ ¼ Between-subjects variance

Between-subjects varianceþ Between-tests varianceþ Random error variance
; (6)

Reliability ðConsistencyÞ ¼ Between-subjects variance

Between − subjects varianceþ Random error variance
: (7)

For each of the three models, the reliability of a single meas-
urement and reliability of the average of the k measurements
(called the reliability of the average measurement for simplicity
hereafter) will be considered. This gives a total of 3 × 2 ¼ 6 pos-
sible forms of ICC. The six forms of ICC developed by Shrout
and Fleiss, which have been widely used in the literature, are
summarized in Table 5.1 Following the notations in the primary
reference,1 these ICCs are designated as ICC(1,1), ICC(1,k),
ICC(2,1), ICC(2,k), ICC(3,1), and ICC (3,k), where the first
index indicates one of the three underlying ANOVA models
(see Table 3), and the second index indicates whether the reli-
ability of a single measurement (¼1) or that of the average
measurement (over k repeated tests) is considered.

2.3 ICC Criteria to Assess Reliability of
Measurements

Since ICCs measure a correlating relationship with a value
between 0 and 1, it is practically important to have standard

criteria used to assess the reliability of measurements.
According to published literature,16,17 criteria of ICC values
for medical or clinical applications are grouped into four catego-
ries, listed as follows. The level of clinical significance is
considered poor, fair, good, and excellent when ICC<0.40,
0.40 < ICC < 0.59, 0.60 < ICC < 0.74, and 0.75 < ICC < 1.00,
respectively. In the present study, we follow the same criteria
since most of the previous publications in the neuroscience
field have utilized the same or very similar criteria.6,8–10,15,18,19

Note that different applications may vary the ICC range to a
large extent based on specific needs and definitions given by
individual clinical applications.20,21 In general, using ICC ¼
0.40 as the floor of an acceptable range for the reliability of mea-
surements is still reasonable as most fMRI results have ICC val-
ues of 0.33 to 0.66,22 which are commonly considered reliable.

3 Selection of ICCs
One critical issue or puzzle in applying ICCs to assess the
reliability of neuroimaging measurements is how to select

Table 4 Variance decomposition in the ANOVA models.

df MS EMS

One-way random-effect model

Between-subjects n − 1 MSB kσ2S þ σ2e

Within subjects (error) nðk − 1Þ MSW σ2e

Two-way random-effect model

Between subjects n − 1 MSB kσ2S þ σ2e

Within subjects

Between tests k − 1 MST nσ2T þ σ2e

Error ðn−1Þðk −1Þ MSE σ2e

Two-way mixed-effect model

Between subjects n − 1 MSB kσ2S þ σ2e

Within subjects

Between tests k − 1 MST ðn∕k −1ÞPk
i¼1T

2
i þσ2e

Error ðn−1Þðk −1Þ MSE σ2e

Note: df, degree of freedom; MS, mean squares; EMS, expected
mean squares.
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appropriate ICCs from the six forms given in Table 5 for a spe-
cific study. How to make an appropriate selection is the topic of
this section. We will first present several properties on the inter-
pretations and magnitudes of the ICCs and then provide detailed
guidelines on ICC selection.

3.1 Properties of ICCs

The six forms of ICC given in Table 5 have the following
properties:

Property 1: ICC(1,1)/ICC(1,k) and ICC(2,1)/ICC(2,k) are
measures of test agreement [i.e., as defined by Eq. (6)] as the
between-tests variance is included in their denominators; ICC
(3,1)/ICC(3,k) are measures of test consistency [i.e., as defined
by Eq. (7)] as the between-tests variance is not included in their
denominators.

Property 2: Among the three ICCs for a single measurement,
the relationship of ICC(1,1) ≤ICCð2;1Þ ≤ICCð3;1Þ exists in
most cases. Specifically, when the effect of test is not significant,
namely, σ2T is small, these three ICCs have similar values as their
denominators are close to each other [see Eqs. (6) and (7)].
When the effect of test is significant, the correlation between
measurements will be underestimated in the one-way ran-
dom-effect model,1 that is, ICC(1,1) <ICCð2;1Þ. In this case,
we expect that ICC(2,1) <ICCð3;1Þ because the denominator
of ICC(3,1) does not include the between-tests variance and,
thus, is smaller than that of ICC(2,1).

Property 3: ICCs of the average measurement are larger than
their counterparts of a single measurement. The reason is that
averaging over repeated measurements reduces the variance
of measurement/test errors, leading to a decrease in between-
tests variance and an increase in overall ICCs, as interpreted by
Eq. (6).

