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Abstract. The study of flowing Brownian particles finds numerous biomedical applications, ranging from blood
flow analysis to diffusion research. A mathematical model for the correlation function of laser radiation scattered
by flowing Brownian particles measured with fiber-based optical coherence tomography (OCT), which accounts
for the effects of sample arm optics, is presented. It is shown that the parameters of an OCT optical system of any
complexity can be taken into account by using the ABCD ray tracing matrix approach. Specifically, the impact of
any optical system can be characterized by the changes in the effective beam radius, which replaces the
Gaussian beam radius in the existing mathematical models of scattered radiation. It is shown that the validity
of the developed ABCDmatrix formalism is governed by the condition that the source coherence length is much
smaller than the Rayleigh range in the sample. The predictions of the developed model are compared with pre-
viously published theories and with experimental data and agree well with the latter. © 2016 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.21.1.017002]
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1 Introduction
Statistical properties of coherent radiation scattered by an
ensemble of flowing Brownian particles and measured by opti-
cal coherence tomography (OCT) have received considerable
attention. This interest is driven by a wide range of biomedical
applications for quantitative blood flow measurements,1,2 vascu-
lar network imaging,3–6 and intracellular motility.7 In addition to
flow parameters, the scattered radiation also carries information
about diffusion properties of scattering particles, which may
potentially yield blood viscosity and thus a link to blood glucose
levels.8 Indeed, it was demonstrated recently that the determi-
nation of flow velocity and diffusivity of Brownian particles
may be possible with OCT.9

However, the relevant OCT models of scattered radiation
developed to date (e.g., Refs. 9 and 10 and citations therein)
are based on free-space solutions and do not include the param-
eters of optical system used to collect the scattered light. This is
justified only in the absence of flow, where fluctuations of scat-
tered radiation are caused by random Doppler shifts due to par-
ticle Brownian motion and do not depend on system optics.
However, it is well known that the presence of flow gives
rise to a dynamic speckle pattern,11 and its statistical properties
are different in the free space and at various planes of an imaging
optical system.12

OCT signals can be processed to yield depth-resolved
correlation functions and spectra of backscattered radiation.
Suitable OCT mathematical models can then link parameters
of Brownian motion and flow with correlation and spectral

properties of scattered radiation. Thus, depth-resolved values
of flow velocity vector components and particle diffusivity
are obtainable. Therefore, it is important to develop the math-
ematical model not only in the focal plane of an OCT optical
system, but also outside of it. Indeed, it is stressed in recent
papers13,14 that there is a lack of experimentally validated quan-
titative models for OCT measurements of flowing Brownian
particles.

We have recently developed a new analytical model for cor-
relation function and spectrum of scattered radiation to address
this need15 and to supplement/extend the previous formal-
isms.9,10 Since its applicability was limited to the case of the
so-called 4f system (distance between collimating and sample
lenses is equal to the sum of focal distances), additional
study is warranted to extend its use to other useful (arbitrary)
imaging geometries. This requires some novel derivations, as
speckle statistics are generally dependent on first-order param-
eters of the optical system (e.g., lens focal distances, limiting
diaphragm diameter, and distances between lenses12).

An ABCD matrix approach has been able to derive solution
for spatiotemporal speckle statistics for any optical system in the
case of surface scattering.16 However, to the best of our knowl-
edge, the applicability of this method to volume scattering is
yet to be examined. Although ABCD technique does not furnish
simple insights into the impact of optical system (cf, a closed-
form analytical model), it does yield a numerical solution at
any plane of an optical system consisting of any number of
lenses, mirrors, and media with different refractive indices (arbi-
trary optical properties). We thus use this approach to derive the
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correlation function of scattered radiation at the fiber-end face
plane, for a number of practical and widely used OCT-specific
sample arm geometries. The resultant model predictions are
compared with existing models and with experimental data
available in the literature.

