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Abstract. An optimized approach to nonlinear iterative reconstruction of magnetic resonance imaging (MRI)–
guided near-infrared spectral tomography (NIRST) images was developed using an L-curve-based algorithm for
the choice of regularization parameter. This approach was applied to clinical exam data to maximize the recon-
structed values differentiating malignant and benign lesions. MRI/NIRST data from 25 patients with abnormal
breast readings (BI-RADS category 4-5) were analyzed using this optimal regularization methodology, and the
results showed enhanced p values and area under the curve (AUC) for the task of differentiating malignant from
benign lesions. Of the four absorption parameters and two scatter parameters, the most significant differences
for benign versus malignant were total hemoglobin (HbT) and tissue optical index (TOI) with p values ¼ 0.01 and
0.001, and AUC values ¼ 0.79 and 0.94, respectively, in terms of HbT and TOI. This dramatically improved the
values relative to fixed regularization (p value ¼ 0.02 and 0.003; AUC ¼ 0.75 and 0.83) showing that more differ-
entiation was possible with the optimal method. Through a combination of both biomarkers, HbT and TOI, the
AUC increased from 82.9% (fixed regulation ¼ 0.1) to 94.3% (optimal method). © 2015 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.20.5.056009]
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1 Introduction
Magnetic resonance imaging (MRI)-guided near-infrared spec-
tral tomography (NIRST) has been developed at just a few insti-
tutions, but has the potential to add molecular information to the
spatial maps of MR imaging of the breast, and thereby increases
the specificity of contrast-enhanced MRI exams.1,2 In this im-
aging modality, the NIRST data measured at nine distinct
wavelengths (ranging from 660 to 950 nm) and clinical MRI
images are simultaneously acquired. Through model-based
image recovery, the intrinsic biophysical composition of tissue
can be estimated in terms of the concentrations of total hemo-
globin (Hbt) and oxyhemoglobin, and the percentages of water
and lipids.3–5 Additionally, the ultrastructural cellular density
and size ensemble associated with the extracellular matrix and
subcellular constituents of breast tissue can be interrogated from
the NIRST scattering spectrum. These parameters are spatially
recovered according to anatomical regions identified from seg-
mentation of the clinical breast MRI exams into regions of adi-
pose, fibroglandular, and suspicious tissues.6,7

NIRST image recovery8 is nonlinear and ill-posed and has
been the subject of many years of research.9–11 Reconstruction
of the MRI/NIRST images requires the inversion of the Jacobian
matrix, which encodes the spatial sensitivity to relative changes
in the absorbing and scattering parameters of all locations for

each source and detector pair. A widely used approach to solve
the inverse problem is the Newton-Raphson technique regular-
ized by a modified Levenberg–Marquardt (LM) algorithm.12,13

Using segmented regions fromMRI dramatically reduces the ill-
conditioning of the problem to the point where it is overdeter-
mined if the optical properties of only three regions are recov-
ered (adipose, fibroglandular, and lesion). Nonetheless, the
diffuse propagation of NIRS light in tissue still generates a
poorly conditioned matrix that requires inversion. By regulariz-
ing the matrix to be inverted, amplification of the effects of
measurement noise on the inversion is reduced, although the
resulting solution is modified. Thus, the choice of regularization
value is of great importance and has been studied by many
researchers.10,14 High regularization values smooth the spatial
modes contained in the resulting images and may yield inad-
equate contrast recovery of the real NIRS parameters, whereas
low regularization values do not sufficiently inhibit the noise
effects from being amplified in the inversion process. Imple-
mentation of a method to automate the choice of regularization
is critical for patient imaging.15–18 While methods to choose this
parameter are automatically well established in computational
studies, little investigation of how the selection influences the
diagnostic performance of the imaging method in actual practice
has been reported. In this study, optimization of the regulariza-
tion parameter based on L-curve analysis was pursued in clinical
MRI/NIRST imaging with the specific goal of retrospectively
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maximizing the discrimination between known malignant and
benign breast scans.14

A classically defined L-curve optimization algorithm was
developed for regularization parameter selection during image
reconstruction of data from 25 patients collected in a clinical
study of women with breast abnormalities (BI-RADS category
4-5) of unknown diagnosis at the time of the imaging exam. The
methodology was also used to study NIRST reconstruction with
either amplitude data or both amplitude and phase data acquired
with a multichannel 100 MHz frequency-domain NIR spectros-
copy system. The performance of the optimal regularization was
compared to fixed regularization in this setting of differentiating
malignant from benign breast abnormalities. To the best of our
knowledge, this study represents the first time the effects of
regularization have been investigated in MRI-guided NIRST
based on a relatively large dataset of clinical exams with the
goal of optimizing task-based discrimination.