3.2 Guidelines on ICC Selection

To appropriately assess reliability of neuroimaging measure-
ments, appropriate ICCs need to be chosen based on the specific
study. Usually both the ICC of a single measurement and that of
the average measurement will be used, so the primary issue here
is how to choose the most appropriate ANOVA model among
the three alternatives: model 1 (one-way random-effect model),
model 2 (two-way random-effect model), and model 3 (two-way
mixed-effect model). Two decisions need to be made by answer-
ing the following questions: (1) Do we choose one-way model
or two-way model? (2) Do we choose two-way random-effect

model or mixed-effect model? Clear and confident decisions can
be done by integrating expert knowledge on the study and
statistical testing. Guidelines on making the two decisions are
provided as follows.

3.2.1 Determination of one-way model versus
two-way model

There are two considerations regarding the choice between the
one-way model and two-way model.

First, we need to consider the significance of the effect of
test. If we believe that the systematic error is negligible or
the systematic errors in all the tests are similar, the one-way
model should be chosen; otherwise, the two-way model should
be chosen. This can also be decided by statistical testing on the
significance of this effect. Specifically, a two-way model (either
the random-effect model or mixed-effect model) is first con-
structed through ANOVA. This analysis will automatically con-
duct an F test on the effect of test and yield a p value as part of
its output. If the p value is small (e.g., <0.05), it means that the
effect of test is significant and, thus, the two-way model is the
correct model; otherwise, the one-way model is the correct
model. However, when the effect of test is not significant,
though the one-way model is the correct model, ICCs derived
from the two-way models will still have values similar to those
derived from the one-way model (based on property 2). Thus, in
terms of reliability assessment, the two-way model (i.e., either
model 2 or 3) is more robust and can be used regardless of the
significance of the test effect.

Second, we need to pay attention to the design of the experi-
ment. Shrout and Fleiss gave one example (case 1 in the paper)
where the one-way model must be used in the context of inter-
rater reliability assessment. In that example, each target is rated
by a different set of judges, or in other words, each judge only
rates one target. McGraw and Wong provided two other exam-
ples similar to this case, called “unordered data” and
“unmatched data.”2 The first example represents the situation
where the data on the same target are collected in such a
way that their ordering is irrelevant, while the second example
represents the instance where each observation was made under
unique measurement conditions. Essentially, these examples
reflect two situations where the one-way model should be
used: when there is no way to assign data to measurement cat-
egories (such as test and retest) or when the data in the same
measurement category are obtained under different conditions.
The second situation may occur in the test-retest reliability

Table 5 Definition of ICCs and computation equations.

Designation Model Definition Computation formula

ICC(1,1) One-way random-effect model σ2S∕σ
2
S þ σ2e MSB −MSW∕MSB þ ðk − 1ÞMSW

ICC(1,k ) σ2S∕σ
2
S þ σ2e∕k MSB −MSW∕MSB

ICC(2,1) Two-way random-effect model σ2S∕σ
2
S þ σ2T þ σ2e MSB −MSE∕MSB þ ðk − 1ÞMSE þ kðMST −MSEÞ∕n

ICC(2,k ) σ2S∕σ
2
S þ ðσ2T þ σ2eÞ∕k MSB −MSE∕MSB þ ðMST −MSEÞ∕n

ICC(3,1) Two-way mixed-effect model σ2S∕σ
2
S þ σ2e MSB −MSE∕MSB þ ðk − 1ÞMSE

ICC(3,k ) σ2S∕σ
2
S þ σ2e∕k MSB −MSE∕MSB

Note: σ2e ¼ MSE, σ2S ¼ MSB −MSE∕k , and σ2T ¼ MST −MSE∕n.
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assessment. For example, during one test, some subjects may be
measured using different devices, at different locations, or dur-
ing different time slots from others.

3.2.2 Determination of two-way random-effect model
versus mixed-effect model

To choose between the two-way random-effect model and
mixed-effect model, we need to have a clear understanding
of these two models in the following aspects.

First, we need to be aware of the distinction between random
effect versus fixed effect. As mentioned previously, test is
treated as a random factor in the two-way random-effect
model. In technical terms, this means that all possible tests/
measurements by the studied neuroimaging modality are inter-
changeable. In practical terms, it means that the systematic
errors in all possible tests are random and do not have any pat-
tern (e.g., the systematic error in later tests is smaller or larger
than that in previous tests). In other words, the results from the
particular k tests conducted in this study can be generalized to all
possible tests. In contrast, test is treated as a fixed factor in the
two-way mixed-effect model. This means that the results from
the conducted tests are not random and, thus, cannot be gener-
alized to all possible tests or such a generalization is not of
interest.