2 Mathematical Model of Coherent Radiation
Scattered by the Flowing Brownian
Particles

Consider an OCT optical system shown in Fig. 1. The laser
beam exiting the fiber end is shaped and focused by the
ABCD optical system onto the collection of suspended flowing
Brownian particles and scattered back into the fiber. We have the
following equation for the electric field of the incident Gaussian
laser beam:
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Here r ¼ ðx; y; zÞ, Ein0 is the amplitude of incident electric field
of optical wave in the center of the laser spot at the beam waist,
w is the radius of the Gaussian beam at 1∕e amplitude level,
k ¼ 2π∕λ, λ is the wavelength in the medium, ρ is the radius
of wavefront curvature, ω is the laser beam angular frequency,
and ϕG is the Gouy phase.16 The last exponential term in Eq. (1)
is due to OCT coherent gating effect, where lc is the coherence
length of the illuminating laser and z1 is the position of scatter-
ing volume relative to beam waist. The more familiar Gaussian
form of this term is an approximation. In fact, it can be viewed as
a zeroth-order term of Hermite functions expansion17 of Fourier
transform of source laser spectral density. The modulus of
Eq. (1) gives the shape of OCT scattering volume or point
spread function.

As shown in Ref. 15, if the size of scattering volume in each
direction is considerably larger than λ∕ð2 ffiffiffi

2
p

πÞ and contains a
large number of particles, the correlation function of scattered
radiation is given by a product of two terms: one due to
Brownian motion and one due to flow. The Brownian motion
term is well known:18

EQ-TARGET;temp:intralink-;e002;326;752CsbðtÞ ¼ exp½−ð2kÞ2Ddt�; (2)

where CsbðτÞ is the temporal correlation function of scattered
radiation due to Brownian motion and Dd is the particle
diffusivity.

The contribution of flow can be obtained by generalizing the
known expression for correlation function for surface scattering
to the volumetric scattering case:19

EQ-TARGET;temp:intralink-;e003;326;664
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Z
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Here CstðτÞ is the correlation function of scattered radiation due
to translation (flow) detected at the center of fiber-end face,
x ¼ ðx; yÞ, vxy ¼ ðvx; vyÞ are the particle flow speed compo-
nents, τ is the time, incident optical field Einðx; z; τÞ is given
in Eq. (1), and Kðr;RÞ is the Green’s function of the optical
system.

In the general case of an ABCD optical system (paraxial
approximation), the Green’s function is20
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where A, B, and D are the (complex) elements of the ABCD
matrix, R ¼ ðX; ZÞ; X ¼ ðX; YÞ are the coordinates in the
plane of observation.

The integration of Eq. (3) with respect to axial variable z can
be performed easily if the variation scale of matrix elements A,
B, andD in z is much larger than the source coherence length lc.
The estimate of this scale is given in Appendix. From there, cal-
culations show that under typical OCT conditions, the scale of
matrix element B z-variation is lB ∼ zF, where zF is the Rayleigh
range of laser beam in the medium. With typical values of
medium refractive index n ¼ 1.38, wavelength λ0 ¼ 1.31 μm,
and Gaussian beam radius at the waist w0 ¼ 10 μm, we get
zF ¼ nπw2∕λ0 ¼ 330 μm, whereas typical OCT coherence

Fig. 1 OCT schematic with scattering volume shifted relative to the sample arm focal plane.
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lengths are 5 to 20 μm. The numerical estimates further show
that the matrix elements A and D have a weak dependence on z,
meaning that they can be treated as constants during the inte-
gration of Eq. (3) with respect to z as well.

The optical field Einðr; tÞ in Eq. (1) contains other z-depen-
dent terms, specifically wðzÞ, ρðzÞ, and ϕGðzÞ. As is known,16
the scale of variation of these terms is ∼zF; thus all z-dependent
terms in Eq. (3) [apart from coherence gate and ikz terms in the
incident optical field Einðr; tÞ] are changing slowly on the scale
of coherence length and can be assumed constant. The remain-
ing Gaussian integral, which contains coherence gate term, can
be evaluated in the usual way. Thus, the derivations stemming
from the proposed ABCD approach are valid provided that the
source coherence length is much smaller than the Rayleigh
range of the beam in the sample. This condition is easily realized
in most OCT systems, with the possible exceptions of highly
focussed optical coherence microscopy setups.