2 Methods

2.1 Human Subject Imaging

The imaging protocol for human subject examination was
approved by the Committee for the Protection of Human
Subjects at Dartmouth College and at Xijing Hospital in Xi’an,
China. Breast exams from a total of 25 patients with ACR 4 and
5 breast abnormalities were evaluated. Within these 25 patients,
the breast abnormalities were pathologically confirmed as 16
being cancer and 9 as being benign conditions, respectively.

2.2 Imaging System and Instrumentation

The details of the NIRST system have been reported in a pre-
vious publication.7 Light sources consisting of six intensity-
modulated (100 MHz) and three continuous-wavelength (CW)
laser diodes cover the wavelength range of 660–950 nm for
estimating the four main chromophores of oxyhemoglobin,
deoxyhemoglobin, water, and lipid in the breast. A set of 15
photomultiplier tube (PMT) detectors (H9305-3, Hamamatsu)
recorded FD measurements at wavelengths shorter than 850 nm,
and 15 silicon photodiode (PD) detectors (C10439-03, Hama-
matsu) acquired CW data in the longer wavelength range
(900–950 nm). The output of the PD module was directly
coupled into a 16-bit 64-channel multifunction data acquisition
(DAQ) board (NI-PCI 6031E, NI), while the output of each
PMT was heterodyned to low frequency, and then amplified to
be sampled by the same DAQ board at 4 kHz for FD measure-
ments and 1 kHz for CW measurements. A mechanical switch
multiplexed the laser sources and detectors to 16 different posi-
tions, yielding a total of 240 (16 × 15) measurements at each
wavelength. A set of 16 MRI-compatible optical fiber bundles
delivered source light to the tissue and collected the resulting
signal transmissions. The complete system was controlled and
automated through custom LABVIEW software. One complete
set of measurements using all nine wavelengths was acquired in
12 min. The fibers were held on the breast through a specially
designed triangular interface which matched well to most breast
sizes for single plane imaging. For coregistering the optical im-
aging plane to MR images, fiducial markers were placed at the
end of each fiber bundle. The plane of optical imaging was
selected by the radiologist and nurse attendant according to the
suspicious region in the breast which was diagnosed by conven-
tional imaging prior to the NIRST/MRI exam session, and later

confirmed by postoperative pathology. MRI scans and optical
measurements were simultaneously performed. No interference
between the two imaging modalities was evident.

2.3 Magnetic Resonance Imaging–Guided
Near-Infrared Spectral Tomography
Parameter Recovery

2.3.1 Light propagation model

Breast MR images were processed and data reconstructed using
NIRFAST software,19,20 an open source platform developed at
Dartmouth. Here, the propagation of photons was approximated
by the diffusion equation based on the diffusive nature of pho-
tons in biological tissues when elastic scattering dominates
absorption, and the source–detector separation is greater than
several scattering mean free paths. Calculation of the diffusion
model frequency-domain data then follows from

−∇ · DðrÞ∇Φðr;ωÞ þ ðμaðrÞ þ iω∕cÞΦðr;ωÞ ¼ Qoðr;ωÞ;
(1)

where an isotropic source, Q0, with source frequency ω at posi-
tion r delivers light through turbid media. Here,Φ represents the
fluence rate at position r observed at frequency ω. Also, μaðrÞ is
the optical absorption coefficient and DðrÞ is the optical diffu-
sion coefficient, which is defined as

DðrÞ ¼ 1

3½μaðrÞ þ μ 0
sðrÞ�

; (2)

where μ 0
sðrÞ is the reduced scattering coefficient. From Eq. (1),

the fluence rate is calculated based on the optical properties iter-
atively estimated via model inversion during which the differ-
ence between measured data and the model solution of light
propagation through the medium is minimized by adjusting
the desired optical properties. The initial estimates of NIRST
properties are obtained by assuming the tissue is homogeneous
and fitting the data to the model, a process which has historically
provided a reasonable starting point for the image reconstruction
algorithm.

