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Abstract. Mueller matrix polarimetry along with polar decomposition algorithm was employed for the charac-
terization of ex vivo normal and adenocarcinoma human colon tissues by polarized light in the visible spectral
range (425–725 nm). Six derived polarization metrics [total diattenuation (DT ), retardance (RT ), depolarization
(ΔT ), linear diattenuation (DL), retardance (δ), and depolarization (ΔL)] were compared for normal and adeno-
carcinoma colon tissue samples. The results show that all six polarimetric properties for adenocarcinoma sam-
ples were significantly higher as compared to the normal samples for all wavelengths. The Wilcoxon rank sum
test illustrated that total retardance is a good candidate for the discrimination of normal and adenocarcinoma
colon samples. Support vector machine classification for normal and adenocarcinoma based on the four polari-
zation properties spectra (ΔT , ΔL, RT ,and δ) yielded 100% accuracy, sensitivity, and specificity, while both DT

and DL showed 66.6%, 33.3%, and 83.3% accuracy, sensitivity, and specificity, respectively. The combination
of polarization analysis and given classification methods provides a framework to distinguish the normal and
cancerous tissues. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.20.5.056012]
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1 Introduction
Precancerous polyps initiate the majority of colon cancer,1

which is one of the major causes of cancer-related deaths.2

The detection of such precancerous polyps at an early stage,
followed by surgical removal during colonoscopy, can greatly
enhance the survival rates and patient’s quality of life. However,
the diagnosis of precancerous polyps at early stage by white
light colonoscopy is very challenging.3 Polypectomy is still con-
sidered to be a standard diagnostic technique for colon cancer,
which has its own set of shortcomings. In this technique, exci-
sion of a polyp for biopsy followed by histopathology needs
extensive examination of biopsy samples by microscope for
several morphological changes (such as nuclear and cellular
enlargement, increased variation in nuclear size and shape,
and increased concentration of chromatin4) that occur during the
development of cancer in the polyp. Therefore, the performance
of polypectomy is greatly dependent on the expertise of the
surgeon/pathologist besides its noninvasive nature. Moreover,
the excision of multi polyps and their histopathology along with
identification of clear circumferential margins during surgery
for colon cancer further complicate this procedure. Therefore,
it demands a noninvasive automated modality to overcome the
above mentioned issues.

Polarized light for cancer diagnosis is gathering increased
interest due to frequently observed contrasts in polarization
parameters between normal and malignant tissues. It has

great advantages compared to other optical techniques in signal
strength and sensitivity to cellular structures, and thus conveys
rich morphological and functional information about the bio-
logical tissue. Many studies implementing polarimetric contrasts
in various biomedical fields such as dermatology, ophthalmol-
ogy, gynecology, etc., have already been carried out. Various
dermatological diseases such as lupus lesions and malignant
moles are identified by polarimetric measurement.5,6 Jacques
et al. reported that surgical excision of skin cancers can
be guided using polarized light and developed a handheld
polarization camera for this purpose.7 Polarization images of
precancerousoral tissues in hamster cheek pouches showed con-
siderable differences in depolarization and retardance images
between normal and precancerous tissues.8 Polarized light
has been used for extraction of quantitative information about
the size of cell nuclei from imaging the human epithelial tissue.4

Shukla and Pradhan showed that depolarization power is sensi-
tive to morphological changes in the normal and dysplastic
states of epithelial cervical tissue.9 Contrast in polarization prop-
erties such as retardance, diattenuation, and depolarization has
been observed for hepatic tissue,10 connective tissue,11 cervical
precancer,12 myocardium samples,13 and gastric tissues.14

Pierangelo et al. have correlated various histological variants of
human colon tumor to depolarization using multispectral Mueller
matrix polarimetry.15,16 Robust statistical analysis along with
suitable classification of healthy and cancerous colon tissues in
conjunction with the Mueller matrix polarimetry technique is of

*Address all correspondence to: Iftikhar Ahmad, E-mail: iahmadmp@gmail.com 1083-3668/2015/$25.00 © 2015 SPIE

Journal of Biomedical Optics 056012-1 May 2015 • Vol. 20(5)

Journal of Biomedical Optics 20(5), 056012 (May 2015)

http://dx.doi.org/10.1117/1.JBO.20.5.056012
http://dx.doi.org/10.1117/1.JBO.20.5.056012
http://dx.doi.org/10.1117/1.JBO.20.5.056012
http://dx.doi.org/10.1117/1.JBO.20.5.056012
http://dx.doi.org/10.1117/1.JBO.20.5.056012
http://dx.doi.org/10.1117/1.JBO.20.5.056012
mailto:iahmadmp@gmail.com
mailto:iahmadmp@gmail.com


paramount importance for implementation of the technique at
the clinical level. Mueller matrix polarimetry is not exhausted
much with suitable statistical analysis, particularly the studies
conducted by Pierangelo et al. for colon cancer detection.

