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Abstract. An approach to segment macular layer thicknesses from spectral domain optical coherence tomog-
raphy has been proposed. The main contribution is to decrease computational costs while maintaining high
accuracy via exploring Kalman filtering, customized active contour, and curve smoothing. Validation on 21 nor-
mal volumes shows that 8 layer boundaries could be segmented within 5.8 s with an average layer boundary
error <2.35 μm. It has been compared with state-of-the-art methods for both normal and age-related macular
degeneration cases to yield similar or significantly better accuracy and is 37 times faster. The proposed method
could be a potential tool to clinically quantify the retinal layer boundaries. © The Authors. Published by SPIE under a Creative
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1 Introduction
Optical coherence tomography (OCT)1 is an optical signal
acquisition and processing modality which is noninvasive for
imaging subsurface tissue structures. OCT can attain images
of the internal structures of the eye with higher spatial resolution
(several micrometers) than other imaging modalities, such as
ultrasound, x-ray, and magnetic resonance imaging.

Because human eyes are optically penetrable, OCT has
recently become an important technique to revolutionize the
clinical imaging of the retina.2 Quantities derived from the seg-
mented retinal layers will help doctors to understand the
anatomy of the human retina better and to quantify the extents
of abnormalities. These quantities include nerve fiber layer
(NFL), ganglion cell layer (GCL), inner plexiform layer (IPL),
inner nuclear layer (INL), outer plexiform layer (OPL), outer
nuclear layer (ONL), inner segment (IS), outer segment (OS),
and retinal pigment epithelium (RPE) (Fig. 1).

There are efforts to segment layer boundaries from OCT reti-
nal images based on grayscale variation and grayscale thresh-
olding.3–10 Unfortunately, these methods are sensitive to noise.
A Markov random field model for extracting the inner and outer
retinal borders was introduced in Ref. 11. Its extension was
adopted for optic nerve head12 and outer retinal layers’ segmen-
tation.13 The autoregressive model was shown to be more robust
than those based on grayscale thresholding and grayscale varia-
tion. Its main problem was to find reliable “seed” points for
OCT images with abnormal retina. In addition, special rules
needed to be applied for correcting errors since the model
depended on the connection of one-dimensional (1-D) points.

Active contour models were employed to segment retinal layers
including macula and optic nerve regions.14–18 However, they
required good initialization and had high computational costs.
Methods based on graph theory could accurately segment retinal
layer boundaries in normal adult eyes,19–29 but had high compu-
tational complexity. Recently, machine learning approaches,
including support vector machines,30 random forest,31 and
Bayesian artificial neural networks,32 have attracted much atten-
tion. As pointed out in Ref. 10, most of the reported segmenta-
tion methods on two-dimensional (2-D) and three-dimensional
(3-D) OCT data were not practical for general clinical use due to
their high computational costs. However, segmentation will be
particularly valuable in fields such as computer-assisted surgery,
where real-time visualization of the anatomy is a crucial com-
ponent. As quantitative changes in different retinal layers
are correlated well with changes in visual function and may
represent surrogate indicators of glaucoma,33,34 age-related
macular degeneration (AMD),35 type 1 diabetes,36 multiple
sclerosis,37–39 Alzheimer’s disease,40 and Parkinson’s disease,41

it is of great value to quantify the thickness of different retinal
layer boundaries with speed and accuracy. Our objective is to
decrease computational costs while preserving reliable and
accurate segmentation for spectral-domain OCT (SD-OCT)
images. The main points of this study are listed below.

First, Kalman filtering42 to model the correlation between
adjacent image frames is adopted, which, to the best of our
knowledge, has not yet been addressed in existing methods.
It has the advantages of avoiding the initialization of contours
from the second frame and enhancing the robustness in the pres-
ence of retinal blood vessel shades and other artifacts of motion
or uneven illumination. Second, segmentation of 2-D OCT
images is converted to 1-D positioning by exploiting the layered
structures of the retina. Finally, a customized active contour
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model with only an image energy term inspired by Jacob et al.43

is proposed to roughly localize the retina followed by smoothing
based on the Savitzky–Golay algorithms44 to yield fast and
accurate layer boundaries.

The rest of the paper is organized as follows. In Sec. 2, the
proposed macular layer boundary segmentation and measure-
ment techniques are presented. Experimental results are then
described in Sec. 3, whereas discussion and conclusion are
given in Sec. 4.

2 Proposed Method
An OCT imaging system can obtain 2-D images (i.e., B-scans,
where the number of A-scans is the width of a 2-D image) and
3-D volumes (volumetric data, containing spatially aligned
multiple B-scans). Due to the information correlation among
adjacent images, for volumetric data, the first frame and others
are addressed separately. If a volumetric data is not available, the
algorithm to process individual B-scans is the same as that to
process the first frame of a volumetric data. We will divide
Sec. 2 into eight subsections, which, respectively, deal with
image projection to get the region of interest (ROI), directional
filtering, multiresolution to estimate vitreous-NFL and IS/OS,
customized active contour model for coarse segmentation,
curve smoothing, image flattening and flatttening, Kalman

filtering, and segmentation of other layer boundaries. The fol-
lowing flowcharts outline the main steps (Fig. 2), which are,
respectively, for individual B-scans or the first frame of a volu-
metric data, and the nonfirst frame of a volumetric data.

2.1 Image Projection to Get Region of Interest

In OCT images, the data are substantially redundant in the axial
direction. Searching for the ROI is essential to decrease the com-
putational cost as well as to make the delineation more reliable.
Once the ROI is determined, the subsequent processings will be
performed within the ROI. A method of image projection is
employed to attain the ROI.

