
Combining energy and Laplacian
regularization to accurately retrieve
the depth of brain activity of diffuse
optical tomographic data

Antonio M. Chiarelli
Edward L. Maclin
Kathy A. Low
Kyle E. Mathewson
Monica Fabiani
Gabriele Gratton

Antonio M. Chiarelli, Edward L. Maclin, Kathy A. Low, Kyle E. Mathewson, Monica Fabiani,
Gabriele Gratton, “Combining energy and Laplacian regularization to accurately retrieve the depth of brain
activity of diffuse optical tomographic data,” J. Biomed. Opt. 21(3), 036008 (2016), doi: 10.1117/1.
JBO.21.3.036008.



Combining energy and Laplacian regularization to
accurately retrieve the depth of brain activity of
diffuse optical tomographic data

Antonio M. Chiarelli,a Edward L. Maclin,a Kathy A. Low,a Kyle E. Mathewson,b Monica Fabiani,a and
Gabriele Grattona,*
aUniversity of Illinois, Beckman Institute, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
bUniversity of Alberta, Department of Psychology, P217 Biological Sciences Building, Edmonton, Alberta T6G 2E9, Canada

Abstract. Diffuse optical tomography (DOT) provides data about brain function using surface recordings.
Despite recent advancements, an unbiased method for estimating the depth of absorption changes and for pro-
viding an accurate three-dimensional (3-D) reconstruction remains elusive. DOT involves solving an ill-posed
inverse problem, requiring additional criteria for finding unique solutions. The most commonly used criterion is
energy minimization (energy constraint). However, as measurements are taken from only one side of the
medium (the scalp) and sensitivity is greater at shallow depths, the energy constraint leads to solutions that
tend to be small and superficial. To correct for this bias, we combine the energy constraint with another criterion,
minimization of spatial derivatives (Laplacian constraint, also used in low resolution electromagnetic tomogra-
phy, LORETA). Used in isolation, the Laplacian constraint leads to solutions that tend to be large and deep.
Using simulated, phantom, and actual brain activation data, we show that combining these two criteria results
in accurate (error <2 mm) absorption depth estimates, while maintaining a two-point spatial resolution of
<24 mm up to a depth of 30 mm. This indicates that accurate 3-D reconstruction of brain activity up to
30 mm from the scalp can be obtained with DOT. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10

.1117/1.JBO.21.3.036008]
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1 Introduction
Diffuse optical tomography (DOT) uses near-infrared light
(NIR, spectral range 650 to 950 nm) to image three-dimensional
(3-D) local changes in light absorption in brain tissue caused by
fluctuations in brain oxygenation associated with neuronal
activity.1–3 Early studies demonstrated the feasibility of detecting
these brain hemodynamic responses in vivo4,5 and typically
relied on sparse arrays of light sources and detectors placed on
the scalp surface. In such cases, the spatial resolution parallel to
the scalp surface was comparable to the source–detector distance
used and no depth information could be recovered. However, cur-
rent technology allows for high-density arrays of sources and
detectors to be placed on the scalp. When applied to high-density
optode arrays, DOT relies on multiple overlapping measurements
and has the theoretical capability of reconstructing volumetric
images of hemodynamic brain activity, greatly improving spatial
resolution.6–11

Despite these technical advances, DOT also has some limi-
tations with respect to 3-D reconstruction. Physical limitations
in image reconstruction outcomes are caused by the highly scat-
tering properties of brain tissue, with a minimum point-spread
function of ∼15 mm.12 In addition, given the size and contour
of the human head, reflectance geometry is widely used, as
sources and detectors (i.e., channels, or optodes, or source–

detector pairs) are placed on the same side of the scalp surface.
However, photon density decreases exponentially with increas-
ing depth, which translates into limitations in the sensitivity of
intensity measurements to deep absorption changes. That makes
NIR-DOT measurements hypersensitive to hemodynamic fluc-
tuations occurring in the scalp and sets a practical limit to the
maximum depth sensitivity obtainable in real measurements
(∼30 mm from the recording surface).13–15 Finally, there are
also mathematical limitations due to the highly underdetermined
system involved in the image reconstruction process (as brain
voxels greatly outnumber the recording channels).

Mathematically, 3-D reconstruction can be viewed as includ-
ing two components: building a forward model and finding
an inverse solution. The forward problem consists of estimating
a sensitivity matrix describing the way intracranial signals
(absorption changes at each location inside the head, expressed
as a vector) contribute to the data observed at each scalp channel
(light intensity changes, also expressed as a vector). The inverse
problem refers to the same general equation, in which, however,
the task is to determine the vector of intracranial phenomena that
can account for the vector of observed scalp values given a par-
ticular sensitivity matrix.

A problem with this logic is that, in principle, this sensitivity
matrix can change depending on the variations in absorption and
scattering observed at each location of the head. Thus, solving
the forward problem requires knowing the solution to the
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inverse problem (which, however, requires having first solved
the forward problem). This creates a complex circular situation
requiring, as a minimum, an iterative process for finding solu-
tions. Fortunately, most physiological changes in absorption and
scattering over time are very small (<5%), with the consequence
that the sensitivity matrix remains almost identical over time.
Assuming that this matrix is constant over time allows for
the separation of the forward and inverse problems, greatly sim-
plifying the mathematics (i.e., “linearization” of the problem).
Standard brain DOT is based on this approach.

In this paper, we will also make this assumption. Further, we
will not be concerned with how to best compute the forward
model, but we will rather focus on the issue of optimizing
inverse solutions for DOT. However, computation of inverse sol-
utions and 3-D reconstruction does require the computation of
forward solutions and sensitivity matrices. Therefore, we esti-
mated forward solutions and sensitivity maps using the finite-
element method (FEM), which is a commonly used approach.16

Even when knowing the forward solution and the sensitivity
matrix, solving the inverse problem generates significant issues.
Specifically, we need to estimate a large number of values inside
the head from a relatively small number of scalp locations
(which creates an “ill-posed” problem). Further, as mentioned,
the geometry of the recordings is unbalanced, as all optical sen-
sors are located on the surface of the head, whereas the effects
we need to estimate are all inside the head. This creates the prob-
lem of extrapolating the depth of the phenomena inside the head,
a problem that is inherently more difficult than interpolating the
position of a source occurring in between recording points
observed on the surface of the head. This unbalance generates
a risk for systematically under- or overestimating the depth of
the phenomena causing the surface effects.

The most common method to address illposedness in DOT is
the energy-regularized minimum norm solution (ER-DOT). This
algorithm favors solutions with small amplitude/energy. ER-
DOT is, in fact, consistent with the linearization of the problem
(i.e., the actual changes need to be small in order for the lineari-
zation to hold), but it results in systematic errors in depth
estimation.17,18 Specifically, ER-DOT tends to underestimate the
depth of activation due to the greater sensitivity for superficial
than for deep absorption (or scattering) changes. Hence, a small
phenomenon occurring close to the surface can approximate the
effect obtained by a much larger phenomenon occurring deep
into the medium. As the minimum norm rewards solution with
less total energy, the superficial solution is preferred.

This problem can be somewhat reduced, but not fully elimi-
nated, by changes in both the recording montage and the postpro-
cessing procedures. Changes in the montage involve increasing
the number of overlapping channels (the more the better, because
the problem will become less underdetermined) and including
longer source–detector distance recordings. However, in practice,
the number of overlapping channels is limited by instrumentation
costs, the limited extent of the scalp surface, and the dynamic
range of the detectors, whereas the maximum source–detector
distance is limited by light attenuation and detector sensitivity
(∼60 mm).12 Thus, corrective procedures are also needed to
help overcome the depth localization problem when ER mini-
mum-norm algorithms are used.

Two categories of correction algorithms have been developed
to address these issues. The first relies on a hybrid image
reconstruction method that constrains DOT solutions using
anatomical information from magnetic resonance imaging

(MRI).18–21 These methods force the solution to lie within the
brain of the subject, assume absence of superficial interference,
and generally favor estimates of absorption changes on the brain
structures closest to the scalp surface, thus not completely
addressing the shallow-depth bias.

The second category of algorithms is based on differentially
weighting the sensitivity matrix before calculating the inverse
solution so as to intentionally overestimate sensitivity to deeper
locations. However, with this approach, the inversion procedure
loses stability and/or the sensitivity matrix may become dis-
torted, complicating the estimation of the optical changes.6,22–27

Moreover, depending on the algorithm employed, additional
parameters may need to be tuned.

Another way to address the problem of shallow-depth bias in
source estimation is to change the norm used to regularize the
inverse solution so as to reflect other important constraints
(rather than minimum energy) posed by diffusion physics.
One such constraint is that the diffusion process leads to a
loss of spatial resolution as depth of the perturbation process
increases. This, in turn, leads the surface data to be more sen-
sitive to deep activity that extends in space (in other words, that
is, smoother over space) in comparison to very localized activity,
which instead changes abruptly over even small distances.
A norm that reflects this physical constraint is one that mini-
mizes the spatial gradients (i.e., discrete spatial derivatives or
Laplacians) of the brain activity to be reconstructed. As this
norm better matches the physics of the diffusion process, it
may be expected to produce a more faithful 3-D reconstruction
of the data. Unfortunately, compared to ER solutions, Laplacian
ones tend to be physically meaningless when the values within
the sensitivity map get particularly small. Thus, a combination
of energy and Laplacian minimization may provide an optimal
solution for the inverse problem.