2.3.2 Model inversion

The optical properties are recovered during the model inversion
through a modified-Tikhonov minimization, which is often used
to stabilize ill-conditioned linear systems of equations. The
objective equation used to minimize can be written as

χ2 ¼
�XNM

i¼1

ðΦM
i −ΦC

i Þ2 þ λ
XNN
j¼1

ðμj − μ0Þ2
�
; (3)

where ΦM
i and ΦC

i represent the measured and calculated data,
respectively. NM is the number of measurements, and NN rep-
resents the number of optical parameter estimates. μ0 symbol-
izes the initial estimates of NIRS properties in the tissue
obtained from the homogeneous fit. Here, λ is the regularization
parameter which balances the relative magnitudes of the two
parts of the objective function— the data-model mismatch is
represented by the first term, and the difference between the cur-
rent estimates of optical properties and the initial starting values
is expressed by the second term. A Newton-type LM procedure
is utilized to produce the iterative update equation
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ðJTJ þ λ̄IÞ−1JTδΦ ¼ δμ; (4)

where J is the Jacobian matrix and I is the identity matrix. The
update vector, δμ ¼ μi − μ0, is obtained from the data-model
mismatch, δϕ, in each iteration. Note that the ill-conditioned
Hessian matrix, JTJ, is stabilized by adding the regularization
term 2 � λI. Also, the Jacobian matrix can be constructed using
amplitude data or both amplitude and phase data. The implica-
tions of this difference are further investigated in this paper, the
choice of which depends on the detectors available for spectro-
scopic imaging. While amplitude and phase data would appear
to provide a more complete sampling of the tissue, significant
hardware benefits occur when using only amplitude data for
spectroscopy, as will be discussed.

2.3.3 Implementation of spatial priors

Reduction of the recovered parameter space, μ, into a smaller
number of larger regions segmented from MRI scans is
known as encoding hard-prior information into the inversion.11

In this study, the NIRST solutions were obtained with a three-
dimensional image reconstruction algorithm21 and prior infor-
mation extracted from the coregistered breast MR images.
Here, the assumption was made that the segmented regions
from MRI—adipose, fibroglandular, and suspected tumor—
had relatively homogeneous NIRS properties, and the goal of
MRI/NIRSTwas to recover the corresponding region-based val-
ues. Additionally, spectral constraints were applied in the inver-
sion through prior knowledge of the shapes of the absorbers’
spectra and a presumed model for the elastic scattering spec-
tra22,23 to directly recover values for hemoglobin, deoxyhemo-
globin, water, lipids, and scattering properties in each
segmented breast region.

2.4 Optimization of Regularization using L-Curve

A common approach to selecting the regularization parameter, λ,
is to use a fixed empirical number based on prior tissue-phantom
studies, and to apply this value to data acquired from patient
exams. In this study, an L-curve approach was used to find
the optimal regularization parameter.15,16 The L-curve is a para-
metric plot of the L-2 norm of the data-model mismatch ρðλÞ
versus the difference between optical properties of two iterations
ηðλÞ, where
ρðλÞ ¼ Jδμ − δΦ; (5)

ηðλÞ ¼
XNN

i¼1

ðμj − μ0Þ2: (6)

In other words, ρðλÞ and ηðλÞ represent the model-data error
and spatial prior error, respectively, each of which is being mini-
mized during the model inversion. With a relatively small λ, ρðλÞ
dominates the objective function, and a lower model error is
expected at the cost of a larger prior error, and vice-versa for
the case of large λ. Plotting ρðλÞ versus ηðλÞ for a range of λ
illustrates the trade-off between these two types of errors,
which typically exhibit an L-shaped curve. The corner of the
L-curve is commonly regarded as the optimal regularization16

because it minimizes the two error terms. In this study, the
L-curve method was applied to determine the optimal regulari-
zation at each iteration.

