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Abstract. We demonstrate the power of the Gaussianization transform (GT) for modeling image content by
applying GT for optical coherence tomography (OCT) denoising. The proposed method is a developed version
of the spatially constrained Gaussian mixture model (SC-GMM) method, which assumes that each cluster of
similar patches in an image has a Gaussian distribution. SC-GMM tries to find some clusters of similar patches in
the image using a spatially constrained patch clustering and then denoise each cluster by the Wiener filter.
Although in this method GMM distribution is assumed for the noisy image, holding this assumption on a dataset
is not investigated. We illustrate that making a Gaussian assumption on a noisy dataset has a significant effect
on denoising results. For this purpose, a suitable distribution for OCT images is first obtained and then GT is
employed to map this original distribution of OCT images to a GMM distribution. Then, this Gaussianized image
is used as the input of the SC-GMM algorithm. This method, which is a combination of GT and SC-GMM, remark-
ably improves the results of OCT denoising compared with earlier version of SC-GMM and even produces better
visual and numerical results than the state-of-the art works in this field. Indeed, the main advantage of the pro-
posed OCT despeckling method is texture preservation, which is important for main image processing tasks like
OCT inter- and intraretinal layer analysis. Thus, to prove the efficacy of the proposed method for this analysis, an
improvement in the segmentation of intraretinal layers using the proposed method as a preprocessing step is
investigated. Furthermore, the proposed method can achieve the best expert ranking between other contending
methods, and the results show the helpfulness and usefulness of the proposed method in clinical applications.
© 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.22.8.086011]
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1 Introduction
Optical coherence tomography (OCT) is a recently created im-
aging technique to illustrate different information about the
internal structures of an object. As in ultrasound imaging,
OCT is based on interferometric techniques, except that OCT
uses light beams instead of sound profiles.1 Use of OCT images
is more popular in the field of ophthalmology, where it has
become a key diagnostic technology in the areas of retinal
diseases.2 OCT images usually suffer from speckle noise,
which restricts the ability of image interpretation. Hence,
noise reduction techniques are an essential process for these
images. In a wide division, OCT denoising methods can be clas-
sified into two basic groups: methods that reduce the noise by
some modifications on OCT device imaging such as Refs. 3 and
4 (based on hardware) and the methods that work on the
recorded data (based on software). Because of our limitation
in access to hardware of devices, we focus more on the second
group of denoising methods. Based on our categorization in
Ref. 5, these methods can be applied on the spatial or transform
domain. For reducing noise in OCT images in the spatial
domain, usually some simple methods like low-pass filters,
linear smoothing, mean, median, and Wiener filters are used.
However, some developed methods like multiple uncorrelated

B-scan averaging,6,7 nonlinear anisotropic filter,8,9 complex dif-
fusion,10,11 directional filtering,12,13 adaptive vector-valued ker-
nel function,14 support vector machine approach,15 and Bayesian
estimations16 are also applied in the spatial domain.

In the transform based group, some data adaptive methods
like principle component analysis;17 dictionary learning;18,19

some nondata adaptive methods that are based on wavelets,20,21

dual-tree complex wavelet transform22,23 or curvelets;24,25 and
a circular symmetric Laplacian mixture model in wavelet
diffusion26 have been applied for denoising.

Recently, some groups of investigators27 improved the result
of denoising by combining dictionary learning and wavelet
thresholding and by defining a proper data-dependent initial
dictionary.

In another point of view, the denoising problem may be
solved in a deterministic or statistical framework.23 In the
first framework, each pixel is considered an unknown determin-
istic variable, and non-Bayesian techniques are used for denois-
ing. In the statistical framework, a random field is employed to
model the data, and Bayesian methods are applied to estimate
noise-free data. Thus, finding a suitable prior probability distri-
bution function (pdf) for noise-free data plays an important role
in the denoising problem.23 Although there is a large body of
work on OCT image analysis, few studies have been done on
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OCT images from a statistical modeling point of view. One of
these studies is the work of Grzywacz et al.28 in which a prob-
ability model for OCT data was suggested and used for early
detection of diabetic retinopathy. The denoising method that
is proposed in this paper is the second type (statistical frame-
work), so it first needs to obtain an appropriate statistical
model for OCT images.

Another issue is that assumption of the Gaussianity plays a
key role in many signal processing methods. For example, a
Wiener filter is a linear minimum-mean-square error filter in
which the observed and noise-free data are jointly Gaussian.
It is proven that, for a Gaussian process, nonlinear filters do
not lead to better results compared with a Wiener filter.
However, sometimes researchers use this Wiener filtering
method without considering this Gaussianity assumption, so
they cannot fully benefit from the ability of the algorithm. In
this paper, it is illustrated that holding this assumption has
a notable effect on the denoising results. Therefore, in this
work, a Gaussianization transform (GT) that maps the original
distribution of the OCT data to Gaussian components is intro-
duced, and, with this transform, all of the good characteristics of
the Gaussian process can be used.