The procedure of integrating Eq. (3) with respect to trans-
verse variables ðx; yÞ is given in Ref. 19. The resultant normal-
ized temporal correlation function of the scattered optical field is
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is the correlation time due to Brownian motion, as follows from
Eq. (2). Further,
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is the correlation time due to dynamic speckle caused by trans-
lational flow motion, and

EQ-TARGET;temp:intralink-;e008;63;298we ¼
�4jBj2
k2w2 þ 2
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is the equivalent beam radius, with

EQ-TARGET;temp:intralink-;e009;63;243Kt ¼ Ar −
2Bi

kw2
; Kb ¼ Ai þ

2Br

kw2
: (9)

In Eq. (7), θ is the Doppler angle [between OCT imaging
direction (z-axis) and flow velocity vector v]; in Eqs. (8) and
(9), A ¼ Aþ B∕ρ, A and B are the elements of complex valued
ABCD matrix, and Ar, Ai, Br, and Bi are the real and imaginary
parts of A and B.

In Eq. (6), we used the Einstein–Stokes equation for
spherical particle diffusivity Dd ¼ kBT∕ð6πηaÞ, where kB is
the Boltzman constant, T is the absolute temperature, η is the
liquid viscosity, and a is the Brownian particle (scatterer) radius.

To interpret Eq. (5), we note that the first exponential factor is
caused by the Doppler shift due to translational flow, the second
exponential term is the contribution of Brownian motion, and the
third term is due to the dynamic speckle fluctuations caused by

translational flow. This term shows negative quadratic depend-
ence on time in the exponent, whereas the Brownian motion
term shows negative linear dependence. The physical reasons
for these are the following: the scattered optical field decorre-
lates more rapidly the faster the particles move out of scattering
volume for translational term, and move more rapidly on the
wavelength scale for Brownian motion term. Particle movement
is characterized by mean square displacement, which is equal to
2Dτ for Brownian motion along z-axis and to ðvτÞ2 for trans-
lational motion. Therefore, one can expect linear in time nega-
tive exponential term ∼ expð−2Dτ∕λ2Þ for Brownian motion
and ∼ exp½−ðvτ∕lsvÞ2� (lsv is characteristic dimension of scatter-
ing volume) for the translational motion term.

The flow term in Eq. (5), as seen via Eqs. (7)–(9), suggests
that the correlation time due to speckle fluctuations depends on
the optical system parameters (presence of matrix elements A
and B). We now evaluate the correlation function contained
in Eq. (5) for a number of practical and relevant OCT sample
arm geometries.

2.1 Correlation Functions for Several Optical
Coherence Tomography Sample Arm
Geometries

It follows from Eqs. (5), (7), (8), and (9) that the impact of the
optical system on correlation function of scattered radiation is
manifest through the equivalent beam radius we. We thus now
analyze several typical imaging geometries and evaluate the
resulting values of we.

Table 1 shows the ABCD matrices of some optical elements21

typically used in the OCT sample arms. Let us now consider the
particular geometries of sample arm optical system shown in Fig. 2.

2.1.1 Free space

In the case of free space shown in Fig. 2(a) [free-space colli-
mated illumination, detection through a fiber whose end face
is a distance (L − d) away from tissue surface], the following
equation for ABCD matrix applies:

EQ-TARGET;temp:intralink-;e010;326;329M ¼ MfsðL − dÞMintðn; 1ÞMfsðdnÞMfsðz1Þ

¼
�
1 nL − dðn − 1Þ þ z1
0 n

�
; (10)

where (L − d) is the distance between fiber-end face (observa-
tion plane) and air–medium interface, n is the medium refraction

Table 1 ABCD matrix of the optical elements.

Optical element ABCD matrix

Free space: propagation over distance z MfsðzÞ ¼
	 1 z
0 1




Thin lens, focal length f M lensðF Þ ¼
	 1 0
− 1

F 1




Gaussian diaphragm, radius q Md ðqÞ ¼
�

1 0
− 2i

kq2 1

�

Refraction at a flat interface
between media of refractive
indices n1 and n2 (direction 1 → 2)

M intðn1; n2Þ ¼
�
1 0
0 n1

n2

�
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index, d is the distance between position of air–medium inter-
face and Gaussian beam waist in the air, and z1 is the axial dis-
placement of scattering volume from the beam waist.