Second, we need to correctly interpret ICCs in terms of abso-
lute agreement versus consistency between measurements from
the repeated tests. By property 1, ICC(2,1)/ICC(2,k) and ICC
(3,1)/ICC(3,k) have different interpretations as a measure of
absolute agreement between the tests versus their consistency.
Technically, the two interpretations differ in whether the
between-tests variance is taken into consideration in the reliabil-
ity assessment; absolute agreement measures include between-
tests variance, while consistency measures do not. Thus, ICC
(3,1)/ICC(3,k) should be used in cases where the between-
tests variance is an irrelevant source of variation.2 One example
is when the concern is not the absolute measurements of subjects
in each test, but their relative differences in the test (correspond-
ingly, the deviation of each measurement from the average of
all subjects in the test will be used in the analysis).

3.2.3 General guidelines

Based on the above explanations and comprehensions, general
guidelines on selecting the most appropriate ICCs from the
popular forms of ICCs listed in Table 5 are summarized below:

i. If the subjects in the same test and/or neuroimaging
measurement are not measured under the same

conditions (device, location, time slots, etc.), ICC
(1,1)/ICC(1,k) should be used.

ii. If the between-tests variance is not significant according
to the F test in ANOVA, ICC(1,1), ICC(2,1), and ICC
(3,1) have similar values, and thus, any of them can be
used in the reliability assessment. If the between-tests
variance is significant, ICCs from the two-way models
should be used.

iii. If it is reasonable to generalize the results in a study to
all possible tests and absolute agreement of measure-
ments in repeated tests is concerned, ICC(2,1)/ICC
(2,k) should be used.

iv. If it is not reasonable to generalize the results to all
possible tests or the consistency of measurements in
repeated tests is concerned, ICC(3,1)/ICC(3,k) should
be used.

3.2.4 Simple procedure for ICC selection

To provide convenience in practice for test-retest reliability
assessment of neuroimaging measurements, the guidelines in
Sec. 3.2.3 are summarized into a simple procedure for ICC
selection considering general settings in neuroimaging studies.
The flow chart of the procedure is shown in Fig. 1. The pro-
cedure consists of two steps. Step 1 is to determine if the
test effect is negligible. At this step, the unified ANOVA
model (i.e., two-way random-effect or two-way mixed-effect
ANOVA model) would be constructed using the actual data.
The significance of the between-tests variance is indicated by
the p value, which is often given as part of the ANOVA output.
If it is not significant, it means that the test effect is negligible.
Accordingly, the one-way random-effect model should be
chosen, and ICC(1,1)/ICC(1,k) are the appropriate reliability
measures. If the between-tests variance is significant, then the
test effect is not negligible, and thus, two-way models should
be used. Step 2 is to determine whether the test effect is random.
Expert knowledge on the experimental system will be used to
make the decision. If the systematic error is believed to be ran-
dom, then the two-way random-effect model should be chosen,
and ICC(2,1)/ICC(2,k) are appropriate reliability measures. If
the researcher is not sure about the distribution of the systematic
error or suspects a certain pattern to exist, then the two-way
mixed-effect model should be chosen, and ICC(3,1)/ICC(3,k)
are the appropriate reliability measures.

Two things need to be kept in mind when applying the above
procedure for ICC selection in practice. (1) If the test effect is
found to be negligible in step 1, the three models will yield

Fig. 1 Flow chart of the procedure for intraclass correlation coefficient (ICC) selection.
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similar ICC values, so any of them can be used in the reliability
assessment of measurements as pointed out by guideline ii. The
one-way model is suggested in the procedure because it is
appropriate in the sense of model building. (2) Due to the
subjectivity involved in the choice between the two-way ran-
dom-effect versus mixed-effect model, the decision might be
debatable in some cases. In fact, such debates widely exist
among researchers in many other fields.1,2 So finding an abso-
lutely better model is not very meaningful here; the key is to
make sure that the same model is grounded in comparing the
reliability of neuroimaging modalities.

4 Assessment of Intertest Reliability on
fNIRS-Based Brain Imaging Using ICC

To better illustrate the guidelines and interpret ICC analysis
results, we apply the six forms of ICC to an actual research
study in this section that uses fNIRS-based, volumetric diffuse
optical tomography (vDOT) to image brain functions under
a risk decision-making protocol.

