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Abstract. A theoretical framework, a partial correlation-based functional connectivity (PC-FC) analysis to
functional near-infrared spectroscopy (fNIRS) data, is proposed. This is based on generating a common
background signal from a high passed version of fNIRS data averaged over all channels as the regressor
in computing the PC between pairs of channels. This approach has been employed to real data collected during
a Stroop task. The results show a strong significance in the global efficiency (GE) metric computed by the PC-FC
analysis for neutral, congruent, and incongruent stimuli (NS, CS, IcS; GEN ¼ 0.10� 0.009, GEC ¼ 0.11� 0.01,
GEIC ¼ 0.13� 0.015, p ¼ 0.0073). A positive correlation (r ¼ 0.729 and p ¼ 0.0259) is observed between the
interference of reaction times (incongruent–neutral) and interference of GE values (GEIC −GEN) computed from
[HbO] signals. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.22.12.126003]
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1 Introduction
The main challenge of the state-of-art of functional near-infrared
spectroscopy (fNIRS) systems has been to accurately recover
the deep cortical signals that are undoubtedly buried inside
the upper layer hemodynamic signals. Since the measurements
are performed from the skin surface, the photons travelling from
a source to a detector will be modulated by the hemodynamic
changes occurring at each layer. fNIRS techniques have been
shown to suffer from the corruption of upper layer hemo-
dynamic activity and only a fraction of the signal measured
is attributed to cortical signals.1 The source–detector configura-
tion necessary to ensure a penetration to the cortical level results
in unfortunate sampling from the skin, where systemic physio-
logical changes are reflected as hemodynamic changes. Hence,
any further analysis on these signals will suffer from the corrup-
tion of these systemic fluctuations.2–10 One major analysis,
where this corruption will lead to false positives, is the func-
tional connectivity (FC) studies.

FC can be computed most easily by the use of a correlation
coefficient between channels of fNIRS measurements. For a
multichannel system, the correlation coefficient ρ̂ij between
any two channels (xi and xj) can be computed by

EQ-TARGET;temp:intralink-;e001;326;449ρ̂ij ¼
Cðxi; xjÞ
σxiσxj

; (1)

where Cðxi; xjÞ is the covariance between the two channels, σxi
and σxj are the standard deviations of the variables xi and xj.
Due to physics of photon propagation in turbid media, the col-
lected signal will be carrying information from the underlying
tissues. Hence the signal, xi, will include cortical as well as non-
cerebral tissue dynamics. The collected signal can then be mod-
eled as a weighted sum of the activities of the underlying tissues:

EQ-TARGET;temp:intralink-;e002;326;334xiðtÞ ¼ wbsbi ðtÞ þ wsssðtÞ þ nðtÞ; (2)

where wb and ws are the contributions (i.e., percentage) of a sig-
nal [i.e., the regional brain signal, sbi , the systemic signal, ssðtÞ]
to the signal at the channel, and nðtÞ is the instrumentation and
other random noises modeled as a Gaussian zero mean white
process. Hence, by substituting Eq. (2) into Eq. (1), combining
ssn ¼ ssðtÞ þ nðtÞ, and expanding the nominator and denomina-
tor terms, we get

EQ-TARGET;temp:intralink-;e003;63;190ρ̂ij ¼
Cðsbi ; sbj Þ þ Cðsbi ; ssnÞ þ Cðsbj ; ssnÞ þ Cðssn; ssnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2ðsbi Þ þ σ2ðssnÞ þ 2Cðsbi ; ssnÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2ðsbj Þ þ σ2ðssnÞ þ 2Cðsbj ; ssnÞ
q ; (3)

but we are interested only in finding the correlation between the
cortical regions: EQ-TARGET;temp:intralink-;e004;326;126ρij ¼

Cðsbi ; sbj Þ
σsbi σsbj

: (4)
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Since we do not have access to the individual covariances
and variances in Eq. (3), we need to propose a method to extract
this information. The issue, then, becomes the proper and accu-
rate way of regressing out the contaminating signals to estimate
the correlation of the brain regions, as the definition of FC
requires. Several researchers have proposed to use a second
detector placed closer to the source (short separation detector)
that will be sensitive to changes only on the superficial layers to
regress out the systemic fluctuations contaminating a detector
placed farther away from the source.2,6,9–15 The use of an
SSD has been investigated deeply due to its ambiguity of its
placement (how short is short enough?).11 It also increases
instrumentation and data analysis complexity, not to mention
the extra burden it brings to ergonomics of the probe. Hence,
many have promoted the use of advanced signal processing
techniques to overcome the contamination problem. This paper
is yet another proposal that advocates the use of such a tech-
nique to maintain the view that “few is better.”