The meaning of each matrix in Eq. (10) is explained in
Table 1.

The resultant matrix elements from Eq. (10) are thus A ¼ 1,
B ¼ L1 ¼ nL − dðn − 1Þ þ z1, D ¼ n, and Ā ¼ 1þ L1∕ρ.
Plugging these into Eq. (8) yields the following equation for
equivalent beam radius:

EQ-TARGET;temp:intralink-;e011;63;146

1

w2
e
¼ 1

w2
þ
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kw
2L1
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2
�
1þ L1

ρ

�
2

: (11)

The individual quantities w, ρ, and L1 in Eq. (11) are z-de-
pendent; however, their combination given in Eq. (11) exhibits
a very weak dependence on z. It is not difficult to see that at

the Gaussian beam waist (z1 ¼ 0) we ≈ w. Indeed, at the
beam waist the wavefront curvature ρ ¼ ∞, so that the term
containing it vanishes; further, in the typical OCT conditions
(λ0 ¼ 1.31 μm, w0 ¼ 10 μm, and L1 ≈ L ¼ 100 mm),
ðkw0∕2L1Þ2 ¼ 0.06 mm−2, so it can be neglected when com-
pared with 1∕w2

0 ¼ 104 mm−2.

2.1.2 4f system

Figure 2(b) shows the so-called 4f system comprised two lenses.
The diaphragm radius q is equal to the collimated Gaussian
beam radius in the plane of collimating lens, provided that
Rayleigh range of the beam emerging from the fiber is much
smaller than collimating lens focal distance. The beam radius
in the plane of collimating lens in its turn is defined by the
numerical aperture/acceptance angle of the single-mode fiber.
It can also be expressed via the radius of fiber-field mode wf
as NAf ¼ λ∕ðπwfÞ. Therefore, we obtain the following equa-
tion for the radius of (Gaussian) diaphragm:

EQ-TARGET;temp:intralink-;e012;326;546q ≈ NAf · Fc ≈ λFc∕ðπwfÞ ¼ 2Fc∕ðkwfÞ ¼ 2Fs∕ðkw0Þ:
(12)

Here Fc and Fs are the focal distances of collimating and sample
lenses, respectively, wf is the fiber-mode field radius, and w0 is
the Gaussian beam waist radius.

The ABCD matrix for backscattered radiation corresponding
to this optical system can be written as
EQ-TARGET;temp:intralink-;e013;326;446

M ¼ MfsðFcÞMlensðFcÞMfsðFcÞMdðqÞMfsðFsÞMlens

× ðFsÞMfsðFs − dÞMintðn; 1ÞMfsðndÞMfsðz1Þ

¼
 
− Fc

Fs
− Fcz1

Fs
− 2inFcFs

kq2

0 − nFs
Fc

!
; (13)

where (Fs − d) is the distance between sample lens and air–
medium interface, nd is the distance between air–medium inter-
face and position of the Gaussian beam waist in the medium
[the fact that the position of Gaussian beam waist is shifted
by ðn − 1Þd in the medium relative to its position in the air
follows immediately from the analysis of complex beam param-
eter16], and z1 is the out-of-focal plane displacement of scatter-
ing volume (along the z-depth direction). Note that the resulting
matrix does not depend on distance d.

By using the A and B matrix elements given by Eq. (13) in
Eq. (8) for the equivalent beam radius (within a computational
error of ∼10−15), there results we ¼ w0∕

ffiffiffi
2

p
. This implies that

the impact of three factors [dependence on z of wðzÞ, ρðzÞ,
and matrix elements BðzÞ, ĀðzÞ ¼ Aþ BðzÞ∕ρðzÞ] cancels each
other, producing essentially no dependence on out-of-focal
plane displacement z1 for equivalent beam radius we.