4.1 Measurements of BART-Stimulated vDOT

4.1.1 Subjects, experimental setup, and study protocol

Nine healthy right-handed subjects (five males and four females,
between 25 and 39 years) were recruited for this study. Written
informed consent was obtained from all the subjects; the study
protocol was approved by the University of Texas at Arlington
institutional review board. All the subjects were scanned twice
with a mean test-retest time interval of three weeks. No subjects
reported any known diseases, such as musculoskeletal, neuro-
logical, visual, or cardiorespiratory dysfunctions. A continuous
wave fNIRS brain imaging system (Cephalogics, Washington
University, USA) was applied to each subject’s forehead to rec-
ord the hemodynamic variation during risk decision-making
tasks. Based on the modified Beer-Lambert law, two wave-
lengths (750 and 850 nm) were used to calculate changes of
ΔHbO and ΔHbR. The fNIRS optode array consisted of 12
sources and 16 detectors with a nearest inter-optode distance
of ∼3.25 cm, forming 40 measurement channels in total and
covering the forehead entirely, as seen in Fig. 2. For more details
on the instrumentation, see Ref. 23.

The study protocol was modified from the BART paradigm
utilized in a previous fMRI study.25 BART is a psychometrically
well-established protocol, has predictive validity to real-world
risk taking, and has been commonly used in the field of neuro-
science as a behavioral measure to assess human risk-taking
actions and tendencies while facing risks. A more detailed
description of the computer-based BART paradigms can be
found in Ref. 23. To briefly review it, the fNIRS-studied
BART paradigm includes two outcomes or phases, that is,
win and lose in response to wins (collect rewards) or losses
(lose all rewards) during BART performances in both active
and passive decision-making modes. For this test-retest reliabil-
ity study, only the active mode was considered since the passive
mode did not induce many significant changes in hemodynamic
signals in the frontal cortex of each subject.23 In each test, BART
instructions were given first, and then the subjects played the
computer-based BART tasks. A blocked-design was used; it
consisted of a stimulation (i.e., balloon-pumping and/or deci-
sion-making process) period of 5 s and a recovery period of
15 s. A total of 15 blocks of tasks were assigned to each subject.
Overall, it took 20 to 21 s to finish one block and ∼5 to 6 min to

complete an entire 15-balloon fNIRS-BART protocol. All the
subjects were carefully instructed and performed short-test
versions of the paradigms before the real task to allow familiari-
zation with the devices and the protocols. To eliminate the
environmental light contamination, the room was kept dark
throughout the tasks. In addition, a black board was placed
between the operating monitor and the optodes probe.

4.1.2 Data processing for vDOT

The raw temporal data were first put into a band-pass filter
(0.03 Hz for high-pass corner and 0.2 Hz for low-pass corner)
to remove instrument drift and physiological noises.26 Then a
block-average process was performed on the data in order to
enhance the signal-to-noise ratio. Here, we utilized a three-
dimensional human head template (ICBM152) generated by
T2-weighted MRI to develop a human brain atlas-guided
finite-element model (FEM).24 The forward modeling was sub-
sequently conducted in the FEM and the sensitivity matrix was
generated by using the FEM-based MATLAB® package,
NIRFAST.27 We applied a depth compensation algorithm
(DCA) to the sensitivity matrix to compensate for the fast
decay of sensitivity with the increase of depth.28 Then the
inverse modeling was conducted using Moore-Penrose general-
ized inversion with Tikhonov regularization.29 The changes of
absorption coefficient for each wavelength (750 and 850 nm) at
each pixel were generated in this process. Values of ΔHbO,
ΔHbR, and total hemoglobin concentration (ΔHbT)30 from
each voxel were computed by processing the fNIRS data
from 0 to 5 s during the reaction/response phase right after
the decision-making phase.23 After combining DCAwith DOT,
we were able to form vDOT and to better estimate the detection
depth up to ∼2.5 to 3 cm below the scalp.31

To identify the activated areas and volumes in the cortex, the
regions of interest (ROI) were defined or identified based on

Fig. 2 (a) Optode locations coregistered to the ICBM152 brain tem-
plate24 and (b) the geometry of the probe, where circles represent
the detectors and crosses represent the sources.
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the reconstructed ΔHbO values from the voxels within the field
of view (FOV) by the 9 cm × 20 cm optode-covered area (see
Fig. 2). As mentioned above (Sec. 4.1.1), 12 sources and 16
detectors (with a nearest inter-optode distance of 3.25 cm)
formed 40 measurement channels, which allowed us to form
voxel-wise DOT with a detection layer up to 3 cm. Any voxel
with a ΔHbO value higher than a half of the maximum ΔHbO
determined over the FOV would be included or counted within
the ROI. Namely, the ROIs were selected using the full-width-
at-half-maximum (FWHM) approach based on a single maxi-
mum ΔHbO value across both cortical sides of FOV. More
details on ROI selection can be found in Ref. 23.

