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Abstract. Visualization and assessment of the cellular
structure and function require localized delivery of the mol-
ecules into specific cells in restricted spatial regions of the
tissue and may necessitate subcellular delivery and locali-
zation. Earlier, we have shown ultrafast near-infrared laser
beam-assisted optoporation of actin-staining molecules
into cortical neurons with single-cell resolution and high
efficiency. However, diffusion of optoporated molecules
in soma degrades toward the growth cone, leading to dif-
ficulties in visualization of the actin network in the growth
cone in cases of long axons. Here, we demonstrate opto-
poration of impermeable molecules to functional cortical
neurons by precise laser subaxotomy near the growth
cone, leading to visualization of the actin network in the
growth cone. Further, we demonstrate patterned delivery
of impermeable molecules into targeted retinal cells in the
rat eye. The development of optoporation as a minimally
invasive approach to reliably deliver exogenous molecules
into targeted axons and soma of retinal neurons in vivo will
enable enhanced visualization of the structure and func-
tion of the retina. © 2017 Society of Photo-Optical Instrumentation

Engineers (SPIE) [DOI: 10.1117/1.JBO.22.6.060504]
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1 Introduction
Visualization, activation, and detection of the neuronal structure
and function require targeted delivery of proteins, such as anti-
bodies, genes encoding reporter proteins, ion channels, and
voltage indicators. The introduction of foreign DNA,1 short-
interfering RNA,2 small molecules, proteins,3 and drugs into liv-
ing cells, organs, and whole organisms is essential for a variety
of applications in genetics, cell and developmental biology,
vaccination,4 gene therapy,5,6 and other therapeutic strategies.
Further, the transfection of plasmids encoding fluorescent
proteins7 is routinely used to visualize cellular and subcellular

structures and also to study various functional aspects of cell and
developmental biology.8 To visualize and control physical con-
nection, expression pattern, and neural activity, it is necessary to
deliver genes encoding fluorescent molecules (proteins for
labeling), ion channels (for activation by light), genetically
encoded voltage indicators (for detecting neural activity), and
other molecules, such as antibodies/fluorescence dyes targeted
to intracellular organelles. Further, for understanding of the
neuronal function, it will be useful to localize the expression
of the targeted molecules in neurons in restricted spatial regions
and even subcellular regions. Traditional methods (e.g., lipid-
based transfection or electroporation) for delivery lack the abil-
ity of spatially targeted delivery. Therefore, there is an urgent
need for development of a minimally invasive approach to reli-
ably deliver probe molecules into targeted neurons for visualiz-
ing the structures and assessing the functions. Furthermore,
neurological disorders having spatial aberrations such as geo-
graphic atrophies of the retina will benefit from targeted delivery
of various therapeutic drugs or small molecules in spatially
targeted cells or tissue.

The membranes of targeted cells can be transiently perfo-
rated in a minimally invasive manner by use of a tightly focused
pulsed laser beam, allowing exogenous molecules to enter the
cell. Over the last decades, laser-assisted perforation has been
applied to inject macromolecular substances into single plant
and animal cells in a noncontact and noninvasive manner.
There is considerable interest in optically transfecting (optopo-
ration) cells using ultrafast-pulsed light9–18 because of its selec-
tive targeting capability, higher efficiency, and viability9,17 as
compared to other methods. The femtosecond (fs) near-infrared
(NIR) laser-based transfection has been shown to be safe, pro-
viding high efficiency and survival of optoporated embryo dur-
ing development,19 as well as for in-vivo gene delivery.20 Earlier,
we demonstrated the use of ultrafast NIR laser microbeam for
spatially localized transfection of opsin-encoding genes into
neurons in retinal explant10 as well as into other mammalian
cells.21 Though ultrafast optoporation-based delivery provides
an increased efficiency of gene transfer in cells and several
tissues,9,10,20 optoporation at axonal level has not been demon-
strated so far. Though optoporated molecules (in soma) can
diffuse to the growth cone, the diffusion becomes weaker
when the growth cone is far from soma. Here, we report that
impermeable actin-staining dyes can be reliably delivered into
axons of living cortical neurons, allowing rapid localization in
the growth cone. Further, we demonstrate the use of ultrafast
laser microbeam for targeted delivery of molecules to the retina
in intact rat eye.