The Laplacian minimum norm algorithm (low resolution
electromagnetic tomography, LORETA) has been widely used
for other neuroimaging techniques, like electroencephalogra-
phy (EEG) and magnetoencephalography (MEG).28–30 This
approach recognizes the fact that EEG and MEG are mediated
by a process (volume conduction) that limits their spatial reso-
lution. As such, they may not be able to detect sudden spatial
variations in activity. This problem is akin to photon diffusion,
which similarly limits the spatial resolution of DOT, albeit to
a lesser extent due to the exponential decay of light gradients
over space. As a consequence of the gradient minimization, the
LORETA approach favors solutions that are diffuse over space
(i.e., smooth), and relatively large. Note that a few large and
smooth phenomena occurring at some depth can produce effects
that are similar to those of several small superficial effects. This
contrasts sharply with the minimum-norm criterion and may be
biased toward finding deep solutions of the inverse problem.

In order to reduce bias in either direction, in this paper, we
tested a novel algorithm (ELR-DOT) combining energy and
Laplacian regularization procedures, and compared it to pre-
existing energy regularization methods on simulated and phan-
tom data. Both homogeneous slab geometry and heterogeneous
head models were employed. The feasibility of the procedure
was finally tested on actual brain activation data collected on
one subject undergoing visual stimulation varying in eccentric-
ity. The results suggest that the algorithm produces estimations
of the depth of functional activation in the brain that closely
correspond to those obtained with functional magnetic reso-
nance imaging (fMRI) in the same subject.
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2 Methods
In this paper, we report four sets of data assessing the accuracy
of depth and 3-D reconstruction obtained with different types of
inverse solutions. These data included: (a) simulated data in
which small localized perturbations in the absorption coefficient

Δμaðr⇀Þ were introduced at various depths from the surface of a
homogeneous slab medium; (b) simulated data in which small

localized perturbations in the absorption coefficient Δμaðr⇀Þ
were introduced at various depths from the surface of a realistic
head model; (c) actual data from measurements obtained in a
phantom in which a small localized absorbing object was placed
at different depths within a homogenous medium (a milk tank);
(d) actual data from a visual stimulation experiment in which the
eccentricity of visual stimulation was manipulated to generate
activity in occipital brain locations varying in depth from the
surface. In the first three cases, the accuracy of the depth and
3-D reconstruction estimates obtained with the various types
of inverse solutions was evaluated by comparing it with the
known localization and extent of the absorbing objects (simu-
lated or real). In the fourth case, the accuracy of the estimate was
evaluated by comparing optical data with fMRI data obtained in
the same experiment (considered here the gold standard among
brain imaging methods in terms of localization power).

2.1 Forward and Inverse Problems

The goal of image reconstruction (inverse problem) is the recov-
ery of properties of the investigated object for a given recording
pattern. For functional NIR DOT, the property of interest is the

optical absorption perturbation Δμaðr⇀Þ over time at each posi-

tion in space (r
⇀
) using measurements of light intensity from the

head surface, from which changes in the concentration of oxy-
and deoxyhemoglobin can be computed (provided that multiple
wavelengths are used). Previous research has shown that NIR
light propagation in highly scattering biological tissue (such
as the human head, for which the reduced scattering coefficient
is μ 0

s ≫ μa), is well approximated by the diffusion equation.31

According to this equation, the diffusion of light in tissue
depends on its baseline optical properties for each location

μaðr⇀Þ, μ 0
sðr⇀Þ. In complex media such as the head, the diffusion

model can be solved using FEM,32 in which continuous varia-
tions of optical parameters in space are approximated by discrete
changes occurring at finite nodes located at small distances from
each other. Importantly, when using FEM to solve the diffusion
equation, the optical parameters for each node have to be
known. This generates a circularity, because in order to compute
the absorption coefficient change at a particular location

Δμaðr⇀Þ, we must first know the base value of the absorption

coefficient μaðr⇀Þ for all locations in the medium, including
the one being estimated (a similar problem exists for the scatter-
ing coefficient). Thus, the problem is not linear:33 a change in
the recorded pattern due to N perturbations occurring at the
same time in different positions is not equal to the sum of
the changes in the recording pattern due to each perturbation
occurring separately. This issue is important when the perturba-
tions are large and require computing absolute optical parame-
ters. In this case, iterative processes need to be employed.
Multiple algorithms have been developed that rely on different
iterative procedures and regularizations.33–35 They are generally
applied to frequency-domain data and show promising results.

In the case of relative changes due to physiological factors,
this apparent conundrum can be solved by considering that the
changes in absorption (or scattering) related to brain activity are
small with respect to the base value (1% to 5% for oxygenation,
with the expected changes in scattering being even smaller) and
can therefore be ignored as a first approximation when describ-
ing the diffusion of light through tissue. The issue of estimating

local changes in Δμaðr⇀Þ can then be isolated from that of how
light diffuses (linearization). This means that we can assume that
the baseline optical properties of the tissue are not sufficiently
changed as a function of brain activity to require us to update the
light diffusion model to include such changes. We can therefore
estimate a light diffusion model only once without having to
iterate the process to include the effects of the changes due
to local perturbations to the basic model. This linearized
model is mathematically described by a matrix (sensitivity, or
Jacobian, matrix) describing the effects on the light intensity
measured by optodes located on the medium surface as a func-
tion of unitary absorption perturbations at any location inside the
medium (forward model):

EQ-TARGET;temp:intralink-;e001;326;529ΔOD ¼ J½μað~rÞ;μ 0
sð~rÞ�Δμað~rÞ; (1)

where ΔOD is the logarithm of the proportional change in inten-
sity due to a local variation in absorption Δμað~rÞ for each chan-
nel (i.e., optical density). Note that ΔOD is a vector of optical
density changes for each channel, and J½μað~rÞ;μ 0

sð~rÞ� is a rectangular
n ×m matrix, where n is the number of channels, m is the num-
ber of space positions considered (number of mesh nodes when
FEM is used), and Δμað~rÞ is a vector of absorption perturbations
for each location: the values for each cell of the rectangular
matrix J (also called Jacobians) are estimated using an FEM
procedure. Generally, n ≪ m.

2.2 Computation of the Forward Light Model:
Finite-Element Method

In our forward model computation, a fine mesh (maximum tetra-
hedral volume ¼ 2 mm3) was generated for FEM using the soft-
ware iso2mesh36 for both slab geometry (used for the simulated
and actual milk-tank data) and heterogeneous models of the
head (used for the simulated and actual brain imaging data).
Heterogeneous models require segmentation of a structural MR
image of the subject’s head into skull and scalp, cerebrospinal
fluid (CSF), white matter, and gray matter, which was performed
using statistical parametric mapping (SPM) functions applied to
T1 structural images.37 Baseline optical properties (absorption
parameter μa, reduced scattering μ 0

s , and refraction index η)
of the tissues at the relevant wavelengths (830 nm) were
taken from Tian and Liu.27 Given the similarities of optical prop-
erties of skull and scalp and the difficulty of separating them in
T1 images, we decided to attribute the same optical property
values to both structures. Specifically, the values were set
equal to those reported for the skull (see Table 1 for the actual
optical values used).

The FEM software NIRFAST33 was used to model light
propagation through the medium. NIRFAST was used to com-
pute the boundary data for a given optode montage when sim-
ulations were employed. Finally, NIRFAST was also used to
compute the sensitivity (Jacobian) matrices for both simulated
and real data using the adjoint method.38

Journal of Biomedical Optics 036008-3 March 2016 • Vol. 21(3)

Chiarelli et al.: Combining energy and Laplacian regularization to accurately retrieve the depth of brain. . .



2.3 Inverse Modeling: Energy, Spatially Variant, and
Laplacian Regularized Minimum Norm

The inverse problem requires solving Eq. (1) for Δμaðr⇀Þ based
on a known ΔOD (the change in optical density measured at
each channel) and J (the Jacobian matrix). However, J½μað~rÞ;μ 0

sð~rÞ�
is generally not square, and therefore cannot be inverted (gen-
erating the well-known ill-posedness of inverse problems). In
order to provide a unique and stable solution to the inverse
form of Eq. (1), further constraints need to be made (norms).
Least squares estimation and energy regularization are the
most common procedures employed (generally using the l2,

or Euclidean, norm).39 In this case, Δμaðr⇀Þ is estimated by min-

imizing the function O½Δμaðr⇀Þ�:
EQ-TARGET;temp:intralink-;e002;63;429

O½Δμað~rÞ�J½μað~rÞ;μ 0
sð~rÞ� ¼ kJ½μað~rÞ;μ 0

sð~rÞ�Δμað~rÞ − ΔODðnÞk2
þ εkΔμað~rÞk2; (2)

where ε is the energy regularization parameter.
Because the l2 norm is differentiable and convex, the prob-

lem can be solved by differentiating O½Δμaðr⇀Þ� with respect

to Δμaðr⇀Þ and setting the equation to zero. The following equa-
tion, providing a linearized image reconstruction (ER-DOT), is
then obtained:

EQ-TARGET;temp:intralink-;e003;63;306Δμað~rÞ ¼ J½μað~rÞ;μ 0
sð~rÞ�

T½J½μað~rÞ;μ 0
sð~rÞ�J½μað~rÞ;μ 0

sð~rÞ�
T þ εI�−1ΔODðnÞ;

(3)

where I is the identity matrix (here, superscript “T” indicates
matrix transposition).