We propose the use of a partial correlation (PC)-based FC
analysis that removes the unwanted correlation due to extracere-
bral contamination. In many of fMRI and fNIRS studies, PC is
considered as a suitable criterion for investigation and under-
standing of brain FC.16–23 FC studies using fNIRS have been
conducted recently17,24–31 and have further been linked to
graph theoretical approaches.32 Similarly, FC analysis with
the PC approach has been proposed both by our group and
others.17,23,33,34 Our group has shown that using the remaining
14 channels of a 16-channel fNIRS measurement system as the
regressors of the PC analysis, we can provide reliable estimate
of the FC analysis. The assumption behind this approach was
that there are local systemic fluctuations at each measurement
site (channel) and they are also picked up by any channel.
Hence, when computing the correlation between two channels,
one must take into account the distorting affect of the remaining
14 channels. This paper challenges this assumption by the fact
that there is one unique systemic fluctuation embedded in each
channel, and that its frequency content is different from the
hemodynamic response to cognitive stimulus. This systemic
fluctuation can be recovered by taking an average of the high
pass filtering of the signal from each channel. Hence, our
aim in this paper is to propose a theoretical framework to com-
pute the FC of fNIRS signals based on the PC approach and
a signal processing algorithm that can be adopted in computing
the FC for fNIRS data.

2 Methods
The first part of Sec. 2 presents a simulation study that generates
synthetic data to investigate if PC-based connectivity outper-
forms the conventional correlation analysis for computing
FC-derived metrics. The second part of the section explains
how the multichannel fNIRS data have been processed to pro-
vide PC-based FC metrics.

2.1 Simulation Analysis

Studies in photon migration in tissues have shown that photons
follow a somewhat banana shape trajectory between a source
and detector pair. Placing the source–detector with a certain dis-
tance apart, we can probe the tissues with a particular depth sen-
sitivity profile similar to a banana shape, as shown as in Fig. 1.

A signal received by a photodiode includes the changes in the
absorption within the underlying tissues. In the near-infrared
light spectrum, the highest absorbers are the [Hb] and [HbO]

and a spectroscopic measurement of the absorption will yield
the concentration changes of these chromophores, which
can be calculated from Beer–Lambert’s law, explained in detail
in other studies.1,35–37 Since absorption change within a layer
of tissue l at a specific wavelength λ is formulated as Δμλl ¼
ελCΔCl, where ελC ¼ ½ελHbελHbO� and ΔCl ¼ ðΔ½Hb�lΔ½HbO�lÞT
for fNIRS studies, we can define a signal model for the [Hb]
and [HbO] concentrations for any l layer in the form of Hbl
and HbOl.

2.1.1 Signal model

Let us assume that the hemodynamic changes [hCl ðtÞ] at each
layer (l) for given chromophore (C) can be modeled as a sum
of independent signal activity (S) weighted with layer specific
weights (W), as shown below:

EQ-TARGET;temp:intralink-;e005;326;368hCl ðtÞ ¼ WS; (5)

where the entries of the matrix W, wl;k are the weights of a spe-
cific hemodynamic activity skðtÞ at that specific layer l that are
the entries of the S matrix. For the sake of simplicity, we will
assign three signal activities to be present at each layer: sbðtÞ,
brain hemodynamic response function (BRHF); ssðtÞ, task irrel-
evant systemic physiological hemodynamic fluctuations; and
snðtÞ, uncorrelated instrumentation noise, modeled asN ð0; σnÞ.
Hence, S ¼ ½sbðtÞssðtÞsnðtÞ�. Naturally, the weight of sbðtÞ for
the first and second layers will be zero (i.e., wb

1 ¼ wb
2 ¼ 0,

wb
3 ¼ 1) while 0.1 ≤ ws

1 ¼ ws
2 ¼ ws

3 ≤ 1.
Traditionally, sbðtÞ and ssðtÞ are defined as follows:

EQ-TARGET;temp:intralink-;e006;326;211sbðt − θbi Þ ¼ ðt − θbi Þ2e
−
h
ðt−θb

i
Þ

τ

i
; (6)

EQ-TARGET;temp:intralink-;e007;326;168ssðt − θsi Þ ¼
�
sin

�
2π

f1
fs

ðt − θsi Þ
�
þ sin

�
2π

f2
fs

ðt − θsi Þ
��

;

(7)

where sbðt − θbi Þ is the brain BHRF modeled as a gamma func-
tion with a delay of θbi , a linearly increasing value for each chan-
nel ranging from 3 to 10 s to assure a variance in the correlation
values between each channel;38,39 ssðt − θsi Þ is the systemic

Fig. 1 Geometry of the simulation set up. S, source; D, detector; L1
stands for the skin layer of the head; L2 for skull and cerebrospinal
fluid (CSF); and L3 for cortex. Vasculature in L2 has been ignored
since it contains negligible amounts of [Hb] and [HbO] variations.
The tubes represent the veins running parallel to the source–detector
axis. Optical path is illustrated as the semitransparent banana shaped
figure.
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fluctuations, typically, the Mayer’s wave (resonance frequency
of f1) and the breathing-related hemodynamic fluctuations
(resonance frequency of f2), with a randomized delay of θsi
for each channel and fs is the sampling rate. Simulated signals
for several channels and the correlation between them can be
seen in Fig. 2(a). Figure 2(b) shows the original BHRF and
the mixture signal from Eq. (5).

In all the simulations, wb
3 ¼ 1 while ws

1 ¼ ws
2 ¼ ws

3

and ws
3 ¼ f0.1; 0.2; : : : ; 1g.

2.1.2 Functional connectivity analysis

We have decided to use a rectangular probe geometry to simu-
late the fNIRS signals, as shown in Fig. 3.

We decided to compute the FC using a PC-based analysis.
PC provides a relationship between two variables after removing
the overlap from both variables. The diagram in Fig. 4 depicts

PC between time series 1 and 2 in the presence of a third time
series 3. The PC coefficient between 1 and 2 after removing the
influence of 3 (r1;2j3) is as follows:

20

EQ-TARGET;temp:intralink-;e008;326;337r1;2j3 ¼
r1;2 − r1;3r2;3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − r21;3Þ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − r22;3Þ
q : (8)

This equation can be generalized to compute PC between any
two channels ði; jÞ as ri;jjk in the presence of a common influ-
encer (k).

Since the fNIRS signal model assumes a linear addition of
the BHRF with systemic fluctuations and noise, we assumed a
certain frequency band for the brain-related signals and systemic
fluctuations.

2.2 fNIRS Data

The data were collected in an earlier study.24,40 Twelve healthy
controlled subjects performed the computerized version of the
color-word matching Stroop task.41 The subjects were asked to
respond to 90 stimuli presented on a screen every 4 s, in groups
of six stimuli within each block. Fifteen blocks were divided
into five NS, five CS, and five IcS type of stimuli and presented
in a random fashion. There were 20 s of rest within each block.
The subjects were asked to respond to stimuli by pressing either
the left or the right button of the mouse based on a match or
unmatch condition. fNIRS data were collected with a 16 channel
dual wavelength continuous wave system with a sampling rate

Fig. 3 Rectangular probe geometry used in the simulations. The
sources are the red circles while the detectors are the black squares.
The source–detector separation is fixed at 2.5 cm. Probe is placed so
that channel 1 is on the left, midline of the probe is aligned with the
midline of the forehead, and the bottom row is right above the eye-
brows. A detailed placement and anatomic localization of the
probe can be seen in Ref. 4.
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Fig. 2 (a) Simulated HRF signals for different channels with a certain
delay. (b) A mixed signal simulation for channel 1 based on Eq. (5)
with sbðtÞ in green, the mixed signal hl ðtÞ in blue, and subtracted
filtered signal x̂ðtÞ in red. The parameters of the simulation are
wb

3 ¼ 1, τ ¼ 1, ws
3 ¼ 0.1, f 1 ¼ 0.1 Hz, f 2 ¼ 0.25 Hz, f s ¼ 2 Hz, and

snðtÞ ¼ N ð0;0.01Þ.