First, each row of the B-scan to be processed is projected
along the lateral direction:

EQ-TARGET;temp:intralink-;e001;326;428gðyjÞ ¼
1

M

XM−1

i¼0

fðxi; yjÞ; (1)

where fðxi; yiÞ is the grayscale of pixel ðxi; yjÞ, i and j are,
respectively, the horizontal (lateral direction) position and ver-
tical (axial direction) position, and M is the width of the image.
The highest and the second highest peaks correspond, respec-
tively, to the center line of the RPE-IS/OS complex and the

Fig. 1 Layers of a healthy retina centered at the macula.

Fig. 2 Flowcharts of the proposed method: (a) flowchart for individual B-scans or the first frame of a
volumetric data where initialization is achieved from image projection and prior knowledge and (b) flow-
chart for nonfirst frame of a volumetric data where initialization is attained from Kalman filtering.
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center line of the NFL. Here, the center line is a horizontal line
whose Y coordinate is the average Y coordinates of the corre-
sponding layer boundaries.

Second, according to prior knowledge, the distance between
the center line of RPE-IS/OS complex (center line of NFL) and
the top (bottom) border of the ROI can be determined, which has
a correlation with the height of the B-scan. That is, the distance
can be set as ρH. Here, ρ is a predefined constant and H is the
height of the B-scan. In this study, we set ρ ¼ 0.1. Figure 3
shows the derived ROI (the rectangle formed by the magenta
and yellow lines).

Note that image projection to derive the ROI is only applied
for processing individual B-scans or the first frame of a volu-
metric data. For the nonfirst frame of a volumetric data,
Kalman filtering (see Sec. 2.7) is utilized to avoid redundant
calculation of image projections frame by frame.

2.2 Directional Gaussian Filtering

The original B-scan is smoothed with 1-D Gaussian filter along
the lateral direction as the layer boundaries are almost horizontal
to suppress noise without blurring layer boundaries. Figure 4
shows the original and smoothed images along the lateral direc-
tion with the standard deviation (SD) σ being 5.0 and the mean
being 0.

2.3 Multiresolution to Estimate Vitreous-Nerve Fiber
Layer and Inner Segment/Outer Segment

The two most outstanding layer boundaries are the vitreous-
NFL and IS-OS in an SD-OCT retinal B-scan. As such, these
two boundaries could be extracted first. To be robust to noise
and reduce computational costs, a multiresolution approach is
adopted in four steps.

First, downsampling is performed. Suppose that the original
image is denoted as fH0W0

ðx; yÞ, then the downsampling is
carried out by a factor of 2 vertically to get fH1W0

ðx; yÞ.

EQ-TARGET;temp:intralink-;e002;326;617fH1W0
ðx; yÞ ¼ 1

2
½fH0W0

ðx; 2yÞ þ fH0W0
ðx; 2yþ 1Þ�: (2)

This downsampling could be performed along both the X and
Y directions:

EQ-TARGET;temp:intralink-;e003;326;554fH2W0
ðx; yÞ ¼ 1

2
½fH1W0

ðx; 2yÞ þ fH1W0
ðx; 2yþ 1Þ�; (3)

EQ-TARGET;temp:intralink-;e004;326;512fH3W0
ðx; yÞ ¼ 1

2
½fH2W0

ðx; 2yÞ þ fH2W0
ðx; 2yþ 1Þ�; (4)

EQ-TARGET;temp:intralink-;e005;326;474fH4W0
ðx; yÞ ¼ 1

2
½fH3W0

ðx; 2yÞ þ fH3W0
ðx; 2yþ 1Þ�; (5)

Fig. 3 An optical coherence tomography (OCT) retinal B-scan and its image projection, where green and
blue lines are the approximated center lines of the nerve fiber layer (NFL) and retinal pigment epithelium
(RPE)-inner segment (IS)/outer segment (OS) complex, magenta and yellow lines are the top and bottom
borders of the region of interest (ROI), respectively: (a) an original OCTmacular B-scan with colored lines
for the ROI and initialized center lines and (b) the average grayscales of all rows of Fig. 3(a).
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EQ-TARGET;temp:intralink-;e006;63;535fH4W1
ðx; yÞ ¼ 1

2
½fH4W0

ð2x; yÞ þ fH4W0
ð2xþ 1; yÞ�; (6)

EQ-TARGET;temp:intralink-;e007;63;502f42ðx; yÞ ¼ fH4W2
ðx; yÞ

¼ 1

2
½fH4W1

ð2x; yÞ þ fH4W1
ð2xþ 1; yÞ�: (7)

Second, the grayscale gradient magnitude gðx; yÞ is calcu-
lated at the coarse scale.

EQ-TARGET;temp:intralink-;e008;63;426gxðx;yÞ¼ 2f42ðx;yÞþf42ðx;y−1Þþf42ðx;yþ1Þ
−2f42ðx−1;yÞ−f42ðx−1;y−1Þ−f42ðx−1;yþ1Þ;

(8)

EQ-TARGET;temp:intralink-;e009;63;364gyðx;yÞ¼ 2f42ðx;yÞþf42ðx−1;yÞþf42ðxþ1;yÞ
−2f42ðx;y−1Þ−f42ðx−1;y−1Þ−f42ðxþ1;y−1Þ;

(9)

EQ-TARGET;temp:intralink-;e010;63;308gðx; yÞ ¼ ½g2xðx; yÞ þ g2yðx; yÞ�1∕2: (10)

Third, the two initial contours are composed of pixels whose
gradient magnitudes are maximum and the second maximum at
each column.

Finally, the edge pixels at the coarse scale are converted to
pixels of the original image by multiplying x coordinates by 4
and y coordinates by 16 to form the initial contours (Fig. 5).

Note that multiresolution for estimating vitreous-NFL and
IS/OS is only employed for individual B-scans or the first
frame of a volumetric data. For the nonfirst frame of a volumet-
ric data, Kalman filtering (see Sec. 2.7) is employed instead.