Figure 1(a) outlines the sequence for optimization of regu-
larization based on L-curve analysis at each iteration. To
begin, prior error, which is the difference in optical property sol-
utions between two iterations, is plotted versus model error over
a range of discrete regularization values from 0.001 to 100.
Figure 1(b) shows a typical L-curve at the first iteration of image
reconstruction for a patient with a malignant breast abnormality.
Here, the prior error, ηðλÞ, is defined as the difference of the sum
of squared reconstructed optical parameters between the first
iteration and initial estimate. The model-data mismatch, ρðλÞ,
depicts the model error in the first iteration. When regularization
increases, the model error increases and prior error decreases.
Next, constrained regions are selected. In the range of regulari-
zation values from 0.001 to 0.02, the behavior of the prior error
versus model error does not show a linear relationship because a
small regularization results in unstable solutions in the ill-con-
ditioned inverse problem. Once the constrained regions are
selected, the L-curve can be fitted through least squares to slopes
of mv and mh for vertical and horizontal regions, respectively,
and a point on the L-curve with a maximal second derivative can
be obtained. If this L-metric is larger than a threshold, an opti-
mal regularization is assigned as the point which is closest to the
intersection of the two fitting lines. Otherwise, the fitting at this
iteration is discarded, and the optimal regularization value from
the previous iteration is retained. The algorithm is repeated for
each iteration until the stopping criterion for image reconstruc-
tion is satisfied.

2.5 Image Reconstruction

The combined CW/FD data acquisition provides amplitude and
phase recordings from FD measurements involving six wave-
lengths, and amplitude data from CW measurements involving
three wavelengths. Using the amplitude and phase data from the
six wavelengths, the absorption and scattering coefficients at

Fig. 1 (a) Flowchart outlining the sequence for the optimization algo-
rithm. (b) The L2 norm of the prior property error versus L2 norm of the
model error creates the L-curve of values for each regularization
parameter values from 0.001 to 100. The optimization algorithm is
implemented at each iteration, and optimal regularization parameter
from previous iteration is used once the L metric falls behind the
threshold.
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each wavelength were estimated from homogeneous fitting to
obtain the initial estimates of oxyhemoglobin (HbO), deoxyhe-
moglobin (Hb), water, lipid, scattering amplitude (SA), and scat-
tering power (SP). Using the anatomical information provided
by the MR images, computational meshes were created for the
whole breast consisting of three regions composed of adipose,
fibroglandular, and suspected tumor tissue. Each region was
assumed to have uniform optical properties, and the absorption
and scattering parameters were estimated for all three regions.
From the recovered chromophores’ concentrations, physiologi-
cally relevant parameters were calculated, including total hemo-
globin HbT¼HbOþHb, oxygen saturation StO2 ¼ HbO∕HbT,
and tissue optical index TOI ¼ HbT ×Water∕Lipid. Optical
property contrast, defined as the ratio of the suspected tumor
to background (adipose) properties, was used to differentiate
malignant from benign abnormalities. Amplitude data (Ampl)
and both amplitude and phase data (Ampl/Ph) were used for
optical image reconstruction, respectively, to assess the relative
performance of the two forms of data for the diagnostic task
evaluated here (discriminating malignant from benign regions
of interest).

2.6 Statistical Analysis

A Student’s t test was used to determine whether malignant from
benign lesions could be differentiated given the clinical exam
data. Significance was achieved at the 95% confidence interval
using a two-tailed distribution. To evaluate differences in differ-
entiation of malignant versus benign lesions, receiver-operating
characteristic (ROC) curve analysis was carried out by sweeping
the threshold across the parameter space and estimating the sen-
sitivity and specificity for detection of malignant versus benign
breast scans. Area under the curve (AUC) is traditionally desired

to be as close to unity as possible for the optimum test
statistic.24,25

3 Results
Posthoc analysis performed using Tukey’s HSD test revealed
significant differences between optical property contrast when
using a fixed regularization of 1 compared to using a fixed regu-
larization of 0.1 (p < 0.001), and using a fixed regularization of
1 compared to optimal regularization (p < 0.05).

Figure 2 shows the recovered images of HbT, StO2, water,
lipid, SA, and SP of a patient with a biopsy-confirmed breast
malignancy. The tumor-to-adipose contrasts of HbT, StO2,
water, lipid, SA, and SP were found to be 1.2, 1.1, 1.3, 1.6,
1.4, and 1.02, respectively. A fixed regularization parameter of
0.1 was used through the image reconstruction procedure for
this patient.