In the rest of the paper, a powerful patch-based denoising
method, namely the spatially constrained Gaussian mixture
model (SC-GMM), is first explained in Sec. 2.1. Since SC-
GMM is based on the Gaussian distribution assumption of
noise-free data, which is not satisfied for OCT images, in
Sec. 2.2 GT is applied on OCT data. By applying GT, the dis-
tribution of transformed OCT data is expressed by a combina-
tion of Gaussian pdfs. In this base, the proposed denoising
method, which is a combination of Gaussianization and SC-
GMM, is demonstrated in Sec. 2.3. The visual and numerical
results of the proposed OCT denoising method are presented
in Sec. 3, and Sec. 4 presents the discussion of our results in
comparison with the state of the art methods. Finally, a summary
of this paper is presented in Sec. 5.

2 Method
Today, patch-based image denoising methods are known as an
effective way for denoising natural images.29–31 The proposed
denoising method in this paper is also a patch-based technique;
it is a modified version of the SC-GMM algorithm introduced by
Niknejad et al.32 In Sec. 2.1, the SC-GMM method that is based
on a Gaussian distribution assumption of similar image patches
in a neighborhood is described. However, it is clear that this
assumption is not satisfied for all kinds of datasets like OCT
images. Thus, after investigation of the distribution of the origi-
nal OCT image, it is necessary to convert it to a Gaussian dis-
tribution for which GT is used. These steps are explained in
Sec. 2.2 and finally the proposed OCT denoising method,
which is a combination of GT and SC-GMM, is introduced
in Sec. 2.3.

2.1 SC-GMM Denoising Method

As mentioned above, SC-GMM denoising is a patch-based
method in which the whole of the image is partitioned into over-
lapping patches and it is assumed that each set of neighbor
patches can be modeled using a multivariate Gaussian pdf
with a specific mean vector and covariance matrix. For this pur-
pose, some exemplar patches are uniformly chosen from the
whole image; then, similar patches in the vicinity of each exem-
plar patch are grouped together to construct a region using the

K-nearest neighbors (KNN) algorithm. To determine these clus-
ters of patches and estimate the parameters of Gaussian pdfs
(covariance matrices and mean vectors), a two-step approach
is applied.33 This estimation approach includes a clustering
step and a denoising step.

Assume y ¼ xþ n is a noisy image, where x is noise-free
data and n is an independent zero-mean Gaussian noise with
known variance σ2n. Also, let xr denote the r’th exemplar
patch with mean vector μr and covariance matrix Σr for
r ¼ 1; : : : ; R. After initialization, x̂ ¼ y, the following steps
are iteratively implemented:

Clustering step. In this step, for each exemplar patch x̂r,
KNN patches x̂i, i ¼ 1; : : : ; K, that have minimum dissimilarity
(based on l2 norm metric, i.e., d ¼ kx̂r − x̂ik22) with the exem-
plar patch are chosen. These x̂r and x̂is are estimated in the pre-
vious iteration or the initialization in the first step.

Denoising step. The goal of this step is to restore the image
using the clusters obtained in the clustering step. Thus, first the
parameters of Gaussian distribution for each set of patches are
estimated using the maximum likelihood method

EQ-TARGET;temp:intralink-;e001;326;532μ̂r ¼
1

K

X
i∈Sr

x̂i; (1)

EQ-TARGET;temp:intralink-;e002;326;489Σ̂r ¼
1

K

X
i∈Sr

ðx̂i − μ̂rÞðx̂i − μ̂rÞT; (2)

where Sr shows the set of KNN patches in the r’th region. It
should be noted that in our implementation the above sample
covariance matrix is not invertible, so as with similar works,34

an eigenvalue regularization is applied using

EQ-TARGET;temp:intralink-;e003;326;405Σ̂r ¼ Σ̂r þ δI; (3)

where δ is a small constant (here δ ¼ 0.1) and I is the identity
matrix.

After estimating the parameters of the Gaussian pdf, the
denoised patch x̂i in the r’th region is found by maximizing
a posteriori function log pðxjyi; μ̂r; Σ̂rÞ, i.e.,

EQ-TARGET;temp:intralink-;e004;326;320x̂i ¼ arg max
x

log pðxjyi; μ̂r; Σ̂rÞ

¼ arg min
x

kyi − xk22 þ σ2nðx − μ̂rÞTΣ̂−1
r ðx − μ̂rÞ; (4)

where yi is the corresponding noisy observed patch and Eq. (4)
is derived from the assumption of the Gaussian pdf for noise-
free patch and noise, i.e., xi ∼N ðμ̂r; Σ̂rÞ and n ∼N ð0; σ2nIÞ,
respectively.