Fig. 4 The shaded region is a graphical representation of the PC
between 1 and 2 in the presence of 3.
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of 1.7 Hz (ARGES Cerebro, Hemosoft Inc., Ankara, Turkey).
The source–detector configuration is shown in Fig. 3 with a sep-
aration of 2.5 cm. Absorption data collected at each detector are
converted to [Hb] and [HbO] via the modified Beer–Lambert’s
Law. The protocol was approved by the Ethical Review
Committee of Bogazici University.

2.2.1 Functional connectivity analysis

Both the [Hb] and [HbO] data from each channel are passed
through a high pass filter (Butterworth, eigth order,
fc ¼ 0.09 Hz) to obtain the HBOi

R and HBi
R. The regressor

used in PC-based FC analysis is obtained by averaging this
signal over all the channels. Hence, HBOR ¼ P

iHBO
i
R

(HBR ¼ P
iHB

i
R) is used to regress out the systemic physiologi-

cal effects from the correlation of the unprocessed [HbO] ([Hb])
signals from two channels. Once the regressor is computed, NS,
CS, and IcS parts are consolidated to form individual time series
for these stimuli. The FC matrices computed for individual
time series are thus termed as FCN , FCC, and FCI .

2.2.2 Global efficiency

One of the aims of cognitive neuroscience is to investigate the
neural correlates of cognition.42–44 Graph-based network analy-
sis is the state-of-the-art methodology in brain connectivity. We
considered the channels as a set of vertices V and the PC coef-
ficients as assigned weights on the set of edges E, between
vertices to construct an undirected complete weighted graph
G ¼ ðV; EÞ.45–47 We investigated the FC graphs of the PCs
of each channel for each stimulus type.

Global efficiency (GE) can be evaluated for a wide range of
networks, including weighted graphs.46 Maximal possible GE
occurs when all edges are present in the network. The GE
value was computed by using the formulation of Latora and
Marchiori,48 since it applies to work with weighted connectivity
graphs. In this case, the GE is

EQ-TARGET;temp:intralink-;e009;63;348GE ¼ 1

NðN − 1Þ
X
i≠j∈G

1

dij
; (9)

where dij is defined as the smallest sum of the physical distances
throughout all the possible paths in the graph from i to j.48 For
weighted graphs, stronger connection weights correspond to
shorter lengths. Equation (9) generates values of GE in the
range of [0,1].

3 Results

3.1 Simulation Analysis

The simulated signals for various weights as in Eq. (5) were
used to compute the FC matrices. The plots in Fig. 5(a) show
a sample of such signals while the errors in estimating the FC
matrices are given in Fig. 5(b).

The top plot in Fig. 5(a) depicts how difficult it is to observe
the presence of the hemodynamic response from the raw [HbO]
signal. Figure 5(b) shows how well the PC-based computation
of the correlations is closer to real correlation values. As the
weight of the systemic fluctuations increases and starts to domi-
nate the whole signal, the accuracy of extracting the real corre-
lation value decreases.

3.2 Real Data Analysis

A sample of fNIRS data from subject 1 and the corresponding
regressor signal (HBOR) can be seen in Figs. 6(a) and 6(b). The
high pass filter setting was set at 0.09 Hz.49–51 Once the regres-
sor is obtained, the data are segmented into NS, CS, and IcS
parts. The choice of these cutoff frequencies was based on
the fact that Mayer’s wave is centered around 0.1 Hz with a
slight variation from 0.09 to 0.11 Hz.52–55 So the choice for
the cutoff frequency for the high pass filter was based on the
lower end of the Mayer’s wave band. Note that no further filter-
ing was applied to the raw data when computing the PCs. Once
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Fig. 5 (a) Simulated HRF signals for different channels with a certain
delay. A mixed signal simulation for channel 1 based on Eq. (5) with
sbðtÞ in red and the mixed signal hl ðtÞ in blue. The parameters of the
simulation are ws ¼ 0.3, τ ¼ 1, f 1 ¼ 0.1 Hz, f 2 ¼ 0.25 Hz, f s ¼ 2 Hz,
and snðtÞ ¼ N ð0;0.03Þ. The first plot in (a) shows the raw HbO signal,
second row Butterworth low pass filtered signals and last plot shows
the averaged regressor signal HbOR after being passed through a
Butterworth type high pass filter, (b) errors in estimating the FC matri-
ces. ECO is the error with respect to Pearson’s correlation coefficient,
EBW is the error after low pass filtering with a Butterworth filter, and
EPC is the error with respect to PC analysis. The numbers above the
bars indicate the percent improvement in the accuracy (decrease in
the errors) between the low pass filtered and PC-based connectivity
matrices.
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the regressor is formed from the raw data, then this regressor
was used in computing the PC pairs of channels of unfiltered
fNIRS data. This way any smearing effect of the spikey artifacts
due to low pass filtering was minimized.