2.4 Customized Active Contour Model for Coarse
Positioning of Layer Boundaries

A customized active contour model is proposed to cater to
the layered structures in OCT macular images. An active
contour45–47 is traditionally modeled as

EQ-TARGET;temp:intralink-;e011;326;384E ¼
Z

½αðsÞEcontinuity þ βðsÞEcurvature þ γðsÞEimage�ds;
(11)

where αðsÞ, βðsÞ, and γðsÞ are weights. Econtinuity is the continu-
ity term to encourage even spacing of the contour points and
could be calculated by vi − vi−1 with vi for the i’th contour
point. Ecurvature is the curvature term to penalize rapid curve
bending and could be calculated by jvi−1 − 2vi þ viþ1j.
Eimage is the image term for the contour to be converged to
edges and could be calculated as ðgcur − gminÞ∕ðgmax − gminÞ,
with gcur, gmax, and gmin being, respectively, the gradient mag-
nitude of the current pixel, and the maximum and minimum

Fig. 5 Estimation of the two prominent boundaries from Fig. 4(a), with green line segments for vitreous-
NFL and blue for IS/OS.

Fig. 4 One-dimensional Gaussian filtering along the lateral direction: (a) an original OCT retinal B-scan
and (b) the filtered B-scan.
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gradient magnitudes of the current neighborhood. In this study,
the following constraints are imposed for each layer boundary:

1. There is only one contour point at each column.

2. At each iteration, the contour point at each column
could only move vertically, being either one pixel up
or down.

3. The contour point at each column should be adjacent
to the contour point of the previous and next columns
(eight neighbors).

With these constraints, there might be only four configura-
tion types for the three neighboring contour pixels (Fig. 6).

Here are some observations to justify the simplification of
Eq. (11).

1. There are only two cases between the two adjacent
contour points with Econtinuity being either 1 or 21∕2.

2. The curvature term Ecurvature is 0 for the horizontal and
diagonal cases, 1 for the inflectional case, and 2 for the
V-shaped case.

Equation (11) could thus be simplified to include only the
third term. In this study, the third term is defined locally to
reduce the computational cost.

EQ-TARGET;temp:intralink-;e012;63;447Eimage ¼
Xj¼kþn

j¼kþ1

fðxi; yjÞ −
Xj¼k−n

j¼k−1
fðxi; yjÞ; (12)

where k is the position of the current pixel and n is the neigh-
borhood size in the vertical direction. Figure 7 shows the derived
initial contours of vitreous-NFL and IS/OS from Eq. (12)
of Fig. 5.

2.5 Curve Smoothing

As the customized active contour model [Eq. (12)] has not taken
into account continuity and curvature terms, the derived contour
could be jagged. To make it smooth, curve smoothing is
employed.

Savitzky–Golay smoothing filters44 have been widely used
for 1-D filtering. The fundamental idea is to fit a polynomial
to the data surrounding each data point. The difference between
the general least-squares polynomial smoothing filters and the
Savitzky–Golay smoothing filters lies in the fact that the latter
introduces tables of convolution weights for the center-point,
which could substantially enhance the speed.48 In this study,
Savitzky–Golay smoothing filters are employed for curve
smoothing of the layer boundaries with the order of the poly-
nomial being 4 and a neighborhood size from 20 to 30 pixels
for different layer boundaries.

2.6 Image Flattening and Unflattening

To handle the possible deformation of layer boundaries due to
pathology, the image is flattened with respect to the extracted
layer boundary of IS/OS. Specifically, the flattening process
is carried out this way: find the maximum y coordinate of the
IS/OS layer boundary (denoted as maxy), for each column j, the
column will move (maxy − yj) downwards with yj being the y
coordinate of the IS/OS boundary pixel. In this way, the
extracted IS/OS becomes a horizontal line. Figure 8 shows
the flattened image from Fig. 9. The other six layer boundaries
are all extracted from the flattened image. The 8 layer bounda-
ries are then derived by reversing the flattening process. It
should be noted that these flattening and unflattening procedures
are only applied to individual B-scans or the first frame of a
volumetric data.

Fig. 6 Four configuration types for three adjacent contour points. (a) Horizontal, (b) inflectional,
(c) V-shaped, and (d) diagonal.

Fig. 7 Coarse segmentation of Fig. 5 using customized active contour model from Eq. (12), with green
curve for vitreous-NFL and blue curve for IS/OS.
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2.7 Kalman Filtering

As a prior knowledge, for a volumetric data, the positions of
layer boundaries in adjacent images (frames) are similar. The
coarse layer boundaries of the current frame could be estimated
from the layer boundaries of the previous frame. We employ
Kalman filtering42 to track coarse layer boundaries frame
by frame.

To approximate the layer boundaries, Kalman filter is formu-
lated as a state equation [Eq. (13)] and a measurement equation
[Eq. (14)]:

EQ-TARGET;temp:intralink-;e013;63;289ϕk ¼ Aϕk−1 þ Buk−1 þ wk ¼ Aϕk−1 þ wk; (13)

EQ-TARGET;temp:intralink-;e014;63;247zk ¼ Hϕk þ vk; (14)

where ϕ ¼
�
y
vy

�
is a 2-D vector with y being the Y coordinate

of layer boundaries and vy being the speed of adjacent frames of
the layer boundaries being tracked, wy the process noise, vk the
measurement noise, k the current frame, and k − 1 the previous

frame. A is a state transfer matrix, A ¼
�
1 dt
0 1

�
with dt being

the time interval from the previous frame to the current frame. B
is the control input matrix and will not take effect when there is
no control input (here, we suppose u ¼ 0). As there is no control
input, the velocity cannot be measured, so z ¼ zy, and
H ¼ ½ 1 0 �.