Note that if ε ¼ 0, the problem simplifies to a classic least
squares solution, which would provide a 3-D reconstruction
with the highest theoretical resolution. However, in most cases,
the matrix resulting from the product J½μað~rÞ;μ 0

s ð~rÞ�J½μað~rÞ;μ 0
sð~rÞ�

T is
almost singular (i.e., the determinant is very close to zero)
and the inversion of this matrix leads to unstable results (this
practically leads to very noisy 3-D images)—hence, the need
for ε > 0. Thus, the parameter ε provides reliable numerical
results by trading spatial resolution in data fitting for stability.
The increased stability is reached by forcing the unknown to
be small.

The optimal value of ε can be found using statistical
methods40,41 or empirically. In brain DOT, ε is normally found
empirically as a value proportional to the maximum of
kJ½μað~rÞ;μ 0

s ð~rÞ�k2.12,22,23 This means that ε is tuned to a value pro-
portional to the squared Euclidean norm of the Jacobian for

the node where it is the biggest. The practical consequence
of this is that the algorithm finds solutions that minimize the
mean squared Δμaðr⇀Þ required, accounting for the observed
effects (minimum norm).

As mentioned above, the minimum norm procedure tends to
favor lower-energy superficial solutions over larger-energy deep
solutions. Several procedures have been developed to address
this issue. They mainly rely on weighting the Jacobian as a func-
tion of space. Probably the most common procedure in brain
DOT is the spatially variant regularization (SVR-DOT) intro-
duced by Culver et al.22 Thus, here, we employ the SVR-DOT

algorithm, where Δμaðr⇀Þ is estimated by minimizing the func-

tion O½Δμaðr⇀Þ�:

EQ-TARGET;temp:intralink-;e004;326;603O½Δμað~rÞ� ¼ kJ½μað~rÞ;μ 0
sð~rÞ�Δμað~rÞ − ΔODðnÞk2

þ εkWΔμað~rÞk2; (4)

and W is the SVR matrix.
The linearized image reconstruction (SVR-DOT) is obtained

as
EQ-TARGET;temp:intralink-;e005;326;519

Δμað~rÞ¼ ðWTWÞ−1J½μað~rÞ;μ 0
sð~rÞ�

T

×
h
J½μað~rÞ;μ 0

sð~rÞ�ðWTWÞ−1J½μað~rÞ;μ 0
sð~rÞ�

Tþ εI
i
−1
ΔODðnÞ.

(5)

In order to dampen the effect of decreased sensitivity to deep
phenomena, the regularization needs to be increased when
the Euclidean norm for a particular node is high and vice-
versa. In a general approach, W is a diagonal matrix equal to
the kJ½μað~rÞ;μ 0

s ð~rÞ�k for each node at position (r
⇀
). It can be

computed as

EQ-TARGET;temp:intralink-;e006;326;380W ¼ diag½J½μað~rÞ;μ 0
sð~rÞ�

TJ½μað~rÞ;μ 0
sð~rÞ��1∕2: (6)

However, this procedure tends to make the solution unstable.
In order to address this issue, a spatial regularization parameter
β needs to be introduced:

EQ-TARGET;temp:intralink-;e007;326;314W ¼ diag½J½μað~rÞ;μ 0
sð~rÞ�

TJ½μað~rÞ;μ 0
sð~rÞ� þ β�1∕2: (7)

Beta is generally chosen to be proportional to the maximum
value of kJ½μað~rÞ;μ 0

sð~rÞ�k2. Tuning the parameter using β produces a
trade-off between stability of the linear inversion and ability to
reconstruct deep phenomena.

As mentioned above, a possible alternative method to the
energy regularization procedure that is suited to correct for
the shallow-depth bias is the Laplacian regularization method.
This method may, however, introduce an opposite bias toward
deep regions of activation. Therefore, here, we introduce a com-
bination of both approaches, the ELR-DOT algorithm, in order
to overcome the issue of depth sensitivity without generating a
depth bias. With ELR-DOT, the reconstructed image Δμaðr⇀Þ is
estimated by minimizing the function O½Δμaðr⇀Þ�:

EQ-TARGET;temp:intralink-;e008;326;137O½Δμað~rÞ� ¼ kJ½μað~rÞ;μ 0
sð~rÞ�Δμað~rÞ − ΔODðnÞk2

þ εkΔμað~rÞk2 þ λkLΔμað~rÞk2; (8)

where L is the Laplacian operator, ε is the energy regularization
parameter, and λ is the Laplacian regularization coefficient.

Table 1 Optical properties for different types of tissues (830 nm
wavelength, from Tian and Liu27).

Tissue type
Absorption
(μa in mm−1)

Reduced
scattering

(μ 0
s in mm−1)

Refraction
index

Scalp and skull 0.014 0.84 1.4

CSF 0.004 0.30 1.4

Gray matter 0.019 0.67 1.4

White matter 0.021 1.01 1.4
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In the current paper, this parameter was selected based on
simulations on a slab geometry model and then used unchanged
for all other datasets. In a 3-D space and for a regular cubic grid
of nodes, the discrete Laplacian can be approximated using
Dirichlet boundary conditions, such that

EQ-TARGET;temp:intralink-;e009;63;697∇2½Δμað~rÞ� ¼ 6½Δμað~rÞ� −
X
p

Δμað~rpÞ; (9)

for each p under the constraint: kr⇀i − r
⇀
pk2 ¼ d, where ∇2 is

the Laplacian operator for the position r
⇀
i. With this definition,

matrix L is symmetric, nonsingular, and sparse.29 On the
assumption of ε > 0, the linearized image reconstruction
(ELR-DOT) is obtained as

EQ-TARGET;temp:intralink-;e010;63;592Δμað~rÞ ¼
�
Iþ λ

ε
LTL

�
−1
J½μað~rÞ;μ 0

sð~rÞ�
T

×
�
J½μað~rÞ;μ 0

sð~rÞ�

�
Iþ λ

ε
LTL

�
−1
J½μað~rÞ;μ 0

sð~rÞ�
T þ εI

�
−1
ΔODðnÞ:

(10)

To speed up computation and to reduce the number of
unknowns in the inversion algorithm, the Jacobians were
resampled into a cubic grid with a minimum interposition dis-
tance d of 5 mm using NIRFAST. With NIRFAST, the Jacobian
matrices can be resampled at any desired isovoxel resolution. A
5-mm resolution for the Jacobian was selected as an optimal
value, balancing the need for a high level of detail in the descrip-
tion of the spatial properties of the 3-D model while limiting the
illposedness of the problem. In particular, the value chosen
(5 mm) provides a spatial frequency that is beyond the Nyquist
frequency involved in the DOT reconstruction process (spatial
resolution of DOT is around 15 mm).12 For display purposes,
1-mm-voxel images were reconstructed by cubic spline interpo-
lation of Δμaðr⇀Þ in node space.

2.4 Metrics

In order to estimate the performance of the ELR-DOTalgorithm
compared to ER-DOT and SVR-DOT, several different metrics
were used. One metric estimated the stability of the algorithm
inversion independently of the recorded data. Looking at
Eqs. (3), (5), and (10), the linear inversion consists of multiply-
ing recorded data ΔODðnÞ by a matrix that we called G:

EQ-TARGET;temp:intralink-;e011;63;254Δμað~rÞ ¼ GΔODðnÞ: (11)

We decided to estimate the algorithm stability by computing
the Frobenius norm of matrix G for different regularization
parameters and different algorithms. The Frobenius norm is
computed as

EQ-TARGET;temp:intralink-;e012;63;179kGkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

Xn
i¼1

jgijj
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
traceðGTGÞ

q
: (12)

The Frobenius norm tests for the magnitude of the values of
the matrix G and, for a given forward solution, is a test of the
inverse procedure stability. When the solution is more stable,
lower values of kGkF are obtained and vice-versa.42

Other metrics considered were related to the reconstructed
images. When a single perturbation was considered, three

metrics were used. The position error (PE) was computed as
the difference between the centroid of the known position of
a perturbation and the reconstructed one, namely,

EQ-TARGET;temp:intralink-;e013;326;719PE ¼
����
P

n
i¼1 ~riΔμað~riÞP
n
i¼1 Δμað~riÞ

− ~rknown

���� at xknown; yknown;

(13)

For each Δμaðr⇀Þ > 0.5max½Δμaðr⇀Þ�, where r
⇀
known is the

known position of the perturbation, n is the number of the nodes,
and Δμaðr⇀Þ is the reconstructed absorption changes. The
constraint Δμaðr⇀iÞ > 0.5max½Δμaðr⇀Þ� was chosen in order to
dampen the effect of small noise in the PE estimation.