3.2.1 Functional connectivity of real data

A comparison was made between the conventional FC method
and the PC-based FC method. Conventional FC matrices were
formed by computing the Person’s correlation coefficient of
pairs of channels after each fNIRS channel was low pass filtered
(in this case with a fourth order Butterworth low pass filter with
a cutoff frequency of 0.08 Hz).49–51 Figures 6(c) and 6(d) show
the average of FC matrices for IcS computed by the Pearson’s
correlation and PC analysis, respectively.

Note that there are high correlations (over 0.8) in almost all
the channel pairs for the Pearson’s coeffecients [Fig. 6(c)] but
not that diffusely scattered for the PC matrix [Fig. 6(d)]. This
can be attributed to the fact that there are underlying systemic
fluctuations embedded in each channel that dominate the overall
correlation between two channels as hypothesized by the signal
model in Sec. 2.1.1. This dominance seems to be cleared away
in the FC matrix computed via the PC method, as shown in
Fig. 6(c). Table 1 compares numerically the FC matrices for
three different stimuli computed by the Pearson’s correlation,

PC, and thresholded PC approach in which the common regres-
sor HBOS

R (S is NS, CS, or IcS) is used.
These results elucidate the fact that there is a strong domi-

nance of the background activity present in the signals that rep-
resents itself as high correlations among channels. This strong
dominance of the underlying background activity is also evident
by the fact that as the stimulus gets more demanding, the aver-
age strength of correlation increases in Pearson’s coefficients
but not in PC coefficients. This increase can be explained by
a stimulation of the sympathetic system during activities
demanding higher cognitive engagement that leads to an
increase of heart rate, blood pressure, blood flow to the
brain, and breathing rate. On the contrary, no significant increase
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Fig. 6 (a) A representative HBO2 data from channel 4 of subject 1 is low pass filtered with a fourth order
Butterworth filter with a cutoff frequency at 0.08 Hz.49 NS, CS, and IcS episodes are marked with varying
colors. (b) The regressor for subject one is obtained by averaging the high pass filtered signal at 0.09 Hz
of each channel. (c) Average of FC matrices for IcS calculated with Pearson’s correlation to low pass
filtered data (n ¼ 12 subjects, FCI ) and (d) FCI matrix calculated by PC.

Table 1 Average of FC matrices {
P16

i¼1

P
j¼1 16½FCI ði ; jÞ−FCN ði ; jÞ�}

computed over 12 subjects with different algorithms. TH-partial:
thresholded PC matrices.

ST Pearson’s correlation Partial TH-partial

NS 0.5042 0.4110 0.0729

CS 0.5153 0.3517 0.0714

ICS 0.5285 0.4031 0.0718
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is observed for the values obtained by the PC analysis (see sec-
ond column of Table 1). The elimination of this dominance is
also evident in the decrease of the average strength of the cor-
relations, as shown in the last row of Table 1 (from 0.5285 to
0.4031, a 23% decrease).

3.2.2 GE values for real data

The FC matrices are usually thresholded at a certain cutoff level
to leave only a percent of the strongest connections before the
computation of GE values. A scan of threshold values leaving
the strongest 15 to 25 values yielded the highest significance
among three different stimuli at GE values for [HbO] FC matri-
ces (TH ¼ 21) and TH ¼ 24 for [Hb]. Average of the thresh-
olded [HbO] FC matrices computed after thresholding at
these values is shown in Figs. 7(a)–7(d), while their average
correlation values are shown in the last column of Table 1.
The average of the interference matrices (FCI − FCN ) in
Fig. 7(d) shows an increase of the correlation values in the
right dorsolateral prefrontal cortex (dlPFC), which is in line
with several of the fNIRS findings.