The state ϕ and variance P could be predicted as follows:

EQ-TARGET;temp:intralink-;e015;63;71ϕ−
k ¼ Aϕk−1; (15)

EQ-TARGET;temp:intralink-;e016;326;394P−
k ¼ APk−1AT; (16)

where − is for the predicted value and T is for transpose.
The correction equation is

EQ-TARGET;temp:intralink-;e017;326;346Kk ¼ P−
k H

TðHP−
k H

T þ RÞ−1; (17)

where R is the SD of the measurement noise. K will be adaptive
to R, i.e., the components of K will be smaller when R is large,
and larger otherwise.

Then, the state ϕ can be updated

EQ-TARGET;temp:intralink-;e018;326;270ϕk ¼ ϕ−
k þ KkðZ−

k −Hϕ−
k Þ: (18)

At last, the variance P can be updated

EQ-TARGET;temp:intralink-;e019;326;227Pk ¼ ðI − KkHÞP−
k : (19)

To summarize, two phases [prediction by Eqs. (15) and (16)
and updating by Eqs. (17)–(19)] of Kalman filtering are applied
to attain the state with minimum variance.

2.8 Other Boundaries Segmentation

Once the two most outstanding layer boundaries are segmented,
they can be utilized as constraints to facilitate segmentation of
other layer boundaries. Figure 10 illustrates the flowchart of
segmentation for other layer boundaries.

The segmentation of other layer boundaries consists of the
same three steps: initialization, coarse segmentation by the cus-
tomized active contour method [Eq. (12)], and curve smoothing
through the Savitzky–Golay filtering described in Sec. 2.5.

Fig. 8 Flattened image of Fig. 9 by shifting each column such that the IS/OS points lie on a horizontal
line, with green curve for vitreous-NFL and blue line for IS/OS.

Fig. 9 Contours of macular layer boundaries including vitreous-NFL and IS/OS from Fig. 7, with green
curve for vitreous-NFL and blue for IS/OS.
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There are two ways of initialization. One is to use prior
knowledge to initialize for individual B-scans or the first
frame of a volumetric data. The other layers are initialized as
follows: OS/RPE is initialized 70 μm below IS/OS, RPE-
choroid is 105 μm below OS-RPE, OPL-ONL is 105 μm above
IS/OS, INL-OPL is 105 μm above OPL-ONL, IPL-INL is
105 μm above INL-OPL, and NFL-GCL is the average of
vitreous-NFL and IPL-INL in the vertical direction from our
customized OCT imaging equipment with a 2048 × 2048

pixel sized image.
The second way of initialization is for the nonfirst frame of a

volumetric data using the Kalman filter described in Sec. 2.7, by
employing the fact that layer boundaries between consecutive
frames are similar.

3 Experiments
In this section, experiments were carried out to validate the pro-
posed method. Validation was first carried out on 21 SD-OCT
volumes with each volume from one subject was collected from
21 healthy Chinese subjects and then comparisons were made
with state-of-the-art methods for both normal and pathological
eyes with AMD using common datasets. Finally, additional
experiments were performed to vary the components of the algo-
rithm for comparison.

For each layer of a B-scan, the thickness between neighbor-
ing boundaries was computed and then the average difference in
layer thickness between the automatic and manual delineation
was calculated for quantification. The average difference in
layer thickness between two manual delineations was also cal-
culated to reflect the possible uncertainty of measuring the layer
thickness, even when done by experts.

Figure 11 showed the segmentation for a B-scan of a normal
right eye.

Figure 12 illustrated that the proposed method could handle
images with heavy noise and blood vessel artifacts.

3.1 Validation on Our Clinical Data

A customized SD-OCT system was adopted for 3-D imaging,
which used a superluminescent diode with a full-width at
half-maximum spectral bandwidth of 50 nm and a center wave-
length of 840 nm, and a linear CCD camera (Aviiva-SM2-CL-
2014, e2V) with a 14-μm pixel size operating in an 11-bit mode.

Fig. 10 Flowchart to segment other layer boundaries after IS/OS and
vitreous NFL are segmented.

Fig. 11 Segmentation of retinal layer boundaries for a normal adult: (a) retinal thickness maps covered
6 × 6 mm2 area and (b) segmentation for the 66th frame of a volumetric data, OD for oculus dexter, T for
temporal, and N for nasal.

Fig. 12 Segmentation on B-scans with (a) blood vessel artifacts and (b) heavy noise, where the original
image of (b) with small deposits of drusens was from Ref. 26.

Journal of Biomedical Optics 096014-7 September 2015 • Vol. 20(9)

Zhang et al.: Fast retinal layer segmentation of spectral domain optical coherence tomography images



The optical power of the beam on the cornea was not greater
than 750 μW. Images were obtained with a depth of 1.68 mm
and axial resolution of 3.5 μm.

A dataset consisting of 21 SD-OCT volumes (128 × 2048 ×
2048 voxels, 6 × 6 × 2.5 mm3 macular regions, and an in-plane

pixel size of 3.5 μm) with each volume from one subject was
collected from 21 healthy Chinese subjects at the Xinhua
Hospital Affiliated to Shanghai Jiaotong University School of
Medicine. One eye from each subject was selected randomly.
The protocol of the research has been approved by the Institu-
tional Review Board of the hospital. All subjects gave written
consent and provided permission for educational and scientific
purposes.

The automated detection of macular layer boundaries was
performed successfully on all the 21 volumes. For segmenting
8 layer boundaries, it took an average of 5.8 s for each
volume (128 B-scans per volume) and 95 ms for a B-scan on
a personal computer (C program running on a 3.2 GHz Intel
core i5-3470 CPU). These data were also segmented manually
by two eye specialists as the reference for comparison with
automatic segmentation.