4.2 Experimental Results of ΔHbO-Based vDOT

4.2.1 Hemodynamic response under BART stimulation

In our experimental study, the BART risk decision-making task
was performed by the nine young healthy participants twice
(visit 1 and visit 2). ΔHbO values within the FOV were com-
puted during a 5-s period of post decision-making reaction time
for each visit. The activated pixels were extracted by the FWHM
threshold. Figure 3 shows the reconstructed ΔHbO maps of
brain activations on the cortical surface with three different
views: coronal (left), sagittal (middle), and axial (right). This
figure clearly illustrates the brain activation areas in both visits
for win (upper image) and lose (bottom image) cases. The group
averaged activated pixels are highlighted as red (for visit 1) and
yellow (for visit 2). All responses to BART from visit 1 and visit
2 robustly evoked hemodynamic signal increases in their respec-
tive anatomical regions. It was observed that both win and lose
cases in the two visits revealed strong positive activations in
both left and right dorsal-lateral prefrontal cortex (DLPFC)
regions.

Specifically, there was a more focused or overlapped brain
activation region (white areas) in the lose case (lower row of
Fig. 3) than in the win case (upper row of Fig. 3) between
both visits. Also, all brain images revealed a higher level and
a larger area of left DLPFC activation than those in the right
DLPFC region. These results, which are consistent with
reported findings in the literature, suggest that specific neural
regions (the lateral PFCs and dorsal anterior cingulate) support

cognitive control over thoughts and behaviors, and that these
regions could potentially contribute to adaptive and more risk-
averse decision making.23,25

To test the statistical differences between visit 1 and visit 2,
a pairwise t test was performed on the mean amplitude of ΔHbO
in both win and lose cases; the results (mean� s:d:) are shown
in Fig. 4. No significant difference was found in both the
win (1.42� 0.39 μM in visit 1 and 2.12� 0.34 μM in visit
2, n ¼ 9, p value ¼ 0.19) and lose case (2.97� 0.90 μM in
visit 1 and 2.74� 0.59 μM in visit 2, n ¼ 9, p
value ¼ 0.84). The results indicate that there was no significant
difference between the two visits at the group-mean ampli-
tude level.

Fig. 3 Coronal, sagittal, and axial views of oxygenated hemoglobin changes (ΔHbO) activation in
volumetric diffuse optical tomography images at the group level from visit 1 (red), visit 2 (yellow),
and their overlap (white). Upper images show reaction cortical regions/volumes under the win stimulus,
while bottom images represent those under the lose stimulus.

Fig. 4 Bar plots of the mean ΔHbO� standard deviation of the two
visits in (a) win and (b) lose case.
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4.2.2 Reliability assessment using ICC

To assess the test-retest reliability of vDOT in the two cases (win
and lose), we computed the six forms of ICC as defined in
Table 5 using the mean ROI-based ΔHbO values in Table 6.
The values of the ICCs are presented in Table 7. Note that k ¼
2 in this study. It is observed that in the lose case, the ICCs of a
single measurement and ICCs of the average measurement were
relatively consistent, whereas those in the win case vary consid-
erably and, thus, will lead to different conclusions. For example,
if ICC(1,1) was used, we would conclude that the test-retest
reliability was fair (0.4 < ICC < 0.6), while if ICC(3,1) was
used, a good reliability (0.6 < ICC < 0.75) could be concluded
(see Sec. 2.3). This clearly illustrates the necessity and impor-
tance of ICC selection as discussed in the Introduction.

The appropriate ICCs in the two cases can be determined
following the guidelines summarized in Sec. 3.2.3, as explained
below.

Under guideline (i), since the experimental conditions for
all subjects were the same in each visit, this rule does not
apply here.

Under guideline (ii), to decide whether to choose the
one-way model or two-way model, we conducted two-way
ANOVA analysis to find the significance of between-tests
variance. The resulting ANOVA tables in the win case and lose
case are given in Tables 8 and 9, respectively. In the win case,
the p value of the F test is 0.03, indicating that the between-
tests variance is significant (assuming significance level ¼
0.05). The calculated magnitudes of the ICCs have the order of
ICC(1,1) <ICCð2;1Þ <ICCð3;1Þ, which is consistent with prop-
erty 2 given in Sec. 3.1. According to guideline (ii), the two-way

model should be chosen in this case. In the lose case, the p value
is 0.77, indicating the insignificance of the between-tests vari-
ance. The magnitudes of the ICCs are close to each other, which
is also consistent with property 2. By guideline (ii), ICCs based
on any of the three models can be used in this case.