Figure 3 shows the tumor-to-adipose contrast in HbT versus
regularization for benign and malignant patients when images
were estimated from amplitude data only, and box plots of
HbT contrast in the two diagnostic groups for fixed regulariza-
tion parameters of either 0.1 or 1, respectively. Compared to the
malignant group, the HbT contrast was less sensitive to variation
in regularization in the benign group, especially over the range
of values from 0.01 to 0.2. Larger separation or difference in
mean HbT contrast, between the malignant and benign groups
resulted from the lower regularization of 0.1, even though less
variation occurred within the same groups with a higher regu-
larization of 1, although a statistically significant difference
existed between the means of the malignant and benign groups
with p values < 0.05 in either case.

Figure 4 shows the L-curves for the first three iterations dur-
ing optical image reconstruction of a patient with a malignant

Fig. 2 Images from a 33-year-old patient with a 11 × 21 × 14-mm3 biopsy-confirmed invasive ductal car-
cinoma (IDC) in her right breast. (a) Noncontrast T1 MRI with tumor location indicated (arrow);
(b) Reconstructed images for total hemoglobin (HbT), (c) oxygen saturation (StO2), (d) water,
(e) lipid, (f) scattering amplitude (SA), and (g) scattering power (SP) is overlaid on the MR scan. The
value of each parameter in the adipose region is suppressed for clarity of visualization.
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breast abnormality. The same range of regularization values
(0.001 to 100) was used to plot the L-curve at each iteration.
Both the range of model error and prior error decrease with
an increasing number of iterations. Optimization of regulariza-
tion was implemented using the algorithm outlined in Fig. 1(a);
the optimal point is marked by a red asterisk in the first two
iterations and had values of 0.18 and 0.22, respectively. At
the third iteration, the L-curve metric was below the threshold,
and an optimal regularization could not be found using the same
process. Instead, the regularization value for the third iteration
was set to be the same as used in the second iteration, namely
0.22. The L-curves of the optical data acquired from most
patient exams exhibited similar behaviors. The number of
patient datasets which had an optimal regularization based on
L-curve analysis was 22, 12, and 0 for the first three iterations.
The average optimal regularization for the first and second iter-
ations was 0.21 and 0.24, respectively. After three iterations,
none of the exam data had an L-curve with a metric higher than
the threshold.

The number of iterations used in the reconstruction was also
an important factor. In Fig. 5(a), the projection error, which rep-
resents the residual of the inversion equation, is plotted on a log
scale as a function of the number of iterations and decreases with
an increasing number of iterations. The largest decrease in the
projection error occurred at the first iteration, which is typical
behavior for a Newton-type iterative method. The change in the
projection error by the ninth iteration was relatively small,
resulting in convergence of the tumor-to-adipose contrast as
shown in Fig. 5(b). In this study, nine iterations were chosen
as the stopping criteria for image reconstruction of all patients.

Table 1 summarizes the statistical and diagnostic results in
terms of HbT and TOI contrast using fixed regularization values
of 0.1 and 1, and optimal regularization based on L-curve analy-
sis. Data from 22 patient exams which had an optimal regulari-
zation in the first iteration were included in the analysis. A
significant difference (p < 0.05) was found in HbT contrast
for malignant versus benign patients for all three regularization
selections.

Fig. 3 Tumor-to-adipose contrast in HbT versus regularization for (a) benign, and (b) malignant cases.
Circles have a regularization of 0.1, and asterisks have a regularization of 1. Box plots of contrast for the
two pathologies are shown with fixed regularizations of (c) 0.1 and (d) 1 for all patients.

Fig. 4 L-curves are shown for the first three iterations of a single case with a malignant tumor. The regu-
larization was varied from 0.001 to 100 at each iteration, and the optimal regularization was (a) 0.18,
(b) 0.22, and (c) undefined for the three iterations, respectively.
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Both amplitude and phase data were used in the image
reconstruction to see if the involvement of phase data obtained
at the six FD domain wavelengths further improved the accuracy
of the optical image reconstruction.