The time distribution of the proposed method was recorded.
For segmenting a B-scan, the time (95 ms) distribution was:
image projection to get ROI (2 ms), 1-D Gaussian filter
(5 ms), multiresolution to estimate the two boundaries (5 ms),
image flattening and unflattening (3 ms), coarse segmentation
(8 ms × 8 ¼ 64 ms), and curve smoothing (2 ms × 8 ¼ 16 ms).
Here ×8 was used to process eight boundaries for each B-scan.
For processing a volumetric data without the first frame, the time
(5715 ms) distribution was: 1-D Gaussian filter (5 ms ×
127 ¼ 635 ms), Kalman filtering (1 ms × 8 × 127 ¼ 1016 ms),
coarse segmentation (2 ms × 8 × 127 ¼ 2032 ms), and curve
smoothing (2 ms × 8 × 127 ¼ 2032 ms). Here ×127 was used
to process 127 B-scans of each volumetric data without the
first frame.

Table 1 showed the absolute mean difference and SD of the
21 volumes.

Table 1 Retinal layer thickness differences in μm of 21 volumes.

Differences in retinal layer thickness

Retinal
layer

Comparison of two eye
specialists

Comparison of manual
and automatic
segmentation

Mean
difference ± SD

Max
error

Mean
difference ± SD

Max
error

NFL 3.05� 1.58 5.1 1.62� 1.20 5.4

GCL-IPL 1.86� 1.68 5.5 1.34� 1.21 5.2

INL 3.89� 2.28 6.1 1.57� 1.02 4.8

OPL 3.32� 2.70 5.5 2.03� 1.41 4.6

ONL-IS 2.87� 2.10 5.4 2.37� 1.73 5.3

OS 1.96� 1.54 4.1 1.55� 1.20 3.5

RPE 3.89� 2.10 5.6 1.75� 1.54 4.0

Total retina 3.89� 1.75 5.5 2.35� 1.32 5.5

Note: SD, standard deviation; Max, maximum; RPE, retinal pigment
epithelium; NFL, nerve fiber layer; GCL, ganglion cell layer; IPL, inner
plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer;
ONL, outer nuclear layer; OS, outer segment; IS, inner segment.

Table 2 Comparison with Ref. 23 for thickness measurement of retinal layers of 10 volumes of normal eyes. The mean and SD are all in voxels
with the voxel size being 3.23 μm.

Differences of retinal layer thickness

Retinal layer

Comparison between two
manual graders Comparison between automatic and manual segmentations

Column I
Column II

(Chiu’s method)
Column III
(proposed)

Column IV
(Chiu’s method)

Column V
(proposed)

29 B-scans 100 B-scans

Mean/SD Mean/SD Mean/SD Mean/SD Mean/SD

NFL 1.73/0.90 0.99/0.76 0.84/0.70 0.88/0.68 0.89/0.57

GCL-IPL 1.06/0.95 0.57/0.48 0.51/0.25 0.77/0.65 0.73/0.63

INL 2.22/1.30 1.07/0.87 0.93/0.48 0.98/0.74 0.83/0.55*

OPL 1.90/1.53 1.64/1.08 1.03/1.00 1.48/1.05 1.21/1.03*

ONL-IS 1.63/1.19 1.40/1.06 1.30/1.03 1.20/0.92 1.10/0.75*

OS 1.11/0.88 0.92/0.80 0.90/0.90 0.88/0.73 0.78/0.45*

RPE 2.21/1.20 0.96/0.69 0.82/0.54 0.99/0.87 0.73/0.53*

Total retina 2.22/1.00 0.92/0.83 0.80/0.71 0.94/0.82 072/0.65*

Note: * indicates significant differences.
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3.2 Comparison with a State-of-the-Art Method for
Normal Eyes

This is to compare the proposed method with the method of
Chiu et al.23 using their data and their manual segmentation
as a reference for normal eyes. The 10 volumes were acquired
by Bioptigen, Inc. (Research Triangle Park, North Carolina)
imaging systems with an axial spacing of 3.23 μm. Only 100
B-scans from the 10 volumes were manually delineated by two
experts (one junior and one senior) and the manual delineation
by the senior expert was taken as the reference, among which 29
were used for interexpert comparison.

The average times to derive the 8 layer boundaries of a
B-scan for the proposed method and Chiu’s method23 were,
respectively, 60 and 9740 ms.

The comparison results between two experts as well as
between the proposed method with Ref. 23 were summarized

in Table 2. Paired t-tests were carried out to find that there
existed a significant difference in the accuracy of INL
(p < 0.004), OPL (p < 0.007), ONL-IS (p < 0.019), OS
(p < 0.019), RPE (p < 0.0001), and total retina (p < 0.019),
while errors of the NFL and GCL-IPL did not have significant
differences.

3.3 Comparison with a State-of-the-Art Method for
Eyes with Age-Related Macular Degeneration

AMD is a primary cause of vision loss worldwide.49 To vali-
date the applicability of the proposed method to data with path-
ology, the second direct comparison was to compare the
proposed method with the method of Chiu et al.26 using their
data and their manual segmentation as a reference for AMD
patients.

Fig. 13 The segmentation for a B-scan from an age-related macular degeneration patient with serious
deformation of layer boundaries due to drusens. Red: internal limiting membrane (ILM), Cyan: IS/OS,
green: RPE drusen complex (RPEDC), blue: the outer Bruch’s membrane.

Table 3 Comparison with Ref. 26 for retinal layers of 20 volumes for patients with age-related macular degeneration. The mean and SD are all in
pixels with the pixel size ranging from 3.06 to 3.24 μm.