Although the 4f system is seldom used in the practical OCT
systems, its analysis allows getting a simple solution for equiv-
alent beam radius and, accordingly, for the temporal correlation
function of scattered radiation. As shown below, this solution is
actually very close to the frequently used two lens imaging
system.

The analysis of other optical systems shown in Fig. 2 is per-
formed in a similar manner. Although no simple analytical
expressions are available for elements of ABCD matrices in
the configurations described in Figs. 2(c)–2(e), the numerical

Fig. 2 Geometry of the optical systems: (a) free space; (b) 4f system;
(c) two-lens optical system; (d) one-lens optical system (fiber ball and/
or GRIN lens); and (e) multiple lens optical system.
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analysis of the equivalent beam radius based on Eq. (8) is
possible for these cases as well.

3 Results and Discussion
We now compare the predictions of the developed formalism
with published theoretical models.9,10 Since OCT can yield
depth-resolved measurements of correlation function and spec-
trum of backscattered radiation, it is useful to have model pre-
dictions not only in the focal plane of the optical system, but also
at other depths as well (� several Rayleigh ranges away from
the focal plane).

Considering the results of Ref. 10 first, it is important to note
that their Gaussian beam radius is not defined explicitly; instead,

the authors are using “the inverse of 1∕e width of OCT trans-
verse resolution” denoted as ht. The transverse part of their
point spread function is of the form exp½−2h2t ðx2 þ y2Þ� ¼
exp½−2ðx2 þ y2Þ∕w2�. Thus, the definitions of w in Ref. 10
and that in our paper differ by

ffiffiffi
2

p
, since the transverse part

of PSF in our paper has the form exp½−ðx2 þ y2Þ∕w2� as per
Eq. (1). Therefore, although the results for correlation time
of scattered radiation in Ref. 10 look identical to our model
for a 4f system at the axial position z1 ¼ 0 (i.e., in the focal
plane of optical system at the beam waist), they differ by a factor
of

ffiffiffi
2

p
. For out-of-plane predictions, the difference between our

model for free space and that of Ref. 10 is caused by the impact
of wavefront curvature ρðzÞ, which is not taken into account in
Ref. 10. At z ¼ 0, ρðzÞ ¼ ∞, the term containing ρðzÞ in Eq. (1)
vanishes and the two models indeed converge at the focal plane.
This is illustrated in Fig. 3 (curve 1). Using our notations for
results of Ref. 10, one gets we ≈ w0 with z1 outside of focal
plane; the model in Ref. 10 predicts z-dependence of we corre-
sponding to Gaussian beam radius wðzÞ. As noted above, our
model for free space predicts essentially no z-dependence of
the equivalent beam radius (curve 3).

Consider next the model developed in Ref. 9. It is also based
on free-space solution of scattering problem, where wavefront
curvature of incident beam is ignored as well. The integral equa-
tion [Eq. (12)] in Ref. 9, when evaluated in the absence of a flow
velocity gradient, yields a simple analytical equation that closely
resembles Eqs. (5)–(7) of this paper, with we ¼ w∕

ffiffiffi
2

p
. The fac-

tor
ffiffiffi
2

p
in Eq. (12) of Ref. 9 is introduced empirically to account

for fiber coupling efficiency. The solution thus obtained at the
focal plane of optical system corresponds to our result for 4f
system. Similar to Ref. 10, this model predicts Gaussian
beam radius dependence of weðzÞ ¼ wðzÞ∕ ffiffiffi

2
p

; it is shown as
curve 2 in Fig. 3. As before, curve 3 shows virtual z-independ-
ence of equivalent beam radius in our model of free space given
in Eq. (11). To complete the model predictions for the selected
OCT sample arm geometries in Fig. 2, curve 4 shows z-depend-
ence of weðzÞ for the one-lens optical system formed by the

Fig. 3 Comparison of published models (curves 1 and 2) for equiv-
alent beam radius with the predictions of the model developed in this
paper (curves 3–7; see Fig. 2 for relevant optical geometries). 1—the
model of Ref. 10; 2—the model of Ref. 9; 3—free-space prediction of
Eq. (11) of this paper; 4—one-lens imaging geometry for lensed fiber;
5—multiple lens optical system; 6–4f geometry; and 7—two-lens
optical system.