In this study, we have investigated the relative contrasts of
polarization properties (retardance, diattenuation, and depolari-
zation) for ex vivo normal and adenocarcinoma human colon
tissue samples using Mueller matrix polarimetry in the complete
visible spectral region (425–725 nm). For statistical analysis,
Wilcoxon rank sum was employed for the selection of suitable
polarimetric metrics for the classification of normal and
adenocarcinoma colon samples. We have used a support vector
machine (SVM) for classification of our data, and discussed
the sensitivity and specificity in detail. The results may have
important biomedical applications, specifically in the automated
noninvasive diagnosis of cancer.

2 Materials and Methods

2.1 Microscopic Structure of Colon Tissue

In this study, we have compared the polarimetric properties of
adenocarcinoma and normal colon tissues. Colon tissue is com-
posed of three main layers: mucosa, submucosa, and muscular-
ispropria17,18 that can be clearly seen in the microscopic image
of a normal colon tissue as shown in Fig. 1. Mucosa can be fur-
ther divided into: (a) the superficial one cell thick epithelium
layer; (b) the lamina propria, which is composed of a loose
network of collagen fibers and blood capillaries; and (c) the
muscularis mucosa, which is a thin layer of smooth muscles
and separates mucosa from submucosa. Submucosa contains
a dense network of collagen fibers, blood vessels, and lymphatic
vessels but no glands are present. Muscularis propria is com-
posed of muscular tissue and separates submucosa from serosa,
which is the inner lipid layer and contains cells that produce
lubricating fluid for friction reduction.19 Sometimes serosa is
termed as the fourth layer of colon tissue.

Approximately 90%–95% of malignant tumors of the colo-
rectal system are derived from epithelial cells, usually in the
large intestine.20 Adenocarcinomas are derived from the glandu-
lar epithelium. The main characteristic of adenocarcinoma
tissue is the significant nuclear enlargement compared to normal
tissue as observed in both light scattering spectroscopy and
morphometric measurements.19

2.2 Sample Preparation

A total of 24 colon tissue samples obtained from 24 different
patients were examined in this study. Samples were categorized
into two classes, one having 16 adenocarcinoma colon tissue
samples and the other with 8 normal colon tissue samples.
These tissue samples were either removed by biopsy or partial
colectomy. Each tissue sample was fixed in formalin, embedded
in paraffin and sliced in 3-μm thick sections using Leica micro-
tome. These tissue samples were fixed on glass slides, stained
with hematoxylin and eosin (H&E) and covered with a glass
coverslip. Polarimetric analysis was sequentially performed on
same tissue slides after their pathological evaluation.

2.3 Mueller Matrix Polarimeter

In this study, we have used a computer-controlled Mueller
matrix spectro-polarimetery system (Axometrics, Huntsville,
Alabama; schematic is shown in Fig. 2). A low-noise xenon
lamp (150 W) is used as the input light source. Any wavelength
in the range of 400–800 nm can be selected with a built-in dif-
fraction grating monochromator with an accuracy of �0.5 nm.
The light source is coupled to the polarization state generator
(PSG) via fiber-optic cable. PSG generates various desired
polarization states for sample illumination. The beam illumina-
tion diameter was 6 mm at the sample. After interacting with the
sample the light is passed through a polarization state analyzer
(PSA) which is connected to a computer.

All samples were illuminated with four different input polari-
zation states with a beam diameter of 6 mm. An average of three
measurements for each tissue sample was considered to mini-
mize the experimental fluctuation. The input polarization states
include horizontal polarization (H∶½1100�T), vertical polariza-
tion (V∶½1 − 100�T), linear þ45 deg polarization (P∶½1010�T),
and right circular polarization (R∶½1001�T). After interaction
with the sample, each polarization state was analyzed on four
different polarization states. Thus, a total of 16 combinations
were obtained. These include: HH, HV, HP, HR, VH, VV,
VP, VR, PH, PV, PP, PR, RH, RV, RP, and RR, in which
the first letters indicate the polarization states of the PSG, while
the second letter indicates the polarization state analyzed by
PSA. For example, “HV” means the incident polarization
state is horizontal (H∶½1100�T), which is analyzed onto vertical
polarized light(V∶½1 − 100�T). A Mueller matrix was con-
structed using these 16 raw measurements.10

2.4 Polar Decomposition

The input Stokes vector Si is changed to the output Stokes vec-
tor S0 by polarization transfer function of the sample which can
be written mathematically as S0 ¼ M Si, where M is the 4 × 4
Mueller matrix. The Mueller matrix contains the complete
polarimetric fingerprints of the sample in “lumped” form.
Various decomposition methods are used to individually retrieve
these polarimetric properties. Polar decomposition21 is widely
used in tissue polarimetry and is briefly discussed below.