Under guidelines (iii) and (iv), a further determination was
needed on whether to choose the two-way random-effect model
or mixed-effect model for the win case. First, we believe that the
systematic error of our experimental system is random (assum-
ing minimal learning effects in our study since the time interval
between the two visits was long enough) and results in this study
can be generalized to all possible tests on the system. Such
a generalization is also desirable as the ultimate goal of our
study is to test the general feasibility of vDOTas a brain imaging
tool for assessing risk decision making. Second, we are con-
cerned with the absolute agreement of measurements in the
test-retest reliability analysis. By guideline (iii), ICCs based
on the two-way random-effect model should be used.

In summary, ICC(2,1)/ICC(2,2) should be used in the win
case, and any of the three types of ICCs, i.e., ICC(1,1)/ICC
(1,2), ICC(2,1)/ICC(2,2), ICC(3,1)/ICC(3,2), could be used in
the lose case. For convenience in practice, we prefer to use a
single ICC protocol for reliability analysis. Thus, we conclude
that ICC(2,1)/ICC(2,2) should be chosen in this study. Further,

Table 6 Region of interest–based mean ΔHbO at individual level.

Subject (ID) Win (ΔHbO in μM) Lose (ΔHbO in μM)

Visit 1 Visit 2 Visit 1 Visit 2

1 1.04 3.27 1.74 0.68

2 4.15 3.95 5.06 4.86

3 2.36 2.25 6.58 5.62

4 1.09 1.36 1.56 3.80

5 0.64 1.59 7.68 2.28

6 0.92 1.02 0.92 0.58

7 0.70 1.08 0.44 1.34

8 0.45 1.87 1.20 2.30

9 1.39 2.69 1.58 3.24

Table 7 Intraclass correlation coefficients (95% confidence interval) for assessing test-retest reliability.

Task ICC(1,1) ICC(2,1) ICC(3,1) ICC(1,2) ICC(2,2) ICC(3,2)

Win 0.58(0,0.89) 0.61(0,0.90) 0.72(0.16,0.93) 0.73(0,0.94) 0.76(0,0.95) 0.84(0.27,0.96)

Lose 0.56(0,0.88) 0.54(0,0.88) 0.52(0,0.87) 0.71(0,0.93) 0.7(0,0.94) 0.68(0,0.93)

Table 8 ANOVA tablea in the win case.

Source df SS MS F p value

Test 1 2.23 2.23 6.62 0.03

Subject 8 16.43 2.05 6.09 0.01

Residual 8 2.70 0.34

Total 17 21.37

Note: SS, sum of squares; MS, mean squares; MS ¼ SS∕df; F , sta-
tistic in the F test.
aSummary of ANOVA results, which are standard output from soft-
ware SAS.

Table 9 ANOVA table in the lose case.

Source df SS MS F p value

Test 1 0.24 0.24 0.09 0.77

Subject 8 63.85 7.98 3.14 0.06

Residual 8 20.34 2.54

Total 17 84.43
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based on Table 7, we conclude that in the win case, (1) a single
measurement has good reliability, while the average of test-
retest measurements has excellent reliability; (2) in the lose
case, a single measurement has fair reliability, while the average
of test-retest measurements has good reliability. Note that in
Table 7, ICCs of the average measurement are always larger
than their counterparts of a single measurement, which is con-
sistent with property 3 in Sec. 3.1.

4.3 Relationship between Behavioral Reliability and
vDOT Intertest Reliability

It is important to investigate the relationship between ICC values
of behavioral measures and HbO measures by vDOT in order to
correctly interpret the test-retest results. Table 10 shows corre-
sponding test-retest ICCs from the behavioral data. It is seen that
in the win case, the behavioral reliability assessed by ICC(1,1)
and ICC(2,1) is fair, while that assessed by ICC(3,1), ICC(1,2),
ICC(2,2), and ICC(3,2) is relatively high, i.e., good to excellent.
In the lose case, however, the reliability assessed by ICC(1,1),
ICC(2,1), and ICC(3,1) is poor, and that assessed by ICC(1,2),
ICC(2,2), and ICC(3,2) is fair. These results indicate that the
behavioral data are less stable than the vDOT measured data
(see Table 7). However, after we investigated the correlation
of ICC values of the behavioral data and the HbO data, we
found high consistency of these two datasets. The correlations
(quantified by Pearson’s correlation coefficient R) in the win
and lose case are 0.96 and 0.99, respectively. To demonstrate
this point, Fig. 5 shows the six types of ICC values for HbO
and behavior score in the two cases.