Comparison between two
manual graders

Comparison between automatic and manual segmentations

Chiu’s method Proposed

Pathology Quality
Volume
group

Retinal ayer
boundary

Mean error ±
SD (pixels)

Max error;
error > 5 pixels

(μm; %)

Mean
error ± SD
(pixels)

Max error;
error > 5 pixels

(μm; %)

Mean
error ± SD
(pixels)

Max error;
error > 5 pixels

(μm; %)

Drusen
(110 images)

High 1

Total retina 1.01� 0.73 13; 5.5 0.78� 0.55 17; 2.5 0.83� 0.60 17; 4.2

RPEDC 1.31� 0.99 16; 5.8 0.94� 0.67 17; 3.2 0.91� 0.56 13; 3.1

Low 2

Total retina 1.04� 0.71 22; 10.0 1.17� 0.75 22; 7.6 0.91� 0.69* 19; 6.5

RPEDC 1.43� 1.11 23; 12.5 0.90� 0.65 23; 7.8 0.84� 0.52 21; 7.3

GA
(110 images)

High 3

Total retina 1.45� 1.27 32; 12.8 1.55� 0.92 32; 11.4 1.15� 1.05* 29; 10.5

RPEDC 1.52� 1.34 31; 13.3 1.29� 1.07 28; 11.3 1.03� 1.03 23; 8.4

Low 4

Total retina 0.84� 0.73 23; 10.6 1.73� 0.94 30; 10.6 1.43� 1.21* 29; 11.7

RPEDC 1.38� 1.00 22; 13.4 0.92� 0.68 31; 7.8 0.89� 0.60 26; 7.5

Total Total retina 1.09� 0.91 32; 9.7 1.31� 0.88 32; 8.0 1.08� 0.73* 29; 8.2

RPEDC 1.41� 1.16 31; 11.3 1.01� 0.80 31; 7.5 0.92� 0.83 26; 6.6

Note: SD for standard deviation, GA for geographic atrophy, RPE drusen complex (RPEDC) for retinal pigment epithelium drusen complex, total
retinal is the distance between the inner ILM to inner RPEDC, and * for significant difference.
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In the study of Chiu et al.26 for SD-OCT images of eyes con-
taining drusen and geographic atrophy (GA), segmentation was
only performed for three retinal layer boundaries [the inner
internal limiting membrane (ILM), inner RPE drusen complex,
and outer Bruch’s membrane defined in Ref. 26 corresponded
to, respectively, vitreous-NFL, OS-RPE, and RPE-choroid in
Fig. 1]. Figure 13 showed the segmentation of a B-scan of
an AMD patient from Ref. 26.

In the Chiu’s study, 220 B-scans across 20 patients (one vol-
ume per patient) for eyes with AMD were acquired by
Bioptigen, Inc. (Research Triangle Park, North Carolina) imag-
ing systems with an axial pixel resolution ranging from 3.06 to
3.24 μm per pixel (Devers Eye Institute, 3.21 μm; Duke Eye
Center, 3.23 μm; Emory Eye Center, 3.06 μm; and the National
Eye Institute, 3.24 μm). All the SD-OCT images were manually
delineated by two certified experts (one junior and one senior)
and the manual delineation by the senior expert was taken as the
referencel all of the images were used for interexpert comparison.

The comparison results between the proposed and Ref. 26
were summarized in Table 3. Paired t-tests were carried out to
find that there existed a significant difference in the accuracy of:
total retina of drusens with low quality (p < 0.004), total retina
of GA with high quality (p < 0.0001), total retina of GA with
low quality (p < 0.032), and total retina for both the drusens and
GA images (p < 0.0001), while errors of the rest did not have
significant differences.

3.4 Additional Experiments

To see the comparative performance with respect to different
initializations for a volumetric data from the second frame
(with the subsequent processing steps unchanged), two variants
were devised: one variant to use the segmented layer boundaries
of the previous frame as the corresponding initial layer bounda-
ries of the current frame and this variant was denoted as method
A; and the other variant was to ignore the spatial correlation to
derive initial layer boundaries independently in the same way as
was done for the first frame, and this variant was denoted as
method B. Table 4 summarized the performance of the original
method and the variants.

In refining the boundary layers from coarse segmentation,
the proposed method employed a combination of the custom-
ized/simplified active contour model and Savitzky–Golay
smoothing filter. A variant was to use the full-active contour
model. To this end, the active contour model in Ref. 46 was
implemented for comparison, and this variant was denoted as
method C. The comparative performance was summarized in
Table 5.

4 Discussion and Conclusion

4.1 Sensitivity to Parameters

The parameter ρ determines the size of the ROI. We alter the ρ in
the range from 0.05 to 0.40 to yield similar segmentation accu-
racy (with the total retinal thickness showing a difference of
0.43� 0.52 μm), but different time consumption (the average
time is in the range from 71 to 116 ms). A ρ value of 0.1
seems a good trade-off between segmentation accuracy and time
consumption.

The parameter σ is related to the smoothing degree of
Gaussian filtering. As changing the σ in [1.0, 10.0] yields almost
the same segmentation, a value of 5.0 is chosen for this study.

4.2 Comparison with Existing Methods

The performance of existing methods is to be compared in terms
of computational cost and accuracy.

Segmentation of nerve fiber for a single image (with
1000 A-scans) could take as long as 62 s.14 It took 24 s to seg-
ment seven layer boundaries for a 1024 × 512 pixels’ image.5

The RPE segmentation took 8.3 min for a volume with 60
images (1024 × 1000 pixels).50 As to processing normal OCT
volumetric data, the segmentation time for RPE and vitreous-
NFL on 320 × 1024 × 138 volumetric data was 37 s,10 and
for 11 layer boundaries on 200 × 1024 × 200 volumetric data
was 70 s.22 The average computation time was 107 s∕volume
(400 × 1000 × 11 voxels) for 8 layer boundaries.23 The fastest
approach was 16 s for detecting nine layer boundaries per

Table 4 Comparison among the proposed method (using Kalman filtering), method A (replacing Kalman filtering with direct casting from the
previous frame), and method B (initializing boundary layers independently).