The estimated depth (ED) of a reconstructed perturbation
was computed as

EQ-TARGET;temp:intralink-;e014;326;584ED ¼
����
P

n
i¼1 ~ziΔμað~ziÞP
n
i¼1 Δμað~ziÞ

���� at xknown; yknown; (14)

for each Δμaðr⇀iÞ > 0.5max½Δμaðr⇀Þ�, where z is the depth coor-
dinate, xknown and yknown are the known lateral positions of the
perturbation, and n is the number of the nodes on the z axis.

In addition, the full-width half-maximum (FWHM) of the
reconstructed perturbation was computed. The average FWHM
along the three main axes is reported as

EQ-TARGET;temp:intralink-;e015;326;472FWHM ¼ FWHMxþ FWHMyþ FHWMz
3

: (15)

When two perturbations were considered, a value called
the resolution parameter (RP) was computed. RP is the ratio
between the absorption value at the midway position between
the two perturbations and the average value of absorption at
the centers of the perturbations:

EQ-TARGET;temp:intralink-;e016;326;376RP ¼
2
h
Δμa

�
~r1þ~r2

2

	i
Δμað~r1Þ þ Δμað~r2Þ

; (16)

where r
⇀
1 and r

⇀
2 are the known centroid positions of the absorp-

tion perturbations and Δμaðr⇀Þ is the reconstructed image. RP
approaches 0 when the two perturbations are clearly identified,
<1 when some level of separation exists, and >1 or more when
the reconstructed perturbations are fused together.

2.5 Simulations: Slab Geometry

In order to estimate the optimal combination of energy and
Laplacian regularization parameters, we ran a simulation
considering a homogeneous cubic medium of 100 × 100 ×
100 mm, having baseline absorption and reduced scattering
coefficients of μa ¼ 0.01 mm−1 and μ 0

s ¼ 1 mm−1, respectively.
These absorption and reduced scattering coefficients were
chosen to represent commonly accepted average values of opti-
cal properties in the NIR range43 obtained with in-vivo measure-
ments of biological tissues. A square array of optodes (minimum
source–detector distance of 15 mm) was arranged on a face of
the cube (Fig. 1). Only source–detector distances within 60 mm
were considered meaningful. A spherical absorber with a 4-mm
radius and μa ¼ 0.011 mm−1 (10% change from bulk value)
was embedded at the center of the investigation surface at
different depths (centered from 5 to 35 mm from the recording
surface). Gaussian noise amounting to 5% of the maximum
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intensity change was introduced in the simulation as an initial
step to assess the effects of noise on the DOT reconstruction
algorithm.33 Intensities were computed for each meaningful
source–detector pair for the different conditions. The optimal
energy and Laplacian regularization parameters were estimated
by minimizing the maximum PE among the different depths
considered (we required the algorithm to be accurate for all
those depths). The ELR-DOT regularization algorithm was com-
pared to ER-DOT and SVR-DOT as a function of regularization
values using the metrics Frobenius norm, PE, and FWHM.

In order to estimate the resolution capabilities of ELR-DOT,
two absorbing perturbations (radius¼ 4 mm, μa ¼ 0.011 mm−1)
were embedded at a depth of 25 mm, while the distance between
them was varied by moving their centers from 10 to 40 mm apart
(perturbation distance, PD) in 2-mm steps. The RP metric was
evaluated for each PD.

2.6 Simulations: Real-Head Geometry

The robustness of parameter-tuned ELR-DOT to changes in
geometry and baseline optical values were tested using a hetero-
geneous realistic head geometry. The head’s geometry and opti-
cal values were derived from T1-weighted MR images obtained
in five subjects who were recruited and run using procedures
approved by the University of Illinois Institutional Review
Board. The T1-weighted MR images were acquired with a
Siemens Trio® 3T scanner using a 3-D MPRAGE (magnetization
prepared rapid gradient echo) sequence [repitition time ðTRÞ ¼
1900 ms, inversion time ðTIÞ ¼ 900 ms, echo time ðTEÞ ¼
2.32 ms, field of view ¼ 230 × 230 × 172.8 mm3 (sagittal),
matrixsize¼256×256×192, flipangle¼9 deg, slice thickness ¼
0.9 mm]. Single MRI image slices were concatenated and con-
verted into NIfTI format using the dcm2nii conversion tool44

called by a MATLAB® toolbox. Each image was then placed
into a left–right (L-R), posterior–anterior (P-A), inferior–superior
(I-S) spatial orientation and resampled into 1-mm isovoxels
by cubic spline interpolation of the original image.45

Segmentation of the subject’s head into skull and scalp, CSF,
white matter, and gray matter was performed using SPM func-
tions applied to T1 structural images.37

A fine mesh (maximum tetrahedral volume ¼ 2 mm3) was
generated for NIRFAST computing using the software iso2-
mesh.36 A square array of optodes (minimum source–detector
distance ¼ 15 mm) was simulated on the scalp over the occipital
cortex of the subjects (Fig. 2). Only source–detector distances
within 60 mm were considered meaningful. An absorbing sphere
with radius ¼ 4 mm and μa ¼ 0.011 mm−1 (10% change from
bulk value) was embedded in the occipital area at different depths
from the scalp (center varying from 3 to 33 mm from the surface).
Intensities for the different conditions were computed. Gaussian
noise amounting to 5% of the maximum intensity change
was introduced in the simulation. ELR-DOT, SVR-DOT, and
ER-DOT were applied to the simulated recorded intensities,
and ED and FWHMmetrics were evaluated using optimum regu-
larization values, determined using the homogeneous slab
simulations.

2.7 Phantom Data: Slab Geometry

We also tested the ability of the combination of the FEM for-
ward solver with the ELR-DOT algorithm to reconstruct real
changes of local absorption in a homogeneous slab medium
using reflectance geometry. Because of the known similarity
between the scattering properties of milk and human tissue in
the NIR spectral range, homogenized skim milk was used as
a bulk substance.46 The milk was put in a 4-l black tank and
was kept at a constant temperature using ice. India ink was
added in order to increase the homogeneous absorption to
more closely mimic the overall optical properties of head tissue.
Data were acquired with a multichannel frequency-domain com-
mercial NIR spectrometer (ISS Imagent™, Champaign, Illinois)
equipped with 128 laser diodes (64 emitting light at 690 nm and
64 at 830 nm) and 24 photomultiplier tubes. Time multiplexing
was employed, so that each detector picked up light from 16
different sources at different times within a multiplexing cycle.

Fig. 1 Homogeneous cubic mesh (100 mm3) used for simulations
and real data image reconstruction. A square array of optodes,
with alternating sources and detectors, was arranged over parallel
lines at distances of 15 mm on a face of the cube. This same
array was also used for the real (phantom) data collected in the
milk tank. For both the simulation and the phantom experiments,
an absorption perturbation was positioned at the center of the inves-
tigation surface at different depths.

Fig. 2 Example of a heterogeneous head mesh (maximum tetrahe-
dral volume ¼ 2 mm3) generated for FEM, computed using iso2-
mesh. (a) Segmentation divisions of skull and scalp, CSF, white
matter, and gray matter, performed on T1 structural images.
Different optical properties (see Table 1) were attributed to different
tissues. (b) Source and detector locations (same geometry as Fig. 1)
on the occipital surface of the head.
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A square array of optodes (minimum source–detector
distance ¼ 15 mm) was arranged on the surface of the milk
in the same configuration reported in Fig. 1. Baseline absorption
values were estimated using the frequency-domain system in
a multidistance configuration.47 The estimated absorption and
scattering values over a recording epoch of 2 min were
μa ¼ 0.0095 mm−1 and μ 0

s ¼ 0.85 mm−1 at 830 nm.
An absorbing sphere with radius ¼ 3 mm and μa ¼

0.02 mm−1, μ 0
s ¼ 0.95 mm−1 at 830 nm of wavelength was

embedded at the center of the investigation surface and
moved with a mechanical mechanism to different depths
from the milk surface (center varying from 3 to 33 mm from
the surface). Data at different depths were acquired for 30 s
with a 40-Hz sampling rate. Reference (homogeneous medium)
intensities were acquired with the absorber at depth ¼ 40 mm.
Reference data were taken for 30 s after each depth recording
in order to compensate for slow instrumentation drifts. Data
acquired using 830-nm wavelength NIR light were used for
image reconstruction. Channels that presented a variation of
the intensity >40% for any of the depth recordings when com-
pared to baseline were considered noisy and disregarded during
the image reconstruction process. ED and FWHM metrics were
estimated for the reconstructed images computed using ELR-
DOT, ER-DOT, and SVR-DOT.