By setting the derivative of Eq. (4) to zero, this optimization
problem can be solved, which leads to the linear Wiener filter as
follows:

EQ-TARGET;temp:intralink-;e005;326;185x̂i ¼ ðI þ σ2nΣ̂
−1
r Þ−1ðyi þ σ2nΣ̂

−1
r μ̂rÞ: (5)

The last step for reconstructing the whole image is averaging
the weighted restored patches. In this work, based on Ref. 32,
these weights are considered proportional to similarity to
Gaussian distributions. To be more explicit, patches that are
more likely to be generated from the estimated Gaussian
distribution of their allocated clusters benefit from higher
weights. Thus, the weight of the patch x̂i in the r’th region
is obtained by

Journal of Biomedical Optics 086011-2 August 2017 • Vol. 22(8)

Amini and Rabbani: Optical coherence tomography image denoising using Gaussianization. . .



EQ-TARGET;temp:intralink-;e006;63;752wði; rÞ ¼ exp

�
−
γ

2
ðx̂i − μ̂rÞT Σ̂−1

r ðx̂i − μ̂rÞ
�
; (6)

where γ is an appropriate scaling constant.
Using these weights and averaging on all patches, the

denoised image is found. Figure 1 shows the block diagram
of the SC-GMM method for image denoising.

2.2 Gaussianization as a Preprocessing Step

In fact, the assumption of Gaussianity plays an important role in
many signal processing methods. For example, in this work, the
Gaussian distribution assumption for a dataset causes the deri-
vation of the Wiener filter as an optimal linear filter for denois-
ing. Thus, the best denoising result is reached when the initial
assumption of Gaussianity is satisfied. However in Ref. 32 and
other related works,34 holding this Gaussianity assumption for
the pdf of data is not investigated, and here we demonstrate the
importance of this assumption by converting the pdf of OCT
intraretinal layers to Gaussian distribution and comparing
denoising results with and without Gaussianization. For this pur-
pose, the distribution of the OCT images should first be deter-
mined, and then an appropriate GT is designed to convert the
OCT original distribution to a GMM and satisfy the initial
assumption for our denoising algorithm. The block diagram
of the Gaussianization process is displayed in Fig. 2.

2.2.1 OCT distribution estimation

Since the speckle noise in the OCT images is a multiplicative
noise and working with the additive noise is simpler and
more common, first, a logarithm operator is used to convert
this noise to an additive Gaussian noise. Thus, all the processes
are implemented in the logarithmic domain. In Ref. 35, we
discussed that, because of the layered structure of the retina,
a mixture model can be well fitted to a whole OCT B-scan.

Moreover, a monotonically decaying behavior of the OCT
intensities in each layer means that leptokurtic distributions
such as the Laplace pdf are good candidates for describing
the statistical properties of layers.35 On the other hand, this

image is corrupted with the additive white Gaussian noise in
the logarithmic space, so an appropriate statistical model for
an OCT image is a mixture distribution. Each component of
this mixture model is composed of a Laplace random variable
xj, plus a Gaussian noise n. We called this model a normal-
Laplace mixture (NLM) model and described it in detail in
Ref. 35.

Indeed, for each component of the mixture model, we would
have yj ¼ xj þ n, where the pdfs of xj and n are

EQ-TARGET;temp:intralink-;e007;326;653fXj
ðxÞ ¼ 1ffiffiffi

2
p

σj
exp

�
−

ffiffiffi
2

p

σj
jx − μjj

�
; (7)

EQ-TARGET;temp:intralink-;e008;326;606fNðnÞ ¼
1ffiffiffiffiffi
2π

p
σn

exp

�
−

n2

2σ2n

�
: (8)

μj shows the mean of the Laplace variable and σj and σn
display the scaling parameters of the Laplace and Gaussian
distributions, respectively.

Since yj ¼ xj þ n and the noise signal n is assumed to be
independent from the noise-free signal xj, the pdf of the nor-
mal-Laplace variable yj is given by the convolution

EQ-TARGET;temp:intralink-;e009;326;499fjðyÞ ¼ ðfXj
� fNÞðyÞ ¼

Zþ∞

−∞

fXj
ðxÞfNðy − xÞdx: (9)

After some mathematical computations, we have35

EQ-TARGET;temp:intralink-;e010;326;431fjðyÞ¼
−1

2
ffiffiffi
2

p
σj

�
exp

�
σ2n
σ2j

þ
ffiffiffi
2

p ðy−μjÞ
σj

�
erfc

�
−
ðy−μjÞffiffiffi

2
p

σn
−
σn
σj

�

−exp

�
σ2n
σ2j

−
ffiffiffi
2

p ðy−μjÞ
σj

�
erfc

�
−
ðy−μjÞffiffiffi

2
p

σn
þσn
σj

��
;

(10)

where erfcðxÞ ¼ e−x
2

erfc xðxÞ ¼ 2ffiffi
π

p ∫ ∞
0 e−x

2−t2−2txdt.

Fig. 1 Block diagram of spatially constrained GMM (SC-GMM) method for image denoising.