Since not every subject had high correlations for the same
channel pairs, the average values are lower for the averaged
FC matrices [note the highest value in the colorbar is 0.6 for
Figs. 7(a)–7(c)]. The average of thresholded FC matrices shows
a clustering trend toward the right dlPFC (channels 9 to 16) as
the stimulus became cognitively more demanding. Figure 7(d) is
the difference between Figs. 7(a) and 7(c), and elucidates that

the correlation values on the right dlPFC increases in strength
(an average increase of 0.0028) while a consecutive decrease (an
average of −0.0056) is observed for the left dlPFC (channels 1
to 8).

The GE values computed from the FC matrices generated by
regular correlation (Pearson’s correlation coefficient) of low
pass filtered data (via Butterworth filter) did not show any sig-
nificant differences for various types of stimuli (p > 0.05).
When the correlations are computed via the PC analysis, we
observed an increase in the GE values as the cognitive task
became more demanding. GE values apparently change with
respect to the threshold used for the FC matrices. We swept
the threshold values (TH) and observed the significance
among theGEN,GEC, andGEIc both for [Hb] and [HbO] values.
The TH value shows that the highest significance was observed
for TH ¼ 21 for [HbO], which corresponds to 8.75% of the
highest correlations when the diagonals are omitted (21/240)
and TH ¼ 24 for [Hb] data. In a study by Zhang et al.,30 a strong
lateralization effect was observed, favoring the flow of informa-
tion to the right side. We grouped the detectors into four areas,
where L (left) corresponds to the GE computed for detectors
from the FC matrices 1 through 8 [i ¼ 1: : : 8, j ¼ 1: : : 8 in
Eq. (9)], R (right) for detectors from 9 through 16 [i ¼ 9: : : 16,
j ¼ 9: : : 16 in Eq. (9)], IH corresponds to interhemispheric con-
nectivity and the GE was computed from FC matrices of 1
through 8 with 9 through 16th detectors [i ¼ 1: : : 8,
j ¼ 9: : : 16 in Eq. (9)], as shown with dark squares in Fig. 7(d).
Whole (W) corresponds to the GE computed from the full FC
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Fig. 7 Average of FCmatrices over all subjects for (a) NS, (b) CS, (c) IcS, and (d) interference for IcS-NS
are shown. Note that the interference values are in the range of −0.2 to 0.2.
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matrix. Table 2 shows the change of GE with respect to different
stimuli for different areas of the PFC. As the GE in the left both
for [Hb] and [HbO] decreases with varying stimuli difficulty in
a statistically nonsignificant manner, the GE in the right both for

[Hb] and [HbO] shows a statistically significant increase. This
finding is consistent with the literature where the Stroop inter-
ference affect was found to be localized bilaterally.30,40,41,56,57

Zhang et al.30 claim to see an increase in the information flow
from left to right dlPFC during interference. Figure 7(d) and
consecutively Table 2 lead us to speculate that connectivity
strength increases in the left and right dlPFC, but the connec-
tivity pattern is diffused in the left while being more focused for
the right.

It should be mentioned that the number of subjects included
in the analysis in Table 2 had to be trimmed to achieve statistical
significance. Only the highest and lowest GE values obtained
from [HbO] data are eliminated while a higher number of sub-
jects had to be eliminated from [Hb] data to achieve same sig-
nificance levels. This result is in line with the literature, where
[HbO] data are favored over [Hb] in cognitive studies due to its
higher sensitivity to cognition-related hemodynamic changes.

The average interference values computed from GE for [Hb]
and [HbO] data are shown in Fig. 8(a). Interference of the
behavioral data (as reaction rates) shows a positive (negative)
correlation for the interference values of the [HbO] ([Hb])
data, as shown in Fig. 8(b).

4 Discussion
Systemic physiological fluctuations have a deteriorating effect
on the accuracy of computing the correlation of fNIRS
signals.29,58–61 Several studies have attempted to address this
issue by either advanced signal processing techniques or
improvements in instrumentation and probe design albeit at
increased cost and complexity of engineering.2,62

The current study proposes the use of PC-based connectivity
computation under the assumption that a far detector signal is
contaminated with systemic fluctuations that cannot be sepa-
rated or regressed out with advanced signal processing tech-
niques due to overlaps in time and frequency domains.
Hence, the only solution becomes a statistical means of comput-
ing the correlation between a pair of channels.