2.8 Real (In-Vivo) Data: Eccentricity Study

In order to quantify the ability of ELR-DOT to localize func-
tional activation in vivo, we compared results obtained with
fMRI and ELR-DOT for one subject performing a visual eccen-
tricity task. The participant was recruited and run with approval
from the University of Illinois Institutional Review Board. The
visual eccentricity task is particularly suitable for evaluating
algorithm localization performance. In fact, it is well known
that the visual cortex is spatially organized as a function of
the eccentricity (and polar angle) of visual stimulation. More
importantly for testing the accuracy of depth estimations, the
more eccentric the stimulus, the deeper the areas of the primary
visual cortex involved in its processing.48–50

The data reported in this paper are from one participant, who
underwent a typical hemodynamic imaging eccentricity study in
which a ring comprising a contrast-reversing checkerboard pat-
tern (2 Hz) was presented at the center of the screen and
expanded (and in a separate block, contracted) continuously
in size, increasing or decreasing the stimulated visual angle.51

Visual angles from 0 to 10 deg were spanned during the experi-
ment. Within a stimulation period of 48 s, the expanding or
contracting cycle was repeated eight times. The stimulus was
designed to generate asynchronous responses in regions of
the primary visual cortex corresponding to different visual
angles, and therefore varying in depth. fMRI data were acquired
with a Siemens Trio® 3T scanner using a BOLD sequence
(TR ¼ 2000 ms, TE ¼ 25 ms, flip angle ¼ 90 deg, in-plane
resolution ¼ 2.5 × 2.5 mm, slice thickness ¼ 2.5 mm). fMRI
images were coregistered to the structural resampled MRI of
the same participant, producing a four-dimensional (4-D)
time-course image in structural space.

fNIRS data were acquired with a multichannel frequency-
domain NIR spectrometer (ISS Imagent™, Champaign,
Illinois). Optical data from the same participant were recorded
using an array of eight source pairs (830 and 690 nm) and 16
detectors positioned on the scalp over the occipital cortex
[with source–detector distances ranging from 20 to 70 mm;

Fig. 11(c)]. The optode array was designed so as to provide cov-
erage of the primary visual cortex, and, most importantly for the
purposes of the current paper, to provide a wide variance of
source–detector distances over a relatively small surface. As
in Ref. 48, this was achieved by grouping all the sources
over one hemisphere and all the detectors over the other.
Simulations and real-task data indicate that this “grouped”
geometry is very effective (compared to a square-grid geometry)
in providing a good 3-D reconstruction of perturbations located
in between the sources and the detectors. This montage also
avoids the problem of having too many short-distance channels,
challenging the dynamic range of the detectors. Fiducial mark-
ers were placed on the participant’s left and right preauricular
points and on the nasion (Na). Fiducials, optodes, and other
scalp locations were digitized with a Polhemus FastTrak 3-D
digitizer (Colchester, VT; accuracy: 0.8 mm) using a recording
stylus and three head-mounted receivers, which allowed for
small movements of the head in between measurements.
Optode locations and structural MRI data were coregistered
using fiducials and a surface-fitting Levenberq–Marquard
algorithm.45

Only data recorded with the 830-nm wavelength were
used for the computation of DOT. Preprocessing involved move-
ment correction,52 removal of noisy channels (i.e., channels that
presented a variation in intensity greater than 40%), and signal
resampling (0.5 Hz). The last step of preprocessing regressed
out the shortest channels’ signals from all the good channels
in order to dampen the effect of superficial interference.53

After applying ELR-DOT, we obtained an estimate of the
absorption changes at 830 nm for each node considered.
Nodes with a very small sensitivity were masked (norm equal
to 10−6 of the maximum norm estimated). A voxel-based image
of absorption changes in the head was obtained by cubic spline
interpolation of the absorption values in node space.

Because of the increased oxygenation of the brain in active
areas and the hemoglobin extinction coefficients at 830 nm of
wavelength, changes in absorption at the wavelength of interest
should be proportional to the BOLD response of the fMRI. The
same statistical analysis in the same structural space (T1 subject
MRI space) was conducted on both fMRI data and fNIRS
ELR-DOT data.

The 4-D functional images of the two blocks (expanding and
contracting rings) were subtracted from one another in order to
eliminate the effect of the lag of the hemodynamic response
function. Each voxel in the obtained 4-D images was correlated
in time with a sine and a cosine of a period of T ¼ 48 s. As the
stimulus varied continuously in eccentricity as a function of
time, for both fMRI and fNIRS data, the phase of the hemo-
dynamic response reflected the tuning of the brain activity to
a particular stimulus eccentricity. The phase estimate at the
particular oscillation frequency (48 s) was obtained for each
voxel as

EQ-TARGET;temp:intralink-;e017;326;181Phðx; y; zÞ ¼ tan−1
corr



sðx; y; z; tÞ; sinð2πTtÞ�

corr


sðx; y; z; tÞ; cosð2πTtÞ� ; (17)

where sðx; y; z; tÞ is the signal over time at a given voxel
x, y, z.

A t-score tðx; y; zÞ was obtained by correlating the signal in
each voxel with a cosine shifted by the amount Phðx; y; zÞ, cor-
responding to each stimulation eccentricity. Knowing the ranges
of stimulated visual angles and the time when they occurred,
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it was possible to linearly relate Phðx; y; zÞ to visual eccentricity,
thus obtaining a VAðx; y; zÞ, where VAðx; y; zÞwas a brain map
of the visual angle that maximally stimulated a particular
voxel.54

fMRI results were smoothed using a Gaussian filter with a
FWHM ¼ 20 mm in order to account for the reduced spatial
resolution of DOT when compared to fMRI. fMRI and ELR-
DOT results were compared by correlating statistically signifi-
cant voxels (p < 0.05) VAðx; y; zÞ over space of the two imag-
ing procedures. Here, we report results obtained for a single
subject to show feasibility. This subject had particularly robust
effects for both fMRI and DOTanalysis. Statistical analyses on a
bigger sample of subjects will be reported in a separate paper.

3 Results

3.1 Simulations: Slab Geometry

The purpose of the first set of simulations was to estimate the
relative weights to be given to the energy and Laplacian regu-
larization matrices (ε and λ) when combining them. In order to
better quantify the effects of the regularization parameters ε and
λ, the quantity J½μað~rÞ;μ 0

sð~rÞ�ðI þ λ
3
LTLÞ−1J½μað~rÞ;μ 0

sð~rÞ�
T was set to 0.

Figure 3 reports the channel average inversion matrix G for a
slice passing through the middle of and perpendicular to the
recording surface for different ratios of ε to λ. For a ratio
ε∕λ ¼ 104, the matrix G is almost identical to the forward solver
J½μað~rÞ;μ 0

sð~rÞ�
T. This ratio shows the effect of a strongly energy-

weighted regularized solver for which the data are forced toward
the surface, the region of higher sensitivity. As the ratio of ε to λ
decreases, the Laplacian regularization increases its effect,
clearly moving the preferential solutions to deeper tissues.

However, when the ratio is very low (i.e., ¼10−4), the operator
generates physically unlikely (very deep) solutions (e.g.,>5 cm).
Thus, Fig. 3 suggests that an intermediate ratio between the two
regularization parameters might provide an optimal solution.

The second step of our analysis was to estimate the best ε and
λ for ELR-DOT. For comparison purposes, the best ε for ER-
DOT and the best ε and β for SVR-DOT were computed. We
estimated the best regularization values running forward simu-
lations with perturbations of baseline optical properties, posi-
tioned in the homogeneous media at different depths (see
Sec. 2). The goal of the optimization was to find the minimum
of the maximum PE for all the depths (we wanted accurate
results for all the depths considered) given the parameters
ε, λ, and β. The values were estimated normalized to the
max ðkJ½μað~rÞ;μ 0

sð~rÞ�kÞ2:

EQ-TARGET;temp:intralink-;e018;326;587E ¼ ε

maxðkJ½μað~rÞ;μ 0
sð~rÞ�k2Þ

; (18)

EQ-TARGET;temp:intralink-;e019;326;545Λ ¼ λ

maxðkJ½μað~rÞ;μ 0
sð~rÞ�k2Þ

; (19)

EQ-TARGET;temp:intralink-;e020;326;505B ¼ β

maxðkJ½μað~rÞ;μ 0
sð~rÞ�k2Þ

. (20)

The analysis was conducted by varying E, Λ, and B from
10−7 to 10−1. Similarly to previous studies,12,22,23 we found
an optimal energy regularization parameter equal to E ¼ 10−5.
Thus, in order to focus on the effects of the Laplacian regulari-
zation and the SVR, here we present results obtained at a fixed
energy regularization equal to E ¼ 10−5.

Fig. 3 Channel average inverse operator using cube geometry, presented on a slice perpendicular to the
recording surface, passing through the middle of the cube. Different images show a different combination
of ratios between ε (energy regularization parameter) and λ (Laplacian regularization parameter). As the
ratio between ε and λ decreases, the Laplacian regularization increases its effect, clearly moving the
preferential solutions to deeper tissues.
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Increasing the value of Λ increases the relative weight given
to the Laplacian regularization, whereas decreasing the value
of B increases the relative weight given to the spatial regulari-
zation. For display purposes, we report a value of spatial regu-
larization B̃ ¼ 10− log 10ðBÞ−8. Increasing B̃ increases the effect of
the spatial regularization.