Fig. 2 Block diagram of GT.
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Thus, yj has a normal-Laplace distribution, and we show it
by yj ∼ NLðμj; σj; σnÞ. Additionally, the pdf of the NLM model
is presented by gYðyÞ as follows:

EQ-TARGET;temp:intralink-;e011;63;719gYðyÞ ¼
XJ
j¼1

ajfjðyÞ; (11)

where fjðyÞ is the pdf of each component, aj ≥ 0,
P

J
j¼1 aj ¼ 1,

and J is the number of mixture components. In Ref. 35, it has
been shown that the choice of J ¼ 5 causes the best results.

After finding a proper model, its parameters are estimated
based on a used dataset. The EM algorithm36 is used to estimate
parameters iteratively as follows:

• E-step: In each iteration, the responsibility factors rj (as
an auxiliary variable that for each observed data y repre-
sents how likely that observed data was produced by each
component ffjðyÞgj¼1∶J) are updated by

EQ-TARGET;temp:intralink-;e012;63;545rj←
ajfjðyÞP
J
j¼1 ajfjðyÞ

; for j ¼ 1; : : : ; J: (12)

• M-step: Then, the parameters aj are updated by

EQ-TARGET;temp:intralink-;e013;63;483aj←
XN
l¼1

rjðlÞ∕N; (13)

where N shows the number of pixels in image y.

In the M-step, the updated equations for fμj; σjgJj¼1
are

approximately estimated as37

EQ-TARGET;temp:intralink-;e014;63;393μj←
XN
l¼1

y: rjðlÞ∕
XN
l¼1

rjðlÞ; (14)

EQ-TARGET;temp:intralink-;e015;63;344σ2j←max

�XN
l¼1

jy − μjj2rjðlÞ∕
XN
l¼1

rjðlÞ; δ
�
; (15)

where δ is a small positive constant number used to avoid
numerical errors.

2.2.2 Gaussianization transform

As mentioned before, SC-GMM has been designed based on
Gaussianity assumption. However, the distribution of each
OCT intraretinal layer can be modeled as a normal-Laplace
pdf.35 Thus, if a GT is designed to map the original distribution
to a Gaussian distribution, it is expected to obtain better denois-
ing results. The core of this transform is solving the equation
that compares the cumulative distribution function (CDF) of
original dataset and Gaussian distribution. Assume FWðwÞ ¼
0.5½1þ erfðw−μwffiffi

2
p

σw
Þ� expresses the CDF of a Gaussian variable

(w) with μw and σw as the mean and standard deviation of w,
respectively, and erfðxÞ ¼ 2ffiffi

π
p ∫ x

0 e
−t2dt. Also, by computing the

integral of fjðyÞ in Eq. (10), the CDF of a normal-Laplace
variable is found as

EQ-TARGET;temp:intralink-;e016;326;752

FjðyÞ ¼
1

2

�
1þ erf

�ðy − μjÞffiffiffi
2

p
σn

�
− exp

�
σ2n
σ2j

þ −
ffiffiffi
2

p ðy − μjÞ
σi

�

þ 1

2
e
−
h
ðy−μjÞffiffi

2
p

σn

i
2�

erfc x

�ðy − μjÞffiffiffi
2

p
σn

þ σn
σj

�

þ erfc x

�ðy − μjÞffiffiffi
2

p
σn

−
σn
σj

���
: (16)

By equating these two CDFs, one can find an equation that
expresses each value of variable y in the initial distribution, in
terms of the equivalent value of w in Gaussian space

EQ-TARGET;temp:intralink-;e017;326;616FYðyÞ ¼ FWðwÞ ¼> w ¼ μw þ
ffiffiffi
2

p
σw:erfinv½2FYðyÞ − 1�;

(17)

where erfinv is the inverse of the error function.

2.2.3 Construct a GMM distribution

After Gaussianization, the distribution of each component of the
NLM model, wj, j ¼ 1; : : : ; J, becomes Gaussian; by combin-
ing these Gaussian components, an image with the GMM pdf is
constructed and can be used as the input of the SC-GMM
denoising method. In Ref. 38, it is shown that the averaged
maximum a posterior (AMAP) method is a suitable way
for defining the weights of summation for mixture models. In
this method, the weight of each component is defined as
ajfjðyÞ∕

P
J
j¼1 ajfjðyÞ, so ŷ, as the Gaussianized image with

GMM distribution, is obtained as follows:

EQ-TARGET;temp:intralink-;e018;326;418ŷ ¼
XJ
j¼1

aj:wj:fjðyÞ∕
XJ
j¼1

ajfjðyÞ: (18)

Also, in Ref. 39, it was discussed that instead of using the
univariate weighting function ajfjðyÞ∕

P
J
j¼1 ajfjðyÞ, employ-

ing multivariate weighting function leads to better results.
Thus, for an OCT image of size S × T, a local P ×Q window
(where P and Q are odd) is placed around each pixel ys;t
for s ¼ 1; : : : ; S, t ¼ 1; : : : ; T; and the multivariate function
f̄jðyÞ for the central pixel of window (yp;q) is calculated by
multiplying all univariate fjðyÞs in that window i.e.