The Mueller matrix of the sample can be expressed as the
product of three basis matrices describing the three basic
medium polarization properties as given below:

M ¼ MΔMRMD;

where MΔ is the depolarization matrix, MR is the retardance
matrix, and MD is the diattenuation matrix. The derived

Fig. 1 Microscopic image of normal colon tissue sample with 20×
objective lens showing its different layers: the mucosa (M), the sub-
mucosa (SM), and muscularis propria (MP).
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polarization parameters are expected to be influenced by the
choice of the basis matrices’ ordering due to the noncommuting
nature of matrix multiplication.22 However, recent studies have
shown that such ambiguity can be exclusively minimal under
certain conditions such as very thin samples where multiple
scattering is exceedingly negligible.23

The total depolarization ΔT and linear depolarization ΔL are
calculated from the depolarization matrix MΔ, as given

ΔT ¼ 1 −
jtrðmΔÞj

3
; ΔL ¼ 1 −

jmΔð1;1Þ þmΔð2;2Þj
2

;

where “tr” represents “trace” and mΔ is a 3 × 3 submatrix
formed by omitting the first row and column of the full matrix
MΔ

The retardance matrix MR is decoupled to calculate the total
retardance R and linear retardance δ, as given

RT¼cos−1
�
trðMRÞ

2
−1

�
;

δ¼cos−1

×
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fMRð2;2ÞþMRð3;3Þg2þfMRð3;2Þ−MRð2;3Þg2
q

−1

�
:

Total diattenuation DT and linear diattenuation DL are cal-
culated from the first row of the experimental Mueller matrix as

DT ¼ 1

m11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

12 þm2
13 þm2

14

q
; DL ¼ 1

m11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

12 þm2
13

q
:

Further details on polar decomposition can be found in the
literature.8,24

2.5 Statistical Analysis

Tissue samples were divided into normal and cancerous
groups based on histopathological reports. The nonparametric
Wilcoxon rank-sum test was utilized to compare various polari-
metric properties of the two groups with a significance level of
0.05. An SVM algorithm was employed for classification of the
samples on the basis of contrast in the polarimetric properties.25

Statistical parameters such as accuracy, sensitivity, specificity,
Mathew correlation coefficient, and F-measure were calculated
from SVM. All data processing and statistical data analysis was
performed using MATLAB®.

3 Results and Discussion
First, the experimental system is validated in the wavelength
range of 400–800 nm (25-nm step size) for the standard samples
(linear polarizer and retarder; quarter wave plate (QWP) at
632.8 nm) of known polarization properties. The Mueller matrix
for each sample was measured and then decomposed via a polar
decomposition method and corresponding polarization proper-
ties were extracted. Linear retardance of a retarder is presented
in Fig. 3(a), while linear diattenuation of the polarizer is shown

Fig. 2 Schematic diagram of Mueller matrix polarimeter consists of light source (L), polarization state
generator (PSG), sample (S), polarization state analyzer (PSA), and detector (D).

Fig. 3 (a) Linear retardance of retarder [quarter-wave plate (QWP) at 632.8 nm as indicated] and linear
diattenuation of polarizer (b) in the spectral range from 400 to 800 nm.
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in Fig. 3(b). Analyses of Fig. 3 demonstrate that the error in both
DL and δ reduces with wavelength. A maximum of 1.1% error
exists in the calculation of both linear diattenuation and retard-
ance as shown in Fig. 3. It may be noted that the error bars for
linear retardance are smaller than the symbols used in Fig. 3(b)
and are, therefore, not visible. The small error and almost no
fluctuations in the standard samples of retarder that behave
as QWP at 632.8 nm [indicated in Fig. 3(a)] and linear polarizer
validate the excellent performance of the Mueller matrix polari-
metric system and decomposition algorithms.