Figure 6 is organized the same as Fig. 3, except that the
reconstructions utilized both amplitude and phase data, and
the three clinical exams that did not have an apparent optimal
regularization value in the first iteration were excluded. In
Figs. 6(a) and 6(b), the tumor-to-adipose contrast in HbT was
plotted as a function of regularization for benign and malignant
patients, respectively. When regularization decreased, the con-
trast increased in most cases. As a result, better separation
occurred between the malignant and benign groups, although
with a higher standard deviation at the lower regularization of
0.1 as shown in Figs. 6(c) and 6(d). Here, the HbT contrast in the
benign group was more sensitive to the change in regularization
for low values when compared with the results in Fig. 2(a).
Apparently, determining an appropriate regularization for image
reconstruction using both amplitude and phase data is even more
important than when using only amplitude measurements.

We also applied the optimization algorithm (Fig. 1) during
image reconstruction with both amplitude and phase data; but,
L-curve analysis failed to find an optimal regularization. The
compromise between model error and prior error was not sig-
nificant on the L-curve at any point; hence, no optimal regulari-
zation parameter could be found that satisfied the criterion of the

optimization algorithm. One approach to improve the L-metric
might be to use separate regularization parameters for amplitude
and phase data. In practice, we found that a fixed regularization
of 2 for phase data, and an optimal regularization based on L-
curve analysis for amplitude data worked well.

Table 2 summarizes the statistical results of 22 patient exams,
in which the optimal regularization (on amplitude only, phase
fixed at 2) was compared with fixed regularization values of
0.1 and 1, when both amplitude and phase data were used in
the image reconstruction. Reconstruction using a fixed regulari-
zation of 0.1 for amplitude and 2 for phase data was compared as
well. Significant differences (p < 0.05) exist between the malig-
nant and benign groups in terms of both HbT and TOI for either
a fixed regularization of 1 or optimal regularization. Optimal
regularization provides the highest AUC for TOI (0.94) among
all the regularization choices. Meanwhile, the optimization
method still gives a relatively high AUC for HbT, without a sig-
nificant difference compared with the fourth approach. To sum-
marize, the optimization technique provides a systematic and
automated way to find the optimal regularization parameter in
each iteration, which gives the best separation between malig-
nant and benign groups in terms of recovered optical parameter
TOI. The L-curve-based optimization technique utilized in this
paper aims at finding the tradeoff between prior error and model
error in terms of Hb and deoxy-Hb, water, and lipids. As a result,
the increase of AUC for TOI is more obvious than HbT

Fig. 5 (a) Log scale of projection error versus number of iterations. (b) Tumor-to-adipose contrast in HbT
versus number of iterations.

Table 1 Comparison of statistics using fixed regularization of 0.1 and 1, and optimal regularization. Only amplitude data (AMPL) was used for
image reconstruction.

Total hemoglobin Tissue optical index

Malignant Benign P-value AUC Malignant Benign P-value AUC

AMPL λ ¼ 0.1 1.78� 0.89 0.77� 0.46 0.01a 0.83 1.34� 1.23 0.31� 0.17 0.005a 0.91

AMPL λ ¼ 1 1.08� 0.17 0.89� 0.23 0.04a 0.71 1.11� 0.23 0.79� 0.20 0.006a 0.90

AMPL optimal λ 1.46� 0.51 0.86� 0.36 0.01a 0.81 1.26� 1.08 0.43� 0.17 0.06 0.93

aSignificant difference as defined by p value < 0.05
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compared with fixed regularization, since TOI (HbT ×Water∕
Lipid) is defined such that it represents all the recovered
chromophore concentrations. Interestingly, the addition of
phase information appears to degrade the statistical performance
of the image reconstructions in the fixed regularization cases.

Instead of using a single predictor, either HbT or TOI, we
evaluated the combination of HbT and TOI as an indicator of
malignant versus benign contrast-enhancing MRI regions of
interest. Specifically, we applied both HbT and TOI as predic-
tors, and fit a logistic regression using pathology-confirmed
malignancy to obtain the outcome. The predicted score from the
logistic regression model was used to construct the ROC
curve.26 We repeated this procedure for three different regulari-
zation parameters and compared their AUCs with a bootstrap-
ping method.27 As shown in Fig. 7, under these conditions, the
optimal regularization improved the AUC (94.4%), relative to
the fixed regularizations of 0.1 (88.2%) or 1 (84.4%).