Fig. 3 Using local window around pixels to make a multivariate
weighting function f̄ j ðyÞ.
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EQ-TARGET;temp:intralink-;e019;63;752f̄jðyp;qÞ ¼
YP−12

k¼−P−1
2

YQ−1
2

l¼−Q−1
2

fjðypþk;qþlÞ: (19)

Figure 3 shows how the multivariate function f̄jðyÞ is
produced.

Hence, Eq. (18) is replaced with

EQ-TARGET;temp:intralink-;e020;63;671ŷ ¼
P

J
j¼1 aj:wj:f̄jðyÞP

J
j¼1 ajf̄jðyÞ

: (20)

2.3 Proposed Denoising Method

According to Secs. 2.2.1 and 2.2.2, our proposed OCT denois-
ing method is obtained by combining GT and the SC-GMM
method as shown in Fig. 4. In this method, the OCT image
in the log domain is first Gaussianized using the block diagram
of Fig. 2, and then the Gaussianized image is denoised by
the SC-GMM method using the block diagram of Fig. 1.

The proposed denoising algorithm can be summarized in
the following steps:

1. Transform image to the logarithmic domain

2. Fit an NLMmodel to the data using the EM algorithm:

2.1 Initialization: choose initial values for aj, μj, σj
2.2 E-step: compute responsibility factors using

Eq. (12)
2.3 M-step: update parameters aj, μj, σj using

Eqs. (13)–(15)
2.4 Iteration: substitute the updated parameters in

the previous step for calculating fjðyÞ
3. Calculate the CDF of each normal-Laplace component

by substituting final values of μj, σj, and σn in Eq. (16)

4. Gaussianize each normal-Laplace component using
Eq. (17)

5. Use AMAP method in Eq. (20) to obtain the image ŷ
with GMM distribution

6. Apply SC-GMM algorithm on image ŷ:

6.1 Partition image into overlapping patches and
choose exemplar patches

6.2 For each exemplar patch:

6.2.1 Select KNN patches (a region) based on
l2 norm metric in a finite sized window
around exemplar patch

6.2.2. Estimate Gaussian parameters in each
region by Eqs. (1)–(3)

6.2.3. Denoise the patches in each region by
the Wiener filter Eq. (5)

6.3. Obtain reconstructed image by weighted aver-
age of denoised patches using Eq. (6)

7. Apply exponential operator to find the denoised
image.

3 Results
In this section, some simulation results performed on our dataset
are presented. This dataset consists of thirteen three-dimensional
(3-D) macular spectral domain OCT images obtained from
eyes without pathologies using a Topcon 3DOCT-1000 imaging
system in the Ophthalmology Department of Feiz Hospital,
Isfahan, Iran. The x, y, z size of the obtained volumes was
512 × 650 × 128 voxels, 7 × 3.125 × 3.125 mm3, voxel size
13.67 × 4.81 × 24.41 μm3.

From this dataset, 130 B-scans were selected randomly
(10 B-scans from each subject), and these randomly selected
B-scans were denoised with the methods described previously
in the paper: once images were denoised only using the SC-
GMM method and they were then despeckled by a combination
of GT and the SC-GMM according to our method.

Considering the constant values and parameters, for each
region, K ¼ 40 nearest neighbor patches were accumulated.
The exemplar patches were selected every 10 pixels along
both the column and row directions of the image. The size of
the constraining window around each exemplar patch was set
to 30 × 30, and the size of patches was selected as 10 × 10.
Also, the size of local window around each pixel for obtaining
multivariate f̄jðyÞ was 3 × 3. All of these values were selected
based on previous related work and our implementation
experiences.

Both the qualitative and quantitative performance of the pro-
posed combined method and SC-GMM were provided. The

Fig. 5 Selected ROIs for calculation of CNR, EP, and TP. The larger
elliptical region outside the retinal layers is used as background ROI
and other circles represent foreground ROIs for CNR calculation.
Rectangular ROIs are used for TP and EP.

Fig. 4 Block diagram of the proposed combined denoising method, in this figure, third block “GT”
includes all the blocks in Fig. 2 (except the Log block) and fourth block “SC-GMM denoising method”
is equivalent to the block diagram of Fig. 1.
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results of denoising with a simple Wiener filter was also pre-
pared to compare with the proposed approach and prove the
need and benefit of GT in the proposed method. Contrast to
noise ratio (CNR), edge preservation (EP), and texture preser-
vation (TP) as quantitative measures were computed for each
denoising method. The mentioned values were computed
based on methods discussed in Ref. 40, and regions for analysis
of each criterion are shown in Fig. 5.

CNR measures the contrast between a feature of interest and
background noise. EP computes the correlation between edges
in the denoised image and the noisy image over the locally
selected region of interest (ROI). TP shows the degree of pre-
serving texture in an ROI. Both the TP and EP measures range
between 0 and 1 and, in the best condition, go to 1.