5 Discussion

5.1 Single Measurement versus Average of
Repeated Measurements

As mentioned at the beginning of Sec. 3.2, the selection of ICCs
is essentially based on the three ANOVA models. Once the

model is chosen, either the ICC of a single measurement or
that of the average measurement can be calculated for reliability
assessment. Usually both of the metrics are used to quantify the
reliability of measurements.5,8,9,11 This will provide important
information on the effect of repeated testing on intertest reliabil-
ity and will help make a decision on how many tests are needed.
Taking the calculated ICC values in Table 7 as an example,
ICCð2;1Þ ¼ 0.61 and ICCð2;2Þ ¼ 0.76 in the win case. This
means that if the status of a subject is represented using a single
measurement (that is, only one visit is done in the study), the
reliability is 0.61; if it is represented using the average of the
subject’s measurements in visit 1 and visit 2, the reliability is
0.76. In other words, adding a second visit can enhance the
intertest reliability by 0.16. If a reliability of 0.61 is acceptable,
then a single visit would be enough to measure the status of
subjects; otherwise, two or more visits are needed.

5.2 ICC Selection Through Statistical Model
Comparison

The choice between the two-way random-effect model and
mixed-effect model can also be made by comparing these
two models through statistical model comparison methods. A
popular simple method is to compare the Akaike information
criterion (AIC) or Bayesian information criterion (BIC) of
the models.32 AIC and BIC measure the performance of a stat-
istical model in fitting a given dataset and attempt to achieve a
trade-off between goodness-of-fit of the model and its complex-
ity. A smaller value of these two measures indicates a better
model. Due to a small sample size that is often the case in
test-retest neuroimaging measurements, however, these statisti-
cal measures may not provide reliable results. Moreover, con-
cerns from a statistical perspective (e.g., goodness-of-fit, model
complexity, etc.) may not make much practical sense in reliabil-
ity studies. To show the performance of the above method, AIC
and BIC of the random-effect model and mixed-effect model
were computed and are listed in Table 11. As shown in the
table, the AIC/BIC of the two models are very similar in
both the win and lose cases, meaning that the two measures
do not provide sufficient evidence for model selection.

5.3 Special Issues in Reporting and Interpreting
ICCs

There are some special issues that may arise in assessing test-
retest reliability of measurements using ICCs. The first issue is
negative reliability estimates. Since ICCs are defined to be the
proportion of between-subjects variance, they should theoreti-
cally range from 0 to 1. In practice, however, due to sampling
uncertainty, the calculated values of ICCs may be out of the
theoretical range, such as being negative. To be meaningful,
negative ICC values can be replaced by 0 (e.g., Ref. 33).
The second issue is dependence of ICCs on between-subjects
variance. According to the definitions of ICC in Eqs. (6) and

Table 10 Intraclass correlation coefficients with 95% confidence interval for behavioral data.

Task ICC(1,1) ICC(2,1) ICC(3,1) ICC(1,2) ICC(2,2) ICC(3,2)

Win 0.54(0,0.87) 0.59(0,0.90) 0.77(0.28,0.94) 0.70(0,0.93) 0.74(0,0.95) 0.87(0.44,0.97)

Lose 0.37(0,0.81) 0.36(0,0.81) 0.36(0,0.81) 0.53(0,0.90) 0.53(0,0.89) 0.53(0,0.90)

Fig. 5 ICC values for HbO and behavior score in the win and lose
cases.
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(7), the value of ICCs depends on the between-subjects variance.
When the between-subjects variance is small, i.e., subjects differ
little from each other, even if the measurement error
variance is small, the ICC may still be small; on the other
hand, large between-subjects variance may lead to large ICCs
even if the measurement error variance is not small. For
example, considering ICCs defined by Eq. (7), if between-
subjects variance ¼ 0.2 and random error variance ¼ 0.3,
ICC¼0.2∕ð0.2þ0.3Þ¼0.4; if between-subjects variance ¼ 3
and random error variance ¼ 1, ICC ¼ 3∕ð3þ 1Þ ¼ 0.75.
Taking into account the magnitude of the between-subjects vari-
ance and random error variance, the former (ICC ¼ 0.4) might
be acceptable, while the latter (ICC ¼ 0.75) might not be sat-
isfactory in some applications. So the meaning of ICCs is con-
text specific,3 and it is not adequate to compare the reliability in
different studies only based on ICCs. The final issue is signifi-
cant between-tests variance. When ANOVA indicates that the
between-tests variance is significant, the value of ICCs may
still be large, indicating good reliability. However, the signifi-
cant between-tests variance is not desirable and efforts need
to be made to reduce the systematic error of the test. For exam-
ple, protocols of the study may be modified to eliminate the
learning effects of the test.34