Average time for one B-scan
of a volumetric data (ms) Mean difference ± SD (μm)

Proposed Method A Method B Proposed Method A Method B

Our clinic data 45.3 44.2 95.2 2.35� 1.32 3.21� 2.01 2.76� 1.67

Chiu’s normal data23 32.3 31.7 60.3 2.33� 2.10 3.32� 2.57 2.83� 2.31

Chiu’s pathological data26 23.1 22.6 45.5 3.41� 2.61 4.05� 3.02 3.51� 3.03

Table 5 Comparison between the proposed method (using
customized active contour plus Savitzky–Golay smoothing filter)
and method C (using the active contour model in Ref. 46).

Average time for
one B-scan of

volumetric data (ms)
Mean difference ±

SD (μm)

Proposed Method C Proposed Method C

Our clinic data 45.3 63.2 2.35� 1.32 3.41� 2.47

Chiu’s normal
data23

32.3 44.7 2.33� 2.10 3.53� 2.76

Chiu’s pathological
data26

23.1 34.3 3.41� 2.61 4.15� 3.16
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volume (480 × 512 × 128 voxels) by a commercial system
named Topcon 3-D OCT-1000 (Topcon Medical Systems,
Oakland, New Jersey).24 The proposed method segments 8
layer boundaries within 5.8 s for a volumetric data and 95 ms
for an individual B-scan with similar spatial resolutions
(128 × 2048 × 2048 voxels), being substantially faster than
these existing methods.

Garvin et al.19,20 reported an overall mean absolute boundary
differences of 6.10� 2.90 μm19 and 5.69� 2.41 μm.20 Better
accuracies were achieved to be in the range of 3 to 4 μm, i.e.,
3.39� 0.96 μm,24 3.04� 2.65 μm,23 and 3.38� 4.09 μm.31

The proposed method yields a comparable maximum absolute
boundary difference of 2.35� 1.32 μm (Table 1). As these
accuracies are from the segmentation of different data, it is
inherently difficult to judge which method yields the best accu-
racy, as the segmentation accuracy depends on other factors in
addition to segmentation method, such as imaging type [time-
domain OCT (TD-OCT), or SD-OCT], the imaging quality, and
axial and lateral resolutions.

We have tried to make direct comparisons using common
datasets with existing methods.

On the common dataset with normal eyes,23 the proposed
method has been compared with Chiu’s method.23 From
Table 2, it can be seen that the proposed method yields similar
accuracy to that of Ref. 23 (all the quantities of the proposed
method have a smaller average error than Ref. 23 for the 29
scans, and seven out of the eight quantities of the proposed
method have a smaller average error than Ref. 23 for the 100
B-scans), and all the mean differences of the proposed method
were smaller than the mean difference of the two references
from the two eye specialists. For the segmentation of 8 layer
boundaries of 100 normal B-scans from Ref. 23, the proposed
method has a significantly higher accuracy than Ref. 23 for INL,
OPL, ONL-IS, OS, RPE, and total retina, while errors of NFL
and GCL-IPL do not have significant differences. The proposed
method is 162 (9740/60) times faster than Chiu’s method23 to
derive the 8 layer boundaries of a B-scan.

On the common dataset of patients with AMD,26 the pro-
posed method has been compared with Chiu’s method.26

From Table 3, it could be seen that the proposed method yields
similar segmentation accuracy to that of Ref. 26 for the patho-
logical data (9 out of 10 quantities of the proposed method have
a smaller average error than Chiu’s method26). For the segmen-
tation of three layer boundaries of 110 B-scans with drusens and
110 B-scans with GA,26 the proposed method has a significantly
higher accuracy than Ref. 26 for the total retina of drusens with
low quality, total retina of GA with high quality, total retina of
GA with low quality, and total retina for both the drusens and
GA images, while errors of the rest do not have significant
differences. For these pathological data, the proposed method
is 37 (1700/45) times faster than Chiu’s method26 to derive
the three layer boundaries of a B-scan.

4.3 Advantages

The recent evolution of OCT from the time domain to the spec-
tral domain has substantially increased imaging speed and made
the acquisition of volumetric data with a huge number of bytes
feasible. Therefore, fast and automatic segmentation of layers
and thickness measurement for OCT data has become increas-
ingly more important than ever. Our purpose is to minimize
processing time while maintaining reliable segmentation results.
The proposed method has the following advantages.

1. Fast. The average time cost of the proposed method to
extract 8 layer boundaries is 5.8 s for volumetric data
and 95 ms for a B-scan, while existing methods will
take several minutes.10 The low computational cost
can be attributed mainly to the framework of the pro-
posed method: image projection to initialize the two
most prominent layers (RPE-IS/OS and NFL), 1-D
Gaussian filtering along lateral direction instead of
2-D Gaussian filtering, approximating the RPE-IS/
OS and NFL based on grayscale gradient magnitude
at low spatial resolution (one 16th of the original Y
and quarter of the original X), customized active con-
tour model (only calculating grayscale difference
along the lateral direction) to refine the layer bounda-
ries, Savitzsky–Golay smoothing with precalculated
weights, and Kalman filtering with a low order
(2 × 2) matrix manipulation to initialize layer bounda-
ries from previous frame for volumetric data.

2. Accurate. For both normal eyes and eyes with AMD,
the proposed method yields similar or higher accuracy
as compared with the state-of-the-art methods23

(Table 2) and Ref. 26 (Table 3). This could be ascribed
to the core components of the proposed method:
employment of prior knowledge to derive ROI,
Kalman filtering to perform well even in the presence
of heavy noise and artifacts, and customized active
contour plus Savitzsky–Golay smoothing to balance
between converging to edges and smoothness.