In addition, to illustrate the power of the proposed method,
its ability in OCT denoising was compared with the BM3D as a
benchmark denoising algorithm and recently reported state-of-
the-art algorithm in this field.27 Kafieh et al.27 proposed a strong
method in speckle reduction of OCT datasets in two-dimen-
sional and 3-D by the combination of dictionary learning and
wavelet thresholding. They improved the performance of simple
dual-tree complex wavelets by taking advantage of adaptability
in dictionary learning methods and introducing complex wave-
let-based K-SVD. They also compared their algorithm by other
previous outstanding researches in this filed like Fang et al.,18

Yang et al.,41, and Luan and Wu17 and demonstrated the supe-
riority of their method. Thus, this complex wavelet-based K-
SVD method (3DCWT-KSVD)27 is chosen as a proper reference

Fig. 6 Denoising results in a sample B-scan. The second and third columns show an enlargement of the
specified regions of first column images. (a), (g), (m) Original noisy image; (b), (h), (n) simple Wiener; (c),
(i), (o) SC-GMM; (d), (j), (p) BM3D; (e), (k), (q) 3DCWT-KSVD; (f), (l), (r) proposed method.
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to evaluate our proposed method. Figures 6 and 7 show some
samples of datasets after application of each one of the
mentioned denoising methods (simple Wiener, SC-GMM,
3DCWT-KSVD, BM3D, and the proposed method). Also,
the value of the quantitative measurements for each denoising
method on all randomly selected slices is summarized in
Table 1. Furthermore, to have a comparison between time
complexity of the evaluated denoising methods, the mean of
the needed computation time for each slice on a PC with
Microsoft Windows X32 edition, Intel core2 Duo CPU at
3.00 GHz, 4 GB RAM is reported in Table 1.

Before analyzing the results of Table 1, it should be noted
that visual results of a simple Wiener filter (like those shown
in Figs. 6 and 7) indicate the weakness of it in OCT image
denoising, and the high value of TP and EP for the Wiener filter

in Table 1 is because of the definition of these two measures in
which the similarity of the denoised image to the original one
plays an important role. However, the low value of CNR for the
Wiener filter emphasizes the weakness of this denoising method.
Regarding the other mentioned denoising algorithms, according
to Table 1, the performance of the proposed method is consid-
erably better than the other methods in TP, which is obviously
visible in Figs. 6 and 7. Performance of all of the studied
methods is close to each other in EP, and the SC-GMM has
the highest EP, which is obtained because of the least difference
appearing in the resulting image visually. However, it cannot be
considered a positive point lonely, since the values of CNR and
TP for this method are very low and indeed this method does
not show the proper features as a powerful method for OCT
denoising. Regarding the CNR measure, the proposed method

Fig. 7 Denoising results in a sample B-scan. The second and third columns show an enlargement of
the specified regions of first column images. (a), (g), (m) Original noisy image; (b), (h), (n) simple Wiener;
(c), (i), (o) SC-GMM; (d), (j), (p) BM3D; (e), (k), (q) 3DCWT-KSVD; and (f), (l), (r) proposed method.
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and 3DCWT-KSVD have remarkably better results than others.
Although 3DCWT-KSVD has the highest CNR among all stud-
ied methods, it cannot be the winner in this denoising competi-
tion because of its weak results in TP and EP; visual results in
Figs. 6 and 7 also confirm this matter.

4 Discussion
The main objective of this paper is to prove the effect of
Gaussianization in the result of the OCT denoising by a
Wiener-based denoising method. As our results in Table 1 and
Figs. 6 and 7 show, it is obviously clear that using the proposed
combined method has been much more successful than the SC-
GMM method, which assumes Gaussianity for the noise-free
image without any justification for proposing this assumption
on OCT datasets.

Our second goal in this work is to generally propose a sig-
nificant method for OCT denoising. To investigate the power of
the proposed method, a comparison with the 3DCWT-KSVD
algorithm as a recent state of the art in this field and BM3D
as a powerful denoising method was done. Visual results in
Figs. 6 and 7 demonstrate better noise reduction using the
proposed method while desired textural features are preserved
simultaneously. Also, in Table 1, this matter is emphasized
by checking the high value of TP in the proposed method
compared with the 3DCWT-KSVD and BM3D algorithms.
Regarding the CNR measures, 3DCWT-KSVD could provide
higher CNR because of the very good speckle removing in
the background area, but it does not mean that this method is
better for next OCT processing because the main goal behind
the OCT denoising is providing an appropriate dataset for the
next OCT processing, such as layer segmentation42 or lesions
identification, while the denoised image obtained by the
3DCWT-KSVD method does not show this ability very well.