5.4 Consistency of ICCs between Behavioral and
HbO Measurements

Figure 5 clearly demonstrates that in the win case, we had an
excellent agreement of ICC values between HbO and behavior
data. In the meantime, data in the lose case also show a consis-
tent trend from ICCs of a single measurement to ICCs of the
average measurement, which could be interpreted as that the
reproducibility/reliability of hemodynamic measurements dur-
ing the risk decision-making task has an improvement pattern
consistent with the behavior score reliability. Furthermore, the
poor-to-fair ICC scores in behavior reliability in the lose case
may imply that parts of the nonreliability in the lose case
may be attributable to the source of variable behaviors when the
subjects faced the undesirable loss during risk-taking actions.
Overall, these findings suggest that the amplitude of HbO is
a suitable biomarker for risk decision-making studies. Further
research is needed to identify other potential unstable sources
that contribute to the variation in the test-retest repeatability of
fNIRS-based measurements under risk decision-making tasks.

5.5 Effects of Extra-Cranial Signals in Reliability
Assessment

The broad range of fNIRS studies are always faced with the
issue of extra-cranial signals that may cause errors in fNIRS
measurements.35–37 The first concern is the personal variation

in scalp-to-cortex distance, which may confound fNIRS signals
from cortical regions. Many groups have reported their investi-
gations on extra-cranial-dependent fNIRS sensitivity. Recent
studies indicate that the impact of scalp-to-cortex distance on
the fNIRS exists and suggest including head circumference
as a control factor on practical measurements.37 A more careful
study on reward tasks using combined fNIRS and fMRI reveals
that the increase of sensitivity to reward and scalp-to-cortex dis-
tance decreases the correlation between fNIRS data and fMRI
data.35 Moreover, it is found that blood pressure fluctuations can
also affect the fNIRS measurement in the superficial cortex.36

The second concern is the variation in neural responses. A recent
study in the fMRI field indicates that there may be more influ-
ence from physiological noises than the brain activation under
emotion stimulus.38

Nonetheless, in a test-retest reliability study, such concerns
may not be essential. First, since we can safely assume that the
anatomy within a subject was stable during the two-week test-
retest period, the variation due to the first concern, i.e., scalp-to-
cortex distance, could be ignored. Also, more advanced data
processing methods can be developed and introduced to further
minimize the effects of extra-cranial signals. For example, a
recent study by performing an easy-to-use filter method on
all fNIRS channels to subtract the extra-cranial signal shows
substantial improvement in the forehead measurement.39 In
addition, a double short separation measurement approach based
on the short-distance regression could also be introduced to
reduce the extra-cranial noise for both HbO and HbR signals.40

5.6 Future Research

Future research should extend the study of reliability. The
following are two topics that need to be investigated. First, neu-
roimaging data are often obtained from the commonly used
modalities, such as fMRI, fNIRS, PET/SPECT, including infor-
mation on both activation pattern and activation amplitude. This
study examined amplitude agreement using ICCs. In order to
fully assess the test-retest reliability of a neuroimaging measure-
ment, the pattern reproducibility should also be examined.22

Dice coefficient for pattern overlap and Jaccard coefficient
could be used for this purpose.41 Second, instead of using an
ROI-averaged amplitude or significant cluster amplitude to
quantify the ICCs, Caceres et al. proposed a map-wised ICCs
approach, which conducts voxel-wise ICC analysis for the
whole brain.42 This approach can help discriminate the best
ROIs between individuals and correlate the ICC map with the
activation map since both metrics were voxel-based. We will
apply this approach to study the reliability of measurements in
future research.

6 Conclusion
Choosing appropriate forms of ICC is critical in assessing intert-
est reliability of neuroimaging modalities. A wrong choice of
ICCs will lead to misleading conclusions. In this study, we
have reviewed the statistical rationale of ICCs and provided
guidelines on how to select appropriate ICCs from the six popu-
lar forms of ICC. Also, based on ΔHbO activation maps by
fNIRS-based vDOT under a risk decision-making protocol, we
have demonstrated appropriate ICC selections and assessed the
test-retest reliability of vDOT-based brain imaging measure-
ments following the given guidelines. While this study provides
a statistical approach to assess test-retest reliability of fNIRS
measurements, its understanding and guidelines of ICCs are

Table 11 Results of Akaike information criterion (AIC)/Bayesian
information criterion (BIC) in the model selection.

Two-way random
ANOVA model

Two-way mixed
ANOVA model

Task AIC BIC AIC BIC

Win 57 60.56 54.86 58.43

Lose 83.19 86.75 81.88 85.44
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applicable to other neuroimaging modalities. Better comprehen-
sion of ICCs will help neuroimaging researchers to choose
appropriate ICC models, perform accurate reliability assessment
of measurements, and make optimal experimental designs
accordingly.
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