Figure 8 presents the boxplots of tumor-to-adipose contrast
for (a) HbT, (b) StO2, (c) TOI, (d) SA, and (e) SP by applying

the optimization algorithm during image reconstruction with
amplitude and phase data. HbT was the most significant indica-
tor for differentiating the malignant and benign groups, and pro-
vided the largest mean difference in tumor-to-adipose contrast in
the malignant and benign groups (1.55× versus 0.89×). A sig-
nificant difference in TOI and SP contrast was also observed.
The average contrast in both HbT and TOI was significantly
higher in the malignant group than in the benign group. No sig-
nificant difference in the StO2 contrast was found.

4 Discussion
The results presented in this paper show that the contrasts recov-
ered in both HbT and TOI were diagnostically significant, but
also depended on the choice of regularization parameter. Thus,
an objective methodology to select/identify the regularization
parameter for reconstructing data from individual patient
exams is critical for practical application of the combined
MRI/NIRST imaging approach in the clinical diagnostic setting.
Instead of applying an empirical value for every subject exam,

Fig. 6 Tumor-to-adipose contrast of HbT versus regularization for (a) benign conditions and (b) malignant
tumors. Circles have a regularization of 0.1, and asterisks have a regularization of 1. Box plots of contrast
are shown for regularizations of (c) 0.1, and (d) 1 for all patients. Both amplitude and phase data were
used in the image reconstructions.

Table 2 Comparison of statistics using fixed regularization of 0.1 and 1, optimal regularization, and fixed regularization of 0.1 for amplitude and 2
for phase. Both amplitude and phase data (AMPL/PH) were used for image reconstruction.

Total hemoglobin Tissue optical index

Malignant Benign P-value AUC Malignant Benign P-value AUC

AMPL/PH λ ¼ 0.1 1.70� 0.80 1.04� 0.49 0.06 0.74 1.30� 1.14 0.54� 0.39 0.10 0.73

AMPL/PH λ ¼ 1 1.16� 0.13 0.97� 0.21 0.02a 0.75 1.17� 0.21 0.88� 0.19 0.003a 0.83

AMPL/PH optimal λ 1.54� 0.52 0.95� 0.36 0.01a 0.79 1.13� 0.44 0.49� 0.18 0.001a 0.94

AMPL λ ¼ 0.1/PH λ ¼ 2 1.88� 0.90 0.90� 0.45 0.01a 0.83 1.53� 1.49 0.38� 0.18 0.06 0.88

aSignificant difference as defined by p value < 0.05
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the optimization algorithm sought an exam-specific regulariza-
tion parameter (or series of parameters) for image reconstruction
that was derived from the measured optical data. The optimiza-
tion algorithm developed and applied here was based on L-curve
analysis, which is widely used to stabilize ill-conditioned prob-
lems by balancing the model error with the prior error as con-
strained by the prior information. However, previous approaches
of finding the “elbow” on the L-curve have been primarily lim-
ited to theoretical or simulation studies with few efforts being
based on actual patient data. To deal with an L-curve generated
from clinical exam data, we defined a metric describing the

characteristics of the resulting L-shape, and developed an opti-
mization approach based on least-square fitting of the response.
The L-metric determined whether the L-curve was sufficient for
selecting an optimal regularization parameter, and if so, the opti-
mal value from the curve was utilized. Otherwise, the value from
the previous iteration remained. The optimization algorithm
appeared to be robust and effective in the clinical dataset we
applied. We found that the average L-metric of all exams
decreased with increasing number of iterations (although the
number of iterations was set to 9 in all cases, i.e., we did not
apply the L-metric or L-curve as a stopping criterion). Within
four iterations, the projection error and measurement noise
amplification were balanced and the contrast converged. Table 1
showed the comparisons of the diagnostic statistics resulting
from three choices of regularization parameters. Moreover,
although StO2 or scattering properties were not found to be sig-
nificant indicators when taken alone, their values when used to
form TOI contributed to the optimal indicator for differentiation
of malignant from benign lesions.

When the regularization parameter decreased, less depend-
ence in the recovered optical solution occurred with the prior
information. The prior estimate was obtained under the assump-
tion that the whole breast had the same optical properties. As a
result, higher regularization will lower the contrast between
tumor and background leading to a smaller separation in the
mean HbT and TOI contrast between the malignant and benign
diagnostic groups at a regularization of 1. On the other hand, a
high regularization also suppresses the high spatial frequency
variation in the recovered optical property distribution resulting
from measurement noise, and produced lower variation in HbT
and TOI within the malignant and benign groupings. A compro-
mise between separation of the mean value and noise driven
variability was obtained by applying the optimal regularization
approach during image reconstruction.