To demonstrate this superiority in our proposed method,
A-scans of each denoised image were analyzed because many
OCT segmentation methods perform based on gradient informa-
tion from B-scans or analysis of A-scans in OCT datasets.43 The
high level of speckle noise in the original noisy OCT image does
not allow features of the image to be detectable in segmentation
processes; however, applying a good denoising algorithm that

suppresses much of the speckle noise and preserves features
of the image can provide more reliable segmentation. Figure 8
shows the ability of the proposed method to reduce the speckle
noise and protect identifiable feature peaks and valleys. In fact,
because of producing the clean and almost noiseless B-scan
images in the proposed method [Fig. 8(f)], its A-scans obviously
include a peak or valley for each layer of the retina, and the
signal amplitude at the boundary layers can be greatly altered.
In the other words, an important benefit of the proposed method
is using contrast enhancement and denoising together. As
depicted in our previous work,35 applying GT on OCT images
leads to contrast enhancement of the image and combination of
GT and SC-GMM is a proper algorithm for simultaneously
denoising and contrast enhancement.

Another way to evaluate the performance of the proposed
method is by analyzing the intraretinal layer segmentation
results. For this purpose, a diffusion map-based method intro-
duced in Ref. 43 for OCT boundaries segmentation was
used. This segmentation method was tested once on original
OCT B-scans and another time on images denoised by each
of the aforementioned denoising algorithms.

For each case, the error values were calculated as the differ-
ence of computed layer position by a diffusion map segmenta-
tion method and manually labeled values by an expert observer.

Tables 2 and 3 show the mean signed and unsigned border
positioning errors for each boundary, which is obtained for 130
randomly selected B-scans from the Topcon dataset. The num-
bering of retinal surfaces in these tables is based on Fig. 8.

Based on Tables 2 and 3, the proposed method seems supe-
rior to the other mentioned algorithms in the segmentation of
some boundaries (8th to 12th boundaries). However, to illustrate
the statistically significant improvement of the proposed method
over the other algorithms, Table 4 shows the obtained p-values.
Based on Table 4, it can be seen that the 8th to 12th boundaries,
which are more difficult to identify because of lack of contrast,
are significantly better localized in the proposed method com-
pared with the SC-GMM algorithm. Regarding the BM3D and
3DCWT-KSVD algorithms, this superiority is significant just
for the 11th and 12th boundaries (p-value <0.05).

Furthermore, given that the ultimate goal of all the works in
the medical image processing field is to help physicians deter-
mine better and more accurate diagnosis and treatment of
disease, ranking mentioned denoising methods by an expert
was considered another acceptable criterion for evaluating our
method. Accordingly, an ophthalmologist was asked to score the
denoised images by each method (raw data, denoised images by
SC-GMM, 3DCWT-KSVD, and the proposed method) between
one and four; the score of one to four is assigned “best,” “very
good,” “good,” and “worst,” respectively. This ranking was done
on all 130 randomly selected B-scans (some sample images are
illustrated in Figs. 6 and 7) and the average score on all B-scans
for our method was 1.2846 (for 110 slices of all 130 B-scans, the
proposed method achieved score one), while this value for raw
images was 1.8538, for SC-GMMwas 2.8231, and for 3DCWT-
KSVD was 3.9615. Based on this result, the superiority of the
proposed method in clinical applications is also obvious.

Another noticeable issue is that in this research we worked
on single-frame images provided by Topcon imaging system;
hence the proposed method may become a useful step in OCT
image processing approaches, where single frame detection is
a must (where the data acquisition time or system restrictions
do not allow for multiframe acquisition). However, to make

Table 1 Evaluation measure results; averaged over 130 OCT
B-scans from the Topcon device.

Method

Measure

CNR EP TP
Computation

time (s)

Original 4.9201 1.0000 1.0000 —

SC-GMM 7.2987 0.9895 0.5995 84.13

BM3D 13.0651 0.9826 0.7278 4.20

3DCWT-KSVD 39.7933 0.9316 0.1150 87.09a

Proposed
method

22.9270 0.9653 0.9344 83.22

Simple Wiener 5.0566 1.0000 0.9969 0.54

aFor 3DCWT-KSVD, computation time is a combination of training
and testing time; i.e., first a dictionary has to be learned (on average
77.72 s per B-scan) and then the test image is denoised using the
learned dictionary (on average 9.37 s per B-scan).
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a good judgment on the power of the method in general, it
should be compared with results from a multiframe approach
(as angular compounding for example), and hopefully this
research can be used as a starting point for further and deeper
discussions in this field in the OCT community.

5 Conclusion
In this paper, a developed denoising method for speckle reduc-
tion in OCT images was introduced. Our main issue was the
effect of holding the assumptions in different statistical methods.