4.1 On the Accuracy of Low Pass Filtering

We have shown in the first two scenarios that filtering with a low
pass filter does not improve the correlation estimation since we
do not have access to the frequency characteristics of the sys-
temic fluctuations. The shortcoming of a correlation computa-
tion after signals is low pass filtered, which can be proven by
deductive reasoning as follows.

Assume that the i’th detector signal [xiðtÞ] is modeled as
the sum of the brain activity, sbi ðtÞ, and nuisance term, snðtÞ,
[xiðtÞ ¼ sbi ðtÞ þ snðtÞ] and j’th detector signal as [xjðtÞ ¼
sbj ðtÞ þ snðtÞ]. Assuming that there is an overlap in the spectrum

Table 2 GE values (rounded) with respect to PFC areas for the three
stimuli types. Standard deviations are discarded but statistical signifi-
cance (p value) was computed by paired two-tailed t -test. n is the
number of subjects included in this analysis.

ST

Hb (n ¼ 6, TH ¼ 24) HbO (n ¼ 10, TH ¼ 21)

L+ R IH* W* L+ R* IH W*

N 0.57 0.51 0.43 0.12 0.51 0.48 0.34 0.10

C 0.53 0.52 0.42 0.12 0.49 0.46 0.36 0.11

IC 0.52 0.55 0.47 0.14 0.46 0.56 0.36 0.13

Note: ST, stimulus type. + indicates p < 0.1, while * indicates p < 0.05.
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Fig. 8 (a) Average interference of GE (GEIC −GEN) from [Hb] (n ¼ 6)
and [HbO] (n ¼ 10) data for the different areas of PFC (+ for
p < 0.1, * for p < 0.05). (b) Correlation with the interference of the
behavioral data (reaction rates RT Ic − RTN) with interference of
GE (GEIc −GEN) for the whole PFC.

Fig. 9 Spectral composition of the signal from the i ’th detector,
jX i ðf Þj, can be given as the sum of the spectrum of the band-limited
brain signal, jSb

i ðf Þj, with the spectrum of the wide-band nuisance sig-
nal, jSnðf Þj, which is the sum of systemic fluctuations and other types
of noises. Typical filter response is superimposed on the last graph.
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of these signals, as depicted in Fig. 9, then a low pass filter
applied to the sum signal (spectrum with jXiðfÞj) will inevitably
include a piece of the nuisance spectrum.

Since low pass filters have nonideal characteristics, a leakage
of unwanted signals will be present in the filtered signal. This
will result in inaccurate estimation of the correlation coefficient.
This same problem of a background activity dominating the
channels exists in EEG analysis, where due to volume conduc-
tion effect, channels are superimposed with this background
activity. This must be removed if accurate correlations are to
be computed. Our results show a deviation from the original
connectivity values even after signals are filtered with various
filter types. Error in FC matrices for the Butterworth type of
filter produces very similar yet lower error values compared
to no preprocessed data, as expected. As the contamination
weight increases (i.e., increase in ws

i ) so do the errors in com-
puting the correlation values, as shown in Fig. 5(b).

4.2 On the Accuracy of PC-based Approach

Since there is some sort of dependence between the brain signals
and the contaminating signals both in the time and frequency
domains, it would be extremely difficult to try to separate
them from each other with conventional signal processing
tools, such as digital filtering, PCA, or ICA. All these methods
require several conditions of independence in time or frequency
domain. Kalman filtering would work if there were access to
systemic fluctuation data with a detector placed closer to the
source (short detector), as has been proposed by several
investigators.6,13,63–66 Hence, the only solution if one wants to
compute the correlation under such dependence assumption
and a fixed source–detector separation is the use of a PC
approach, where one can compute the correlation under a con-
trolled variable. This is exactly what the simulation shows. Its
accuracy exceeds by far both the filtered scenarios by almost
two to three folds, as shown in Fig. 5(b). Yet even this approach
cannot reach a zero level accuracy due to its use of a filter (this
time a high pass filter used when computing the nuisance signal
that will be used as the controlling variable). Hence, the success
of this method depends on how good the nuisance signal can be
provided to the algorithm. One solution is the use of a short
detector, which will pick up signals only from the skin.
Similarly, the use of a pulse oximetry signal even from the fin-
gertip might prove to be useful as long as one can account for the
delays in the systemic activity. Similar to the low pass filter’s
performance, the PC-based approach starts to fail as the con-
tamination level increases.