3. Being able to handle pathologies. According to our
methodology, the pathology will only influence the
initialization of layer boundaries of the first frame
of a volumetric data, as the initialization of layer boun-
daries of subsequent fames will be cast from the pre-
vious frame. Due to their edge prominence, the
virtreous-NFL and IS/OS could be extracted irrespec-
tive of pathologies. To get rid of the influence of a pos-
sible deformation of layer boundaries due to
pathologies for any individual B-scan or the first
frame of a volumetric data, the image is flattened
such that the extracted IS/OS boundary is a horizontal
line, and the other six layer boundaries will be seg-
mented from the flattened image by taking the hori-
zontal line of IS/OS as the first basis with
subsequently extracted layer boundaries being pos-
sibly used as bases for those layer boundaries to be
extracted from. The method has been validated on
pathological eyes with drusens and GA to perform
well (Fig. 13 and Table 3).

4.4 Contributions and Limitations

From Table 4, it can be found that initialization of layer boun-
daries through Kalman filtering could yield more accurate seg-
mentation than the direct casting and independent initialization.
As a matter of fact, this feature of Kalman filtering may be
employed for initialization of other structures of volumetric
data, such as the brain from 3-D computed tomography or mag-
netic resonance images once the brain from a 2-D slice is
available.
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From Table 5, it can be seen that the proposed combination of
a customized/simplified active contour model and Savitzky–
Golay smoothing is better than the active contour method46

in terms of both segmentation accuracy and computational
cost. This feature may be explored as one more option to replace
the active contour methods.

The novelties of the study are fourfold: determination of the
ROI from grayscale projection and prior knowledge, Kalman
filtering to initialize layer boundaries from the previous frame,
customized active contour for coarse delineation of layer boun-
daries, and curve smoothing with precalculated weights. All
these contribute to substantial reduction of computational cost
while preserving segmentation accuracy.

The study is not without limitations. In particular, this study
is focused on methodology and validation has only been carried
out for retinal layer boundaries in OCT images of normal eyes
and eyes with AMD. In the future, we will be handling more
pathological cases.

The proposed method is based on the assumption that the
layer boundaries are visible in the images and different layer
boundaries will not intersect. We humbly believe that the pro-
posed method will be applicable to those pathologies as long as
they will not invalidate this assumption.

Existing methods could segment different numbers of layer
boundaries (and/or surfaces), i.e., 2 boundaries (Ref. 9 with SD-
OCT for posterior retinal layers of human eyes,10 with SD-OCT
for AMD of human eyes,11 with SD-OCT for total retinal thick-
ness of human eyes,12 with TD-OCT for total retinal thickness of
human eyes,13 with TD-OCT for optic nerve head of human
eyes,14 with SD-OCT for NFL thickness of human eyes,15

with SD-OCT for optic nerve head of human eyes), 3 boundaries
(Ref. 26 with SD-OCT for AMD of human eyes), 4 boundaries
(Ref. 25 with SD-OCT for patients with retinitis pigmentosa), 5
boundaries (Ref. 4 with TD-OCT for retinal layers of human
eyes,30 with SD-OCT for retinal layers of human eyes), 6 boun-
daries (Ref. 18 with SD-OCT for intraretinal layers of rodent
eyes,29 with SD-OCT for retinal layers of human eyes), 7 boun-
daries (Ref. 5 with TD-OCT for retinal layer of human eyes,8

with TD-OCT for retinal layers of human eyes), 8 boundaries
(Ref. 23 with SD-OCT for retinal layers of human eyes,32

with TD-OCT for retinal layers of diabetic eyes), 9 boundaries
(Ref. 24 with SD-OCT for retinal layers of human eyes,31 with
SD-OCT for retinal layers of human eyes), 10 boundaries
(Ref. 17 with SD-OCT for intraretinal layers of rat retinas,28

with SD-OCT for mouse retina), and 11 boundaries (Ref. 22
with SD-OCT for retinal layers of human eyes), varying
from OCT types (TD-OCT or SD-OCT), purposes (total retinal
thickness, optic nerve head, intraretinal, outer retinal, or pathol-
ogy), and subjects (human or animal). Among the methods seg-
menting more layer boundaries than the proposed method,
Refs. 17 and 28 focused on rat (or mouse) retina, which are dif-
ferent from human retina; as to Refs. 22, 24, and 31, they
adopted Cirrus HD-OCT machines (Carl Zeiss Meditec, Inc.,
Dublin, California), Topcon 3-D OCT-1000 equipment (Topcon
Medical Systems, Oakland, New Jersey), and Spectralis OCT
system (Heidelberg Engineering, Heidelberg, Germany) respec-
tively, which are all commercial systems with better signal-to-
noise ratio than our customized system. In this study, as experts
are only able to delineate 8 layer boundaries due to image qual-
ity, we opt to segment these layer boundaries to demonstrate the
effectiveness of the methodology. We believe that the proposed
methodology could be easily extended for extraction of more

layers when the imaging quality is enhanced to be comparable
with that of existing commercial systems.

To conclude, in this paper, an approach for automatic meas-
urement of macular thickness using SD-OCT has been proposed
and validated. A quantitative evaluation has been performed on
21 volumetric data covering the usually observed variability, by
comparing the results with those obtained manually by two
experts. For segmenting 8 layer boundaries on each B-scan,
quantitative results show that the average layer boundary error
is below 2.35 μm, being smaller than the difference between two
eye experts’ manual delineations with an average processing
time of 5.8 s for a volumetric data (128 × 2048 × 2048 voxels)
and 95 ms for an individual B scan. The algorithm has been
compared with state-of-the-art methods (Refs. 23 and 26) on
a common dataset of normal eyes23 and a common dataset of
AMD patients26 to yield similar or higher accuracy (Tables 2
and 3) and is 37 times faster to derive the 8 or 3 layer boundaries
of a B-scan. The proposed method could be a potential tool to
quantify the retinal layer boundaries of normal subjects and
AMD patients from SD-OCT. In the future, we are going to
extend the methodology to more layer boundaries on one hand,
and to more eye diseases, such as diabetic macular edema,51 for
computer-assisted diagnosis on the other hand, from SD-OCT
images.
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