Fig. 7 Receiver-operating characteristic (ROC) curve for fixed regu-
larization of 1 (black) and 0.1 (blue), and optimal regularization (red),
when HbT and TOI are combined. Both amplitude and phase data
were used for image reconstruction.

Fig. 8 Box plots of the contrast for: (a) HbT, (b) StO2, (c) tissue optical index (TOI), (d) scattering power
(SA), and (e) scattering power (SP), as recovered using the optimal regularization and amplitude and
phase data. aSignificant difference.
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We also investigated the effects of optimal regularization on
the recovered optical image when both amplitude and phase data
were used (relative to only amplitude measurements). In this
case, the regularization algorithm failed to find an optimal value
based on L-curve analysis, apparently because the relative con-
tribution of phase data noise was higher than amplitude data
noise, requiring much higher regularization of the phase data.
Here, separate regularization values for phase and amplitude
data improved the resulting image outcomes. Specifically,
improvement occurred when regularization of the amplitude
data was obtained through L-curve analysis, and regularization
of the phase data was fixed at 2 (∼1 order of magnitude higher
than the value used in the amplitude regularization). With this
approach, improvement in diagnostic performance in terms of
higher AUC for both HbT and TOI occurred relative to using
fixed regularization. When the phase data were added to the
Jacobian matrix for image reconstruction, the optimal regulari-
zation (with separate but fixed phase regularization) achieved
maximal separation of the malignant from benign diagnoses
(highest AUC). Finally, the optimal regularization generated the
best AUC value (0.94) relative to the other regularization
choices considered when HbT and TOI were combined as the
diagnostic indicator (Fig. 7).

Although the best diagnostic performance occurred using
both amplitude and phase data, the three regularization appro-
aches, either fixed or optimal, were still able to separate the
malignant and benign groups in terms of HbT (p < 0.05), when
applying only amplitude data for image reconstruction. These
results suggest the possibility of simplifying the MRI/NIRS sys-
tem into one with only CW channels, which would significantly
reduce costs while not sacrificing much in terms of diagnostic
performance.

In the results presented here, data acquired in 22 out of 25
patient exams had an optimal regularization parameter identified
by L-curve analysis in the first iteration and were included in the
statistical analyses. For completeness, we compared the out-
comes of the optimization algorithm in all 25 patients in
Table 3 in terms of the p value and AUC for HbT and TOI con-
trast when applying the three regularization approaches. Both
amplitude and phase data were used for image reconstruction
in these results. For the subset of selected patients (22), optimal
regularization provided the best AUC for both TOI and HbT
relative to fixed regularization, but only for HbT when all
exam data were evaluated. Thus, the L-curve approach may
be a pragmatic way to identify which clinically acquired datasets

are reliable. NIRS data can be compromised by a number of
factors during their acquisition, such as fiber-tissue coupling
or reflections; hence, the ability to objectively and conclusively
determine which datasets will not lead to accurate spectroscopic
parameter recovery could be important in clinical practice.

5 Conclusion
In this work, a robust optimization algorithm for selection of the
regularization to be applied during image reconstruction based
on exam-specific data acquired during MRI/NIRST examination
of the breast was developed. The optical contrast values for HbT,
StO2, TOI, and scattering parameters were estimated by apply-
ing the optimization algorithm when amplitude only and both
amplitude and phase data. A statistical difference (p < 0.05)
occurred between malignant and benign groups for both absorp-
tion-derived contrasts (HbT and TOI) as well as reduced-scatter-
ing derived contrast (SP).

To the best of our knowledge, these results represent the first
time an extensive study of regularization has been conducted on
a relatively large amount of clinical breast exam data with the
MRI/NIRST multimodality imaging approach. The optimiza-
tion algorithm better differentiated malignant from benign cases
compared to a fixed regularization parameter. The best diagnos-
tic performance occurred with optimal regularization values
selected from the individual’s exam data, and when combining
HbT and TOI estimated from both amplitude and phase data as
the diagnostic indicator.
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