Table 2 Parameters of optical systems used in calculations in Fig. 3.

Fiber-mode field
radius wf (μm)

Lens focal distance, ball lens
radius of curvature (mm)

Relevant
distances (mm)

Medium refractive index n,
ball lens refractive index nl

Free space [Fig. 2(a)] 4.6 L ¼ 100 n ¼ 1.38

4f system [Fig. 2(b)] 4.6 Fc ¼ 18.4 Fc þ Fs n ¼ 1.38
Fs ¼ 40

Two-lens optical system [Fig. 2(c)] 4.6 Fc ¼ 18.4 L ¼ 60 n ¼ 1.38
Fs ¼ 40

One-lens optical system [Fig. 2(d)] 4.6 R ¼ 0.7 L1 ¼ 3 n ¼ 1.38

L2 ¼ 4.3 nl ¼ 1.51

Multiple lens optical system [Fig. 2(e)] 4.0 Fc ¼ 8.13 Lc;1 ¼ 54 n ¼ 1.38
F 1 ¼ F 2 ¼ 40 L1;2 ¼ 75

Fs ¼ 19 L2;s ¼ 61

For all calculations, central wavelength λ0 ¼ 1.31 μm;

Gaussian beam radius at the waist w0 ¼ 10 μm (both in air and in medium)
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lensed fiber, curve 5 corresponds to the multiple lens optical
system, curve 6 corresponds to the 4f geometry, and curve 7
is for the two-lens optical system. The difference in equivalent
beam radius weðzÞ between these latter three optical geometries
(curves 5–7) is less than 1% and therefore these curves look
indistinguishable in Fig. 3. Equation (8) was used in the calcu-
lations, with parameters of optical systems given in Table 2.
Thus, we predict essentially z-independence as one moves
above or below the OCT focal plane (possible exception is
the slight dependence exhibited by the lensed fiber system of
curve 4). This is in sharp contrast with predictions of published
models9,10 that suggest a significant z-dependence shown by
curves 1 and 2. Further, the actual beam radius values are off
by the factor of

ffiffiffi
2

p
, something that is accounted for naturally

in our model but is introduced empirically in Ref. 9.
Let us now compare the experimental data published in

Ref. 22 to the predictions of our theoretical model. It is well
known that the signal component of OCT photodetector current
is proportional to 2ReðEsE�

rÞ, where Es and Er are the back-
scattered optical and reference beam fields, respectively. Since
Er ¼ const, the correlation function of photocurrent is directly
proportional to the correlation function of its AC component.

In Ref. 22, the power spectrum of scattered radiation was
studied experimentally as a function of out-of-focal plane dis-
placement. The Gaussian beam radius w was used as the fitting
parameter in the theoretical model developed in Ref. 9. Figure 4
shows the values of equivalent beam radius wei ¼ wi∕

ffiffiffi
2

p
as a

function of out-of-focal plane (beam waist) displacement; wi are
the experimentally obtained values of Gaussian beam radius as a
fitting parameter.22 The dashed line shows the value of equiv-
alent beam radius predicted by our model: we ¼ w0∕

ffiffiffi
2

p
,

where w0 ¼ 11.8 μm is the independently measured Gaussian
beam waist radius. As seen, the predicted theoretical depend-
ence is in good agreement with the experimental data, lending
some credence to the developed formalism. The slight discrep-
ancy (theory somewhat lower than measured data) can be
explained by speckle averaging effect over the receiving aper-
ture of the fiber-end face. Conversely, the wðzÞ dependence of
the models in Refs. 9 and 10 does not agree with the experimen-
tal data.

4 Conclusions
We have developed a mathematical model based on the use of
ABCDmatrices for correlation function of optical field scattered
by flowing Brownian particles in OCT conditions. The model
takes into account the parameters of optical system used to
collect scattered radiation onto the receiving aperture. The
impact of out-of-focal plane displacement of scattering volume
is considered in detail for a number of optical systems typically
used in OCT sample arm configurations.