Figure 4(a) reports maximum PEs as a function of Laplacian
regularization Λ and SVR B̃. It can be noticed that ELR-DOT
provides parameter combinations that result in lower maximum
PEs than SVR-DOT, especially with increasing values of Λ and
B̃, i.e., because SVR-DOT becomes very unstable for high values
of B̃ (low values of B). This results in a very noisy reconstructed
image even when a low level of noise is added to the simulations,
as was the case here. In general, regularization is introduced to
provide stability to a generally ill-posed problem, generated by
the fact that the matrix J½μað~rÞ;μ 0

sð~rÞ�J½μað~rÞ;μ 0
s ð~rÞ�

T is typically almost
singular. In order to better address this issue, we tested how the
regularization parameters Λ and B̃ affected the stability of the
procedure for the given energy regularization. Figure 4(b) reports
the computed Frobenius norms ofG, kGkF, for different values of
Laplacian regularization Λ and SVR B̃ (smaller values indicate
greater stability). Note that the abscissa’s origin can be considered
the ER-DOT kGkF with E ¼ 10−5.

One important conclusion can be derived from Fig. 4. ELR-
DOT stabilizes the problem at a given ER-DOT solution
(decreasing the Frobenius norm), whereas SVR-DOT does the
opposite (increasing the Frobenius norm). This finding indicates
that with respect to the stability criterion, preference should be

given to ELR-DOTover SVR-DOTwhen choosing a method for
correcting for shallow-depth bias.

Based on the results depicted in Figs. 4(a) and 4(b), and
closely matching values independently reported in the literature
for SVR-DOT and ER-DOT,12,22,23 we chose the optimal regu-
larization parameters as
EQ-TARGET;temp:intralink-;sec3.1;326;686

ELR-DOT∶E ¼ 10−5;Λ ¼ 10−4;

ER-DOT∶E ¼ 10−5;

SVR-DOT∶E ¼ 10−5; B ¼ 10−3ðderived from B̃ ¼ 10−5Þ:

These parameters were optimized for a coarse mesh with
5-mm internode distance. Therefore, optimal values could differ
if a different spatial sampling were used. In fact, since the
Laplacian operator is defined over space, its effects will vary
as a function of internode distance. However, unless the spatial
sampling is drastically altered, we do not expect a substantial
(i.e., orders of magnitude) change in optimal regularization
parameters. Note also that the Frobenius norm value for the
chosen parameter is ∼10 to 15 times lower for ELR-DOT com-
pared to ER-DOT and SVR-DOT, respectively [Fig. 4(b)].

Figure 5 reports the PEs and the FHWMs based on the
chosen parameters E, Λ, and B, at different perturbation depths
for ELR-DOT, ER-DOT, and SVR-DOT. As can be noticed from
this figure, using ER-DOT leads to a low PE in the shallow
depth range, with PE increasing linearly for depths >15 mm.
Using SVR-DOT leads to a very low PE (∼1 mm) in a range
between 11 and 23 mm, but, as for the ER-DOT, the PE
increases linearly for depths >23 mm (it also leads to greater

Fig. 4 (a) Maximum PE as a function of the Laplacian regularization
parameter Λ and the SVR parameter B̃ at a fixed energy regulariza-
tion parameter E ¼ 10−5. (b) Frobenius norms of the inverse operator
G as a function of the Laplacian regularization parameter Λ and
the SVR parameter B̃ at a fixed energy regularization parameter
E ¼ 10−5. The results were obtained with simulations in the slab
geometry configuration.

Fig. 5 (a) PEs for ELR-DOT, ER-DOT, and SVR-DOT obtained for
perturbation depths between 5 and 35 mm. (b) FWHMs for ELR-
DOT, ER-DOT, and SVR-DOT obtained for perturbation depths
between 5 and 35 mm. The regularization parameters were ELR-
DOT: E ¼ 10−5, Λ ¼ 10−4, ER-DOT: E ¼ 10−5, SVR-DOT: E ¼ 10−5,
B ¼ 10−3. The values were obtained during simulations in the slab
geometry configuration.
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errors for depths <10 mm). ELR-DOT leads to stable PEs (∼2 to
3 mm) for a wide range of depths (from 5 to 35 mm, i.e., for the
entire depth spectrum explored). The FWHMs for the three
methods are shown in Fig. 5(b). At greater depths, FWHM
increases, with ELR-DOT plateauing around 25 mm and ER-
DOT and SVR-DOT plateauing earlier and at a lower over-
all FWHM.

Taken together, Figs. 4 and 5 clearly show how ELR-DOT
trades spatial resolution at deep locations for stability and
improved depth localization above 20 mm. However, for a gain
of ∼10 to 15 times in stability (kGkF) and a smaller PE across
the range of depths (5 to 35 mm), the FWHM of the recon-
structed perturbation was increased only by ∼30%.

In Fig. 6, reconstructed images related to perturbations vary-
ing in depths (indicated by white circles) are displayed from left
to right and from top to bottom. The minimum depth of the
perturbation centroid was 5 mm and the maximum 35 mm, with
2-mm steps. As the figure shows, ELR-DOT follows the pertur-
bation’s true location (white circle) accurately for the whole
range of depths considered. Only for the last two slices (33 and
35 mm of centroid depth) do the reconstructed perturbation and
the real position seem off center. However, what is off center is
the maximum value of the reconstructed image. It is clear that
the attenuation of the reconstructed perturbation is not symmet-
ric along depths, being more elongated along the horizontal axis
for deeper perturbations.

To assess the resolution (as opposed to localization) of
ELR-DOT, we performed a simulation based on the same homo-
geneous slab geometry, considering two perturbations at differ-
ent lateral separation distances (PD) and a constant depth
of 25 mm. The depth was chosen to maximize the FWHM
[Fig. 5(b)]; thus, these results are obtained in a “worst-case sce-
nario” of deep perturbations.

Three reconstructed images over a range of PDs at a constant
depth are displayed in Fig. 7(a), with their corresponding pro-
files reported in Fig. 7(b). Clearly, at a distance of 10 mm, the
algorithm fuses the two perturbations, whereas at distances of
24 and 36 mm, the algorithm is able to distinguish between
them. The parameter used to assess the ability of the algorithm
to separate two close perturbations was RP (see Sec. 2.4).
Figure 7(c) reports RP as a function of centroid distance of
the two perturbations. When RP is equal to or greater than 1,

Fig. 6 A single slice of the reconstructed images obtained during simulations for the cube geometry. The
slice is perpendicular to the recording surface and passes through the middle of the cube. Perturbation
depth (represented by the white circles) increases (moving from left to right and from top to bottom) from
a centroid at 5 mm to one at 35 mm, in 2-mm steps. The color scale represents the change in absorption
in arbitrary units.

Fig. 7 (a) Reconstructed images (single slice) obtained during
simulations with two perturbations at a constant depth (25 mm) in
the cube geometry. Perturbations distances (PDs) of 10, 24, and
36 mm are shown. (b) Profiles at 25-mm depth of the reconstructed
images for each of the PDs (10, 24, and 36 mm). (c) RP as a function
of the PD.
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the algorithm is not able to separate the two perturbations.
Not surprisingly, Fig. 7(c) shows that the minimum distance
(considered from the centroids) that allows ELR-DOT to sepa-
rate them is ∼22 mm.

3.2 Simulations: Realistic Head Geometry

The stability of the regularization parameters of ELR-DOT, ER-
DOT, and SVR-DOT to changes in geometry and baseline opti-
cal values was tested using a set of heterogeneous head models
obtained from anatomical images of real heads. The head’s
geometry and optical values were derived from T1-weighted
MRIs from five adult subjects. Simulations were conducted
by placing optical perturbations at different depths inside the
head. A forward solver was computed to estimate the amplitudes
of intensity effects using an optical montage positioned over the
occipital cortex (Fig. 2). Inverse procedures were performed
using tuned regularization parameters derived from the slab
geometry simulation.

Figure 8(a) reports examples of reconstructed absorption
perturbations using ELR-DOT for a single subject at three
depths from the scalp (blue ¼ 15 mm, red ¼ 25 mm, green ¼
33 mm). The absorption image is thresholded at 50% of its
maximum value. The true position of the centroid of the pertur-
bations is displayed by the intersection of the cross.
Qualitatively, Fig. 8(a) shows that the ELR-DOT algorithm is
able to retrieve the actual position of the perturbation and
that the FHWM increases as the depth increases. Figure 8(b)
reports the average ED and related standard errors across the
five subjects as a function of the actual perturbations centroid
depth for ELR-DOT, ER-DOT, and SVR-DOT. No statistically
significant discrepancies from the ideal curve were found for

ELR-DOT. Significant underestimation of depth reconstruction
was found for ER-DOT and SVR-DOT for depths >20 mm.
Figure 8(c) reports the average FHWM as function of the cent-
roid depth. The FWHM of the reconstructed image increased as
the actual depth increased up to a value of ∼23 mm for ELR-
DOT. Similar behavior was found for ER-DOT and SVR-DOT
up to a value of ∼14 to 16 mm. These results are in agreement
with the slab geometry simulations and show the stability and
accuracy of ELR-DOT in a realistic perturbations medium when
compared to ER-DOT and SVR-DOT.