2 Methods
All experimental procedures were conducted according to
the Institutional Animal Care and Use Committee approved
protocol.

2.1 Neuron Isolation and Culture

The cortical neurons were isolated from embryonic 18-day rat
embryos. The cortical tissues were dissected, cleaned (menin-
geal layer), and enzymatically dissociated (0.125% trypsin in
L-15 medium) for 20 min at 37°C. The dissociated cortical neu-
rons (100,000/device) were seeded on poly-D-lysine (0.01%,
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Sigma) precoated coverglass with polydimethylsiloxane
barrier (Sylgard 184, Dow Corning), and the serum-free culture
medium (neurobasal medium supplemented B-27 with brain
derived neurotrophic factor and NT-3, 10 ng∕ml) was changed
every 3 days.

2.2 Eye Isolation and Intravitreal Injection

Whole eyes were isolated from the adult rat by dissection and
immediately used for optoporation. The connective muscles
from the eye were cleared, and the eye was kept inside a
well filled with HEPES buffer solution. 5 μl of Alexa 594
phalloidin solution (1 μM) was injected to the intravitreal
space using a Hamilton microsyringe inserted through the sclera
into the vitreous cavity. This amounts to final concentration of
100 nM in the vitreous, considering the vitreous volume of
∼50 μl. Within 15 min, optoporation of the retina was carried
out using the ultrafast NIR laser beam. The cornea was kept
moist with a balanced salt solution during the entire surgical
procedure.

2.3 Optoporation Setup

ATi:sapphire laser (Newport Spectra-Physics, Inc.) beam tuned
at 790 nm with repetition rate: 80 MHz and pulse width of
∼200 fs was coupled to an inverted fluorescence optical micro-
scope (Nikon) by a dichroic mirror. A 100× (NA ¼ 1.3 and
working distance: 0.2 mm) microscope objective was used to
focus the laser beam to diffraction-limited spot (radius:
∼370 nm) on the axon. For optoporation of the retina in intact
rat eye, a long working distance 10× (NA ¼ 0.25 and working
distance: 15 mm) microscope objective was used. The exposure
time at each optoporated site was controlled by an external
electro-mechanical shutter (Uniblitz Inc.). The fluorescence
excitation light (through excitation bandpass filter) from the
mercury lamp was directed to the sample by a dichroic mirror,
and the emitted fluorescence was selected by an emission filter
in epifluorescence mode. An IR cutoff filter was used to block
the backscattered laser light. Fluorescence and bright-field
images were acquired before and after optoporation using a
cooled EMCCD camera (Photometrics) and processed with
ImageJ (NIH) software.

3 Results

3.1 Optoporation of Impermeable Molecules into
Growth Cone by Laser Subaxotomy

In the case of the growth cone far from the soma, diffusion of
optoporated molecules at soma will require significant time or
often is not able to reach the growth cone. For labeling the
growth cone with impermeable actin-binding molecule (Alexa
594 phalloidin), we optoporated axonal shaft near the growth
cone. Tightly focused (by 100× microscope objective with
NA ¼ 1.3 and working distance: 0.2 mm) ultrafast fs laser
was used to produce subaxotomy-level injury in a highly local-
ized manner. Figure 1(a) shows bright-field image of axons far
(∼1 mm) from the soma of rat cortical neurons. The time-lapse
fluorescence images of axon of cortical neuron optoporated with
Alexa 594 labeled phalloidin using ultrafast laser microbeam are
shown in Figs. 1(b)–1(f). The dye can be seen to diffuse from the
site of optoporation (encircled) along the axon to the growth
cone. The morphology of the actin-stained lamellipodium and
filopodia of the growth cone is clear with time progression.