It is shown that the analytical expression for correlation func-
tion, which includes parameters of the optical system, has the
same structure as that in published models based on free-
space geometry, where sample arm optics are not taken into
account. When other OCT sample arm configurations are con-
sidered, the resulting difference can be described by the changes
in the equivalent beam radius. Several typically used OCT opti-
cal systems have been considered in detail, demonstrating that
the focal plane statistics stay essentially the same throughout the
OCT imaging depth. This differs significantly from the pro-
nounced z-dependence predicted by existing theories and agrees
well with published experimental data.

Appendix: Examination of the z-dependence
of the Quantities in Eq. (4) to Enable the
Integration of Eq. (3)
Considering the 4f system first, one gets the following equations
for its matrix elements from Eq. (13):
EQ-TARGET;temp:intralink-;e014;326;424

A ¼ −Fs∕Fc; B ¼ −zFs∕Fc − 2iFcFs∕kq2;

C ¼ 0; D ¼ −Fc∕Fs. (14)

Equation (14) shows that only B element depends on z.
Let us estimate the scale of variation for 1∕B [since B enters
Eq. (4) for Green’s function as 1∕B].

By putting q from Eq. (12) into equation for B in Eq. (14),
one gets

EQ-TARGET;temp:intralink-;e015;326;319B ¼ BðzÞ ¼ −
Fc

Fs

�
zþ inπw2

λ

�
¼ −

Fc

Fs
ðzþ izFÞ (15)

and

EQ-TARGET;temp:intralink-;e016;326;263

1

B
¼ Fs

Fc

1

zF

−iþ z
zF

1þ
	

z
zF



2
: (16)

Here zF ¼ πnw2∕λ0 is the Rayleigh range of the Gaussian
beam in the medium. Equation (16) shows that the z-spatial
scale of 1∕B variation is lB ∼ zF.

The numerical estimates show that for two-lens and multiple
lens optical systems, the dependence of elements A and D on
variable z is weak on the scale of coherence length and can
be safely neglected. 1∕B has approximately the same scale of
variation as for 4f system.

A similar calculation for one-lens optical system with a ball
lens spliced to the fiber shows that the spatial scale of element B
variation is given by

EQ-TARGET;temp:intralink-;e017;326;94lB1 ≈ n2l zF; (17)

Fig. 4 Equivalent beam radius as a function of out-of-focal plane dis-
placement. Circles—experimental data wei ¼ wi∕

ffiffiffi
2

p
from Ref. 22;

and dashed line—we ¼ w0∕
ffiffiffi
2

p
.
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where nl is the refractive index of the ball lens. Further, element
A here shows no dependence on z; element D has a weak
dependence on z which can be neglected if lB ≫ lc∕2, where
lc is the coherence length of the OCT source.

By putting Eqs. (1) and (4) into Eq. (3), we get the following
equation for the axial part of the integrand in Eq. (3):

EQ-TARGET;temp:intralink-;e018;63;686 exp

�
−

2

ðlc∕2Þ2
ðz − z1 − vτ∕2Þ2

�
: (18)

It follows from Eq. (18) that its point of extremum is at
z ¼ z1 þ vzτ∕2. This means that the slowly changing terms
in Eq. (4) should be evaluated at this point; they are becoming
time dependent.

Let us estimate the magnitude of time-dependent term vzτ∕2.
Since we are not interested in times exceeding the correlation
time of OCT signal, we will estimate the value of vzτc∕2,
where τc is the time corresponding to e−1 level of temporal
correlation function. We get from Eqs. (5) and (7): τc < τt <
lc∕ðvz

ffiffiffi
2

p Þ, so that vzτc∕2 < lc∕ð2
ffiffiffi
2

p Þ. This means that the
term vzτ∕2 ≪ zF and can be neglected safely.

Recapping, we show that the transverse part of Green’s func-
tion in Eq. (4), given by elements A, B, andD, has a spatial scale
of variation along z-axis ∼zF for all optical systems considered.
Therefore, evaluation of integral in Eq. (3) with respect to var-
iable z in the limit of lc∕2zF ≪ 1 can be performed by assuming
the transverse part of Green’s function is approximately constant
in z.
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