3.3 Phantom Data: Slab Geometry

A phantom study was performed in order to test the ability of the
FEM forward solver and the ELR-DOT algorithm to reconstruct
optical images. Figure 9(a) reports the ED as function of the
centroid depth (mm) for ELR-DOT, ER-DOT, and SVR-
DOT. Consistent with the simulations, ELR_DOT showed a nice
fit with the ideal curve (solid line), with an average error of
∼2 mm, and ELR_DOT performed better than ER-DOT and
SVR-DOT, especially at greater depths. As expected, based
on the simulations, Fig. 9(b) indicates that the FWHM of the
reconstructed image is slightly greater for ELR-DOT compared
to ER-DOT and SVR-DOT at depths greater than 10 mm.

Figure 10 displays the reconstructed images resulting from
placing the absorbing object at different depths (indicated by
a white circle) within the homogenous milk medium. The mini-
mum depth of the perturbations centroid was 3 mm, the maxi-
mum 33 mm with 2-mm steps. Although the images were
obtained for a 100 × 100 × 100 mm cube, the images are shown
up to a depth of 50 mm for display purposes. These real images
are noisier than the simulated images reported in Fig. 6.

Fig. 8 (a) Example of a reconstructed absorption perturbation for a single subject at a depth of 15 (blue),
25 (red), and 33mm from the scalp (green). The absorption is reported until an attenuation of 50% from its
maximum value (FWHM). The true position of the centroid of the perturbations is displayed by the cross-
hair intersections. (b) Average ED and related standard errors across the five subjects as a function of the
actual perturbation’s centroid depth for ELR-DOT, ER-DOT, and SVR-DOT. (c) Average FHWMs and
related standard errors as a function of the actual perturbation’s centroid depth for ELR-DOT, ER-DOT,
and SVR-DOT. Results were obtained running simulations on heterogeneous head geometry.
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However, they show that the ELR-DOT method accurately
retrieved the true perturbations’ location (white circle) for all
the depths considered (up to 33 mm).

3.4 Real (In-Vivo) Data: Eccentricity Study

Finally, to test the ability of ELR-DOT to localize functional
activation in vivo, we compared the depth localization of
brain activity obtained with fMRI and ELR-DOT for a subject
undergoing a visual eccentricity task. Figure 11 reports a map-
ping of the brain response, measured with fMRI [Fig. 11(a)] and
ELR-DOT [Fig. 11(b)], as a function of the visual angle of
stimulation VAðx; y; zÞ on a particular axial slice overlaid
onto the subject’s anatomical image. VAðx; y; zÞ is displayed
only for statistically significant voxels (p < 0.05, unadjusted
for multiple comparisons). Colors represent the visual angle at
which the response was maximal, coded according to a color
scale presented in Fig. 11(c). The fMRI results [Fig. 11(a)]
showed the characteristic spatial organization of the visual cor-
tex as function of the eccentricity of the visual stimulation. This
organization consists of a progressively deeper response for
more eccentric stimuli. Figure 11(b) reports the same image
obtained by applying ELR-DOT to 830-nm optical intensity
fNIRS data. The volume of the significantly activated region
is smaller for fNIRS when compared to fMRI. This result
reflects the lower signal-to-noise ratio, the masking procedure
for deep regions, and the limited optode coverage for lateral
activations in DOT. The loss of very superficial activations for
ELR-DOTwhen compared to fMRI is caused by the subtraction
of short channels (at 20-mm interfiber distance) to compensate
for systemic fluctuations. However, qualitatively, the two maps
show strong similarities. To quantify them, we first masked

the fMRI locations to match the more limited area showing
activation with ELR-DOT [see black tracing in Figs. 11(a)
and 11(b)]. We then divided the area into four ROIs, the boun-
daries of which were defined by the visual angle (2.5 deg, 2.5 to
5.0 deg, 5.0 to 7.5 deg, and 7.5 to 10.0 deg), which optimally
activated each voxel in the ELR-DOT data (i.e., the ROIs
encompassed four receptive field ranges). The centroid (in
degrees of angle) of the receptive field was estimated as the aver-
age visual angle associated with the maximum response for each
voxel in a given ROI (the same operation was computed for
ELR-DOT data). Figure 11(d) shows a scatterplot of the two
estimates of the receptive field’s centroids for each ROI (esti-
mates based on ELR-DOT on the abscissa and on fMRI on
the ordinate). The data show a very good correlation between
the centroids of the receptive fields obtained with the two tech-
niques (r ¼ 0.95, p ¼ 0.04). Across the four ROIs, the largest
mismatch between fMRI- and ELR-DOT–based receptive field
centroids was ∼2 deg. This is translated into a maximum mis-
match of ∼4 mm in depth estimation between the two methods.
Importantly, the maximum depth of the ELR-DOT activated
area from the surface of the scalp was 33 mm. These results
support the claim that (1) ELR-DOT provides depth estimates
that closely correspond with those obtained with fMRI, the gold-
standard for 3-D functional imaging in vivo, and (2) ELR-DOT
can accurately localize brain activity up to a depth of 30 to
33 mm from the surface of the scalp.

4 Discussion
In this paper, we introduced a new method for the 3-D
reconstruction of DOT data (ELR-DOT). We also compared
ELR-DOT with two previously described methods (ER-DOT
and SVR-DOT) based on their ability to accurately retrieve
the depth of absorption effects (PE) within the brain, as well
as on the stability of the estimate (Frobenius norm). This latter
metric is important because unstable solutions cannot be relied
upon, especially under noisy conditions, or under conditions in
which the forward model is even marginally incorrect.

Prior to this comparison, we first fine-tuned the parameters
used for SVR-DOT and ELR-DOT. To this end, we used simu-
lated data (based on a homogenous medium with simple geom-
etry) to generate forward models based on an absorbing object
located at different depths, varied the relevant parameters used
by these inverse procedures over a very broad range of depths,
and estimated the PE and Frobenius norm for each case. In addi-
tion to parameter tuning, this analysis indicated two significant
advantages of ELR-DOT relative to SVR-DOT: ELR-DOT pro-
duces a smaller minimum PE and more stable results [i.e.,
a smaller Frobenius norm—see Fig. 4(b)]. Thus, ELR-DOT
can be expected to be less sensitive to noisy conditions and
to errors in the forward model than the other techniques exam-
ined. Importantly, the parameters computed using this analysis
were then applied in all subsequent tests.

A second set of analyses were based on a more complex
geometry simulating a real head, based on realistic absorption
and scattering parameters for various types of tissues, and small,
slightly absorbing objects varying in depth between 3 and
33 mm. These simulations suggest that ELR-DOT can accu-
rately retrieve the depth of absorbing objects at least up to the
maximum depth explored (33 mm). By contrast, SVR-DOT can
only do that for depths ranging between 8 and 20 mm, and
ER-DOT tends to underestimate the depth of objects at any
depth. The accuracy advantage of ELR-DOT, however, was

Fig. 9 (a) EDs as a function of the actual perturbation’s centroid depth
for ELR-DOT, ER-DOT, and SVR-DOT. (b) FHWMs as a function of
the actual perturbation’s centroid depth for ELR-DOT, ER-DOT, and
SVR-DOT. Results were obtained using real (phantom) data in the
slab geometry configuration.
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accompanied by a loss of resolution at greater depths (30%).
Moreover, these simulations demonstrated that the parameters
derived from the homogeneous model also worked well in
more complex inhomogeneous geometries, with somewhat dif-
ferent optical properties. Although we did not explore a wide
range of geometries and optical values, these results suggest
that the tuned parameters are likely to be stable and appropriate
for the typical conditions occurring in most fNIRS studies.

A third set of analyses tested these procedures using actual
data based on a homogenous-medium phantom experiment with
simple geometry (again varying the depth of a small, slightly
absorbing object located inside the medium). The results of this
phantom experiment were virtually identical to those obtained
with the simulations, even though the actual data were noisier.
Again, ELR-DOT produced accurate estimates of the depth of
the absorbing object up to the maximum depth explored
(33 mm), with SVR-DOT only retrieving depth accurately up to
a depth of 22 mm, and ER-DOT always underestimating the
depth of the object. We also replicated the resolution data,
with ELR-DOT showing some loss in resolution as the objects
became deeper.

In order to test the feasibility of using the procedure with
in-vivo data, we applied the algorithm to data from one subject
in an actual functional brain activation study. We used the eccen-
tricity of visual stimuli to manipulate the depth of the activated

brain area (as greater stimulus eccentricities are represented in
deeper regions of visual cortex). The exact location of the acti-
vated areas was estimated with a separately recorded fMRI
study using the same visual stimulation on the same subject.
On this particular subject, ELR-DOT provided an accurate
reconstruction of the depth of the active brain area, up to a
depth of ∼33 mm.

The data also indicated that ELR-DOT is an accurate and
unbiased method for retrieving the depth of an absorbing object
over a wide range of depths. Importantly, it does so without sac-
rificing the stability of the results, a problem instead existing for
SVR-DOT, which makes the latter very sensitive to errors in the
forward model and to noise in the data. ER-DOT did not per-
form well in general, tending to underestimate the depth of the
absorbers, a problem that was predicted on theoretical grounds.
The major negative aspect of ELR-DOTwas a loss in resolution
at large depths.