Comparison of total and linear depolarization for normal and
adenocarcinoma colon samples at seven different wavelengths
(425–725 nm) is illustrated in Fig. 4. Each numerical value
of the polarimetric parameter shown in Fig. 4 (and subsequent
figures) corresponds to the average value taken over all samples
belonging to normal and cancerous groups. It is noted that
both total and linear depolarizations are significantly higher for
adenocarcinoma samples as compared to normal colon tissue
samples at all investigated wavelengths. Furthermore, no over-
lap in the error bars between cancerous and normal samples
was observed. Significant contrast in depolarization suggests
that it can be exploited for discriminating adenocarcinoma
from normal tissue samples. Linear depolarization has values
similar to the total depolarization values over the entire spectral
range. This indicates that linear depolarization is the main

contributor of total depolarization for both cancerous and nor-
mal tissue samples.

The observed contrast in depolarization can be correlated
to the morphological changes that occur at histological and
molecular levels in the transition from the normal to malignant
phase of tissue. The distortion of normal microarchitecture in
cancerous tissue samples can be easily seen from the compari-
son of colon tissue images shown in Fig. (5). Contrary to normal
tissue [Fig. 5(a)], the carcinoma tissues have malignant glands
of variable sizes, nuclear stratification of the cells lining the
glands [Fig. 5(b)] and disorganized fibrous stroma Fig. 5(c).
The increase in depolarization for cancerous tissue samples
can be correlated to these alterations as reported in other
studies.26–29

Figure 6 depicts the total and linear retardance, while Fig. 7
shows the total and linear diattenuation for normal and adeno-
carcinoma tissue samples. It can be noted that both retardance
and diattenuation are higher for carcinoma tissues as compared
to normal tissues. However, the contrast in retardance for both
groups is considerably higher than diattenuation. Retardation of
polarized light in biological tissues is primarily attributed to the
optical anisotropy of the collagen fibers. The network of these
fibers is disturbed in the malignant colorectal tissue30 as illus-
trated in Fig. 5. Boosted collagen metabolism31 and enhanced
collagen density in colon adenocarcinoma have been observed

Fig. 4 Total (a) and linear (b) depolarization comparison for normal (rectangle) and adenocarcinoma
(star) colon samples at different wavelengths (425–725 nm).

Fig. 5 Images of 3-μm thick normal (a) and cancerous (b and c) colon tissues with 40× objective lens.
Malignant glands of variable sizes and disorganized fibrous stroma in (b and c) can be seen.
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by electron microscopy,32 which amplifies the retardance of
such tissues.

The positions of the average output Stoke vectors of linearly
(H, V, P, R) and circularly (RC, LC) polarized light have been
compared for both normal and cancerous tissue groups. The
results, shown in Fig. 8, provide a quantitative fingerprint of
the contrast in the polarimetric parameters of both groups.

Table 1 illustrates a typical comparison between an experi-
mental Mueller matrix and the decomposed diattenuation MD,
retardance MR and depolarization MΔ basis matrices for adeno-
carcinoma and normal colon samples at 425 nm. The diagonal
elements of the Mueller matrices are significantly higher than
the off diagonal elements indicating the high depolarization
nature of colon tissue samples. It is interesting to note that an
identical relation between the diagonal elements of the Mueller

matrix is followed by both adenocarcinoma and normal colon
tissues, i.e.,

M22 ¼ M33 > M44

for both types of samples. This is typical of the Rayleigh scat-
tering regime, where the circularly polarized incident light
is depolarized faster than linearly polarized incident light.
Further, in turbid media such as biological tissues, the depolari-
zation of incident linearly polarized light is primarily caused by
randomization of the field vector’s direction due to scattering.
Therefore, we believe that the linear depolarization in such
a situation will be the same for any orientation of the incident
linear polarization vector resulting in M22 ¼ M33 .

33 The same
trend is observed in other studies for various tissues.15,19,34

Fig. 6 Total (a) and linear (b) retardance for normal (rectangle) and carcinoma (star) tissues in the
spectral range (425–725 nm).

Fig. 7 Total (a) and linear (b) diattenuation for normal (rectangle) and carcinoma (star) tissues against
wavelength.
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In order to assess the performance of the above mentioned
polarization method to differentiate normal and adenocarcinoma
colon tissue samples, we have employed the Wilcoxon rank
sum test and SVM for classification.35 We have performed the
Wilcoxon rank sum test and SVM over all the six measured
polarization properties of each individual sample and over each
wavelength.

Figure 9 demonstrates the p values obtained by the Wilcoxon
test for six polarimetric properties at different wavelengths
with a significance level of p ≤ 0.05. Polarization properties
with p ≤ 0.05 can be utilized for discrimination of normal
and adenocarcinoma colon samples with higher than 95% con-
fidence level. From Fig. 9, we conclude that depolarization and

retardance are good candidates for the discrimination of
normal and adenocarcinoma colon samples.