One alternative approach could be the use of this common
nuisance signal (HBOR) in regressing it from the main detector
signal using a general linear model (GLM) based approach. This
might be possible but it will introduce other computational steps
before actually computing the correlation (first the GLM
approach, then reconstruct the HBO signal with the β‘s that
are statistically inferred from the GLM approach, then compute
the correlation). Hence, it will undoubtedly introduce more
errors even due to the use of numerical methods.

4.3 Real Data Analysis

Having shown that if one has access to only far detector data and
no means to measure some sort of systemic activity, then PC-
based connectivity analysis is the best choice. Our results show
that with conventional means of computing, the connectivity

yielded statistically nonsignificant findings in our fNIRS con-
nectivity analysis. A very significant difference is observed
among the GE for the three different stimulus types, as
shown in Table 2. Several studies have shown a right dominance
for the Stroop activity.30 Our results also confirm a shift toward
right dlPFC connectivity as the stimulus becomes more chal-
lenging [from neutral stimulus (NS) to incongruent stimulus
(IcS)], as shown in Table 2. As the GE in the left PFC decreases
for increasing task complexity, the right PFC picks up and the
interhemispheric GE increases, as shown in Fig. 8(a) although
not significantly. There is a clear dominance of the left dlPFC, as
indicated by many activation and connectivity studies.40,67–74

Astolfi et al.75 showed a bilateral connectivity in the Stroop
task with a “predominance of outflow from right premotor
and prefrontal cortical areas.” In both the [Hb] and [HbO]
GE results, we see a drop in the incongruent stimuli compared
to the neutral stimuli in the left side and a consequent increase
in the interhemispheric and whole head interference results
[Fig. 8(a)]. This can be interpreted as the aggregation of shorter
paths to one longer path (leading to an increase in GE) for the
[HbO] signal.

Similar to some fMRI studies, there is a negative correlation
between the interference observed in reaction rates and the inter-
ference computed by GE values, as shown in Fig. 8(b), for
[HbO] at the left and interhemispheric connectivity metrics.
A significant positive correlation is observed for the [HbO]
for whole head connectivity analysis (r ¼ 0.729, p ¼ 0.0259)
while a significant negative correlation (r ¼ −0.745,
p ¼ 0.0213) is observed for interhemispheric connectivity from
[Hb] data, as shown in Fig. 8(b). A positive correlation between
the interference computed for the reaction rates and GE values
means that as the cognitive challenge increases, sequential short
paths are replaced by one long path, a direct connection between
distant areas. An exact opposite is observed for the [Hb] inter-
ference, where the negative correlation means that a smaller
interference in reaction times gives higher interference in GE
values. An explanation can be as follows: as the cognitive chal-
lenge increases, brain regions working in coherence increase,
leading to a simultaneous demand of oxygenated blood to those
regions (hence an increase in the GE observed for [HbO]), yet
the venous side is not necessarily as coordinated leading to a
drop of efficiency. Neurovascular coupling literature has united
on the finding that both neurons and astrocytes may lead to a
vasodilation of the arteriole smooth muscle cells in response
to glutamate releases during neuronal activation.76,77 We
might also infer that [Hb] activity is mostly regulated on a
regional basis in a passive way and independent of the unifica-
tion required for responding to a cognitive challenge, much
similar to a balloon effect.78–80 That type of demand can be
explained only by the increase in [HbO] activation and its
GE metrics.

5 Conclusions
This study aimed at proposing a PC-based FC analysis for
fNIRS [HbO] and [Hb] signals collected during a color word
matching Stroop task. GE values calculated from the connectiv-
ity metrics of [HbO] signals reveal that as the cognitive chal-
lenge increases, so does the GE value. The use of PC-based
analysis was preferred since the optode signals suffer greatly
from systemic physiological interference. We proposed a
method to eliminate its biasing effect when a correlation is com-
puted between a pair of channels. This way the reliability of the

Journal of Biomedical Optics 126003-8 December 2017 • Vol. 22(12)

Akın: Partial correlation-based functional connectivity analysis for functional. . .



connectivity analysis is improved and the results are conse-
quently more accurate.
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