The estimate of the maximum depth that can be explored
applying ELR-DOT to scalp-recorded fNIRS (∼30 mm) sur-
passes those obtained with current methods, such as ER-DOT
and SVR-DOT, neither of which can accurately localize absorb-
ing phenomena occurring at depths exceeding 20 mm. Of
course, accurate depth estimation requires concurrent recording
from a large number of channels,10 so that not only can different
scalp locations be measured at the same time, the same locations

Fig. 10 Slices of the reconstructed image obtained for real (phantom) data collected with the homog-
enous slab geometry. Each slice is perpendicular to the recording surface and is passing through the
middle of the cube. Perturbation depth (represented by the white circles) increases (moving from left to
right and from top to bottom) from a centroid at 3 to 33 mm in 2-mm steps. The color scale represents the
change in absorption in arbitrary units.
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can also be explored by a large number of channels with differ-
ent source–detector distances.48

An example of the potential advantages provided by accurate
3-D reconstruction is given by the data presented in Fig. 11.
Here, we show that it is feasible to apply ELR-DOT to fNIRS
data. ELR-DOT allowed us to generate a retinotopic map of the
primary visual cortex of a quality comparable to that obtained on
the basis of fMRI data. However, these data also show that
fNIRS provides data within a more restricted area of the brain
than fMRI. This more limited range can be attributed to three
factors: (1) the montage used for recording fNIRS did not com-
pletely cover lateral occipital areas; (2) fNIRS is not sensitive to
phenomena deeper than 30 to 33 mm; and (3) a portion of the
most superficial fNIRS signal was canceled by the regression
method used to clean up the signal of nonbrain phenomena.
While the first and third factors could be improved upon in
future recordings using more appropriate montages, we believe
that the depth limit of fNIRS is much more difficult to overcome.

In the current paper, the 3-D reconstruction of brain activa-
tion data was based on analyses performed using data recorded
at a single wavelength (830 nm). Although this procedure has
been used before,55 it is general practice in fNIRS studies to use
a combination of a short (650 to 700 nm) and a long (800 to
900 nm) wavelength to separately estimate changes in concen-
tration of each hemoglobin species (oxy- and deoxyhemoglo-
bin). However, when the interest is in depth estimation and
3-D reconstruction, we need to consider that the basic optical
properties (and depth penetration) vary across these two basic
wavelengths. Thus, it is inappropriate to perform the 3-D
reconstruction on oxy- and deoxyhemoglobin transformations.

Rather, the correct approach is to perform two separate 3-D
reconstructions (one for the shorter and one for the longer wave-
lengths) and then use the 3-D reconstructed data to estimate the
changes in hemoglobin species concentration. Further, it should
be noted that when the interest is only in the localization of brain
activation effects (and not in their quantification), the 3-D maps
obtained at 830 nm are likely to be closely correlated with those
related to the BOLD fMRI signal. This occurs because (1) the
longer wavelength (830 nm) is more sensitive to oxyhemoglobin
than to deoxyhemoglobin (ratio ∼ 3∕2)56 and (2) the BOLD
effect causes a bigger variation in oxyhemoglobin compared
to deoxyhemoglobin (ratio ∼ 3∕1).57 In practice, probably
because of the higher baseline absorption (and therefore lesser
penetration of photons) of biological tissues in the shorter wave-
length range, we found that using a single longer wavelength
increases the SNR of the measurements. This procedure can
be employed when localization, rather than hemoglobin estima-
tion (or differentiation between different types of signals), is the
target of the analysis, and it is particularly crucial for deep per-
turbation estimation (where the noise level is high). However, if
it is critical to obtain quantitative estimates of hemoglobin con-
centration, the procedure can, in principle, be repeated at both
wavelengths, and changes in oxy- and deoxyhemoglobin con-
centration could be computed based on the estimated absorption
effects obtained for each wavelength. It can be expected, how-
ever, that this may result in loss of accuracy at deep locations.

It should be noted that this paper only investigates which
regularization procedure produces the best depth estimates of
absorption effects within the brain. However, as we mentioned
earlier, the inverse solution builds upon the results of the for-
ward solution. In this sense, the best inverse solution procedure
can only produce results as good as the accuracy that the for-
ward solution permits. Any inaccuracy in the forward model
will be reflected in errors in the inverse solution. The amount
of error introduced by an erroneous forward solution can
change, however, based on the stability of the inverse procedure,
with less stable inverse procedures amplifying the error. To
evaluate the quality of the forward model in our study, we can
only consider the phantom and brain activation data on one
subject, as all the simulations were based on knowing the for-
ward solution exactly. In our study, the accuracy of the inverse
solution obtained with ELR-DOT indicates that the forward
model was adequate for a homogenous medium and was also
adequate for the real-brain functional activation data on one sub-
ject. The accuracy of the forward model is particularly important
for clinical and experimental applications in humans. Further
studies are required to establish the optimal forward solution
for each particular application, as this may interact with the opti-
cal properties of tissue. It should be noted that a large variability
in the baseline optical properties of human head tissues has been
reported in the literature.58

The regularization method employed here includes elements
of the two most commonly used regularization methods used for
ERPs, MEG, and EEG source analysis. The relative merits of
minimum norm and LORETA as tools for conducting source
analysis of electrophysiological data have been previously
investigated.28 These previous studies have indicated that
LORETA is in fact superior to minimum-norm approaches in
localizing deep sources—a result consistent with our finding
that ER-DOT is not very good in this case—but does not nec-
essarily confer an advantage at accurately localizing superficial
sources, where instead there is a clear loss in resolution.

Fig. 11 (a) fMRI: colors represent activation correlated with different
visual angles overlaid on an axial anatomical slice through primary
visual cortex (significant voxels, p < 0.05, uncorrected). Black
contours define statistically activated regions for both fMRI and
ELR-DOT. (b) ELR-DOT: colors represent activation correlated with
different visual angles overlaid on an axial anatomical slice through
primary visual cortex (significant voxels, p < 0.05, uncorrected).
Black contours define statistically activated regions for both fMRI
and ELR-DOT. (c) Actual digitized montage used for the optical
recording (rear view of the head): the sources are indicated in blue
and the detectors in red—all combinations of sources and detectors
were used. (d) Scatterplot of the average visual angle in four ROIs for
ELR-DOT and the average visual angle for the corresponding fMRI
regions (r ¼ 0.95, p ¼ 0.04). The color coding for the different visual
angles is presented in bar graph (c).
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A known limitation of LORETA when applied to electro-
physiological data is the loss of spatial resolution as the number
of concurrent electrical sources increases. This problem is exac-
erbated by the large spreading of electrical signals across the
brain due to volume conduction. We expect this issue to be
less problematic for DOT because the optical signal decays
faster with distance than the electric field (i.e., exponentially
rather than in a quadratic manner). Consistent with this expect-
ation, in the current study, we tested the ELR-DOT algorithm
using two optical perturbations and found a reasonable separa-
tion of each perturbation (and little cross-talk) when the distance
between them was 24 mm or greater. Thus, we expect that if
perturbations are not too close to each other, ELR-DOT should
be able to accurately describe a number of them at the same
time.

Here, we considered a form of l2-norm regularization with
a-priori tuned regularization parameters. This inverse procedure
allows us to obtain a closed-form solution, which is independent
of the measured data. Other studies based on iterative proce-
dures and/or sparsity constraints have shown improved
lateral resolution or localization accuracy of DOT data.59–62

However, these methods do not provide a closed-form solution
and they are not data independent. Here, we demonstrated that
by adding a Laplacian regularization to the l2 regularized
solution, it is possible to obtain perturbation localization and
robustness to changes in the types of geometry and optical
conditions typically occurring in DOT recordings. This perfor-
mance was obtained while increasing the stability of the inverse
procedure.

We found that our combined ELR-DOTapproach, while pro-
viding unbiased depth estimates across a wide range of depths,
does in fact lose some spatial resolution with respect to ER-DOT
and SVR-DOT. A trade-off between accuracy of depth estima-
tion and resolution is probably unavoidable when using general
approaches such as those described here, and in these cases, the
investigators need to choose the lesser of two evils (a fuzzier
solution versus an incorrect one). An alternative approach is
to introduce additional constraints based on anatomical or
other information. A problem with this alternative approach
is that it is not always clear how valid and generalizable
these constraints are. The approach presented in this paper is
more general and can help identify extracerebral components
of fNIRS recording. It can also be applied to a broader spectrum
of DOT data. In summary, using an energy and Laplacian l2

regularization procedure with tuned regularization parameters,
we were able to obtain a stable and accurate closed-form solu-
tion of the inverse DOT problem that showed stability to change
in geometry and optical properties typically encountered in
brain DOT. The energy/Laplacian regularization algorithm
was also tested in a phantom study where an absorption pertur-
bation was varied in depth in a homogeneous medium. A good
correspondence with simulations was obtained, supporting the
simulation results. Finally, the possibility of applying this
method in vivo was tested by comparing fMRI and ELR-
DOT data for a single subject who underwent a typical visual
eccentricity study. A good correspondence was obtained
between fMRI and ELR-DOT results. ELR-DOT could provide
robust, unbiased depth estimation of fNIRS data up to a depth of
∼30 to 33 mm in the adult human head. The Laplacian regulari-
zation scheme can be considered a useful mathematical tool
when accurate depth estimation is preferred over lateral resolu-
tion of diffuse optical data.
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