We have employed SVM classifier for further investigation
to confirm the capability of the measured polarization metrics
for classification of normal and adenocarcinoma colon samples.
Different performance parameters including test accuracy,
sensitivity, specificity, Mathew’s correlation coefficient (MCC),
and F-measure were used to evaluate the performance of SVM.
SVM was individually applied over the spectrum of six polari-
zation properties and also with different combinations of these
properties for all 24 samples. Table 2 shows that SVM classified
the interrogated polarization properties very well except for total
and linear diattenuations. From Table 2, it can be noted that

Fig. 8 Comparison of positions of average output Stokes vector of linearly (a) and circularly (b) polarized
light on Poincare sphere for normal and adenocarcinoma tissues.

Table 1 Comparison of experimental Mueller matrix and its decomposed basis matrices for cancerous and normal tissues at 425 nm.

Adenocarcinoma sample Normal sample

M

2
664

1 0.003 0 −0.004
0 0.722 0.002 −0.004

−0.001 0.004 0.722 0.001
0.001 0.006 −0.001 0.669

3
775

2
664

1 0.003 −0.002 −0.002
−0.003 0.761 0.002 0.002
0.002 0.003 0.762 −0.002
−0.003 −0.008 −0.002 0.738

3
775

MD

2
664

1 0.003 0 −0.004
0.003 0.999 0 0
0 0 0.999 0

0.004 0 0 0.999

3
775

2
664

1 0.002 −0.002 −0.002
0.002 0.999 0 0
−0.002 0 0.999 0
0.002 0 0 0.999

3
775

MR

2
664
1 0 0 0
0 0.999 −0.002 −0.007
0 0.002 0.999 0.002
0 0.007 −0.002 0.999

3
775

2
664
1 0 0 0
0 0.999 0 0.006
0 0 0.999 0
0 −0.006 0 0.999

3
775

MΔ

2
664

1 0 0 0
−0.002 0.722 −0.003 −0.001
−0.001 0.003 0.722 0
0.003 0.001 0 0.669

3
775

2
664

1 0 0 0
−0.005 0.761 0.002 −0.003
0.003 0.002 0.761 −0.002
−0.001 −0.003 −0.002 0.737

3
775
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SVM provides 100% test accuracy, sensitivity, and specificity,
respectively, for four polarization properties including ΔT ,
ΔL, RT and δ. Contrarily, SVM provided 66.6% test accuracy,
33.3% sensitivity, and 83% specificity for both DT and DL.
Furthermore, MCC and F-measure were found to be unity
for the abovementioned four polarization properties, while for
DT and DL they were resulted in not-a-number as shown in
Table 2. Then, we have combined different polarization proper-
ties and applied SVM to each combination. In this case, SVM
successfully discriminated the normal and adenocarcinoma
colon samples with 100% test accuracy, sensitivity, specificity,
and with MCC and F-measure were found to be unity. From
Table 2, it is obvious that SVM fully categorized (100%) normal

and adenocarcinoma colon samples for all kinds of combina-
tions of polarization properties, even when total and linear
diattenuations were included in these combinations. The “bad
classification” of normal and adenocarcinoma colon tissue
samples by SVM for total and linear diattenuations may be
attributed to the overlapping of error bars for these polarization
properties. Overall, we conclude that the better performance of
SVM provided the confidence in the classification methodology
we have acquired for the detection of normal and adenocarci-
noma human colon tissue samples.

4 Conclusion
We have exploited polarized light for the differentiation of ex
vivo normal and adenocarcinoma human colon tissue samples
in the visible spectral range (425–725 nm). Histopathological
slides were prepared from 24 human colon tissues including
normal and adenocarcinoma samples for both pathology and
polarimetry studies. Mueller matrix analysis along with polar
decomposition method was employed for extraction and analy-
sis of polarization metrics.inline-formula Our results show that
the extracted polarization properties, namely ΔT, ΔL, DT , DL,
RT , and δ, for adenocarcinoma colon tissue samples were sig-
nificantly higher compared to the normal colon tissue samples.
The performance of the detection method was further assessed
by Wilcoxon rank sum test and SVM. Wilcoxon rank sum test
illustrated that retardance and depolarization are good candi-
dates for the discrimination of normal and adenocarcinoma
colon samples. Moreover, SVM classifier showed a better per-
formance for distinguishing normal and adenocarcinoma colon
samples for all polarization properties except DT and DL. Our
results show that SVM provided 100% accuracy, sensitivity, and
specificity for ΔT, ΔL, RT and, δ individually as well as for any
combination of above mentioned six polarization properties.
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