Since the subaxotomy damage near growth cone was found
to reseal within ∼15 min of optoporation, the rise of intra-
axonal fluorescence intensity due to optoporated actin-staining
molecules is stabilized.

Our experiments determined that the axonal growth rate is
not perturbed below laser exposure of 20 ms at 0.7 nJ∕pulse
after one perforation in the axon. Furthermore, while phalloidin
is known to be cytotoxic, our earlier experiments have
demonstrated22 that below certain concentration (100 nM) the
optoporated neurons’ viability was not compromised.

3.2 Patterned Optoporation into Retina of Rat Eye

Eye provides better access for NIR laser-based optoporation of
the retina as compared to other organ tissues. We used a long
working distance 10× microscope objective (NA ¼ 0.25 and
working distance: 0.2 mm) for optoporating retinal cells in
rat eye. Higher pulse energy (1.5 nJ) was used for these experi-
ments. Left panel in Fig. 2 shows the schematic of optoporation
of rat eye. In Figs. 2 and 3, we show spatially patterned opto-
poration in rat eye. Figure 2 (right panel) shows circularly pat-
terned optoporation of Alexa-594 labeled phalloidin molecules
into the retina. The time-lapse fluorescence images of progres-
sively patterned optoporation of Alexa 594 labeled phalloidin
into retinal cells of rat eye using ultrafast NIR laser beam are
shown in panels (b) to (h). The bright-field image (superimposed
over fluorescence) after ultrafast laser-based patterned optopo-
ration is shown in Fig. 2(i). Figure 3 shows a triangularly pat-
terned optoporation of the retina in rat eye in a progressive
manner. Figure 4 shows another example of spatially patterned
optoporation of the retina in rat eye. The optoporation sites can
be seen to have residual signs (dark dots, marked by arrows) of
resealed holes as shown in bright-field image in Fig. 4(f) (white
arrows).

Fig. 1 Axonal optoporation: (a) bright-field image of axons (∼1 mm)
far from the soma of rat cortical neurons and (b)–(f) time-lapse fluo-
rescence images of Alexa 594 labeled phalloidin optoporated into
axon of cortical neuron using ultrafast laser microbeam. Site of opto-
poration is encircled. Scale bar: 10 μm.

Journal of Biomedical Optics 060504-2 June 2017 • Vol. 22(6)

JBO Letters



4 Discussion
Our results show optoporation using focused NIR ultrafast laser
beams for targeted delivery of impermeable molecules into reti-
nal cells of rat eye with single-cell resolution. Our experiments

pave a way of the possibility of using fs laser as a viable tool
to deliver a therapeutic gene in the retina for treatment of
eye diseases in a minimally invasive manner. Further, our
data showed that optoporated molecules diffuse to the growth
cone upon optoporation in the axon. The ultrahigh intensity
that is present in a tightly focused fs pulse creates a site-specific
transient perforation.23 Precisely, localized pores can be created
in axon and soma using the fs NIR laser microbeam by nonlinear
interaction between ultrafast laser beam with cell. The develop-
ment of optoporation as a minimally invasive approach to
reliably deliver exogenous molecules into targeted axons and
soma of retinal neurons in vivo will enable better visualization
of the structure and function of the retina.

Furthermore, advancement of the in-vivo optical delivery
methods will lead to a new approach for treating patients
with retinal degeneration by first determining the degenerated
areas such as geographic atrophies in dry-age-related macular
degeneration followed by conventional intravitreal injection
of therapeutic molecules, such as opsin-encoding genes and
NIR laser-assisted, targeted nonviral delivery of the molecules
to retinal cells in the degenerated areas in an efficient and min-
imally invasive manner.

To conclude, we have demonstrated optoporation of imper-
meable molecules to both axons of cortical neurons and soma of
retinal cells in rat eye by precise and patterned laser microirra-
diation. Development of optoporation technology to reliably
deliver exogenous molecules into targeted axons and soma of
retinal neurons will enable enhanced visualization of the
structure and improve function of the degenerated retina.
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