Fig. 8 The cross-section signal along the white solid line. (a) Original noisy image, (b) simple Wiener,
(c) SC-GMM, (d) BM3D, (e) 3DCWT-KSVD, (f) proposed method. Red stars on the A-scans show the
place of each of 12 boundaries of retinal layers. The name of these layers is ILM, internal limiting mem-
brane; NFL, nerve fiber layer; GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer;
OPL, outer plexiform layer; ONL, outer nuclear layer; IS, inner segment of rods and cones; CL, connect-
ing cilia layer; OS, outer segment of rods and cones, RPE, retinal pigment epithelium, respectively, from
top to down. RPE includes two surfaces and three last boundaries in our figures. Green indicators in
(f) display some examples of the superiority of the proposed method in reducing the speckle noise
and protecting identifiable feature peaks and valleys, compared with 3DCWT-KSVD [orange indicators
in (e)].
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Particularly, in this work, the employed denoising algorithm
(SC-GMM) was based on the Wiener filter, and in this method
both noise-free data and noise are assumed to be Gaussian;
however, holding this assumption has not been investigated
in previous research. Since OCT datasets do not satisfy this
assumption and an NLM model is fitted on these datasets,
a transform to Gaussianize each component of this mixture
model was needed. After constructing an image underlying
GMM, SC-GMM was used for denoising. The visual and
numerical results show the superiority of this combined method

and encourage us to compare the proposed method with BM3D
and 3DCWT-KSVD algorithms as the state-of-the-art studies in
this field. Indeed, the advantage of our method, in addition to
appropriate noise reduction, is in preserving and highlighting
the features of the image like textures and edges that provide
a suitable dataset for the next OCT processing such as layer seg-
mentation or object detection. This matter was demonstrated by
investigating the behavior of A-scans in all mentioned denoising
methods. In addition, the method was shown to improve seg-
mentation accuracy of some intraretinal layers. Furthermore,

Table 2 Summary of mean signed border positioning errors on 12 boundaries from the Topcon dataset.

Boundary number Original image Simple Wiener SC-GMM 3DCWT-KSVD BM3D Proposed method

1 (ILM) 0.1212 0.1302 0.1097 0.3068 0.1285 0.2237

2 (NFL/GCL) −1.8480 −2.0569 −2.1620 −2.3537 −1.7582 −1.8392

3 (GCL/IPL) −1.1763 −1.2456 −1.5197 −1.8303 −0.9573 −1.3748

4 (IPL/INL) −1.1810 −1.1951 −1.8078 −3.3382 −1.3208 −2.0366

5 (INL/OPL) 1.5298 1.4110 1.1182 0.6219 1.3244 0.7859

6 (OPL/ONL) −1.1494 −1.3285 −1.7234 −2.5095 −1.2204 −2.0787

7 (ONL/IS) −1.7695 −1.9733 −1.7058 −1.5062 −1.9472 −1.9390

8 (IS/CL) −0.7252 −0.7384 −0.6832 −0.5829 −0.7030 −0.5460

9 (CL/OS) −0.8541 −0.8683 −0.8066 −0.5846 −0.8515 −0.6888

10 (RPE complex) −0.8294 −0.8457 −0.7074 −0.3090 −0.7577 −0.6303

11 (RPE complex) −0.7996 −0.8110 −0.7023 −0.0723 −0.7770 −0.5778

12 (RPE complex) −0.8471 −0.8822 −0.6589 −0.6124 −0.8630 −0.1574

Table 3 Summary of mean unsigned border positioning errors on 12 boundaries from the Topcon dataset.

Boundary number Original image Simple Wiener SC-GMM 3DCWT-KSVD BM3D Proposed method

1 (ILM) 1.2423 1.2380 1.2367 1.1956 1.1885 1.0726

2 (NFL/GCL) 2.2448 2.3854 2.3616 2.4921 2.4777 2.3974

3 (GCL/IPL) 3.1938 3.1310 3.7323 5.1035 3.3827 4.4923

4 (IPL/INL) 3.2252 3.1349 3.8814 5.7698 2.9900 4.9480

5 (INL/OPL) 3.4090 3.5000 3.7080 4.9833 3.5159 4.4966

6 (OPL/ONL) 3.3783 3.3838 3.5820 4.8286 3.1065 4.4527

7 (ONL/IS) 2.3896 2.5474 2.2852 2.0532 2.5309 2.4022

8 (IS/CL) 1.1314 1.1170 1.1273 1.0360 1.1265 0.9387

9 (CL/OS) 1.1406 1.1396 1.1362 0.9680 1.1502 0.9646

10 (RPE complex) 1.1132 1.1158 1.0441 0.9112 1.0694 0.9036

11 (RPE complex) 1.1468 1.1469 1.1785 1.3118 1.2080 1.0101

12 (RPE complex) 1.0415 1.0687 0.9615 1.0188 1.0650 0.7117
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as another way to prove the superiority of the proposed method
in clinical applications, the result of ranking different methods
by an ophthalmologist shows predominance of the proposed
method.

Disclosures
No conflicts of interest, financial or otherwise, are declared by
the authors.

Acknowledgments
The authors would like to thank Dr. MRAkhlaghi from Feiz Eye
Hospital for his contribution in clinical evaluation of denoising
algorithms and Prof. Sina Farsiu from Duke Eye Center for his
valuable comments for improving the technical content of
this paper.

References
1. D. Huang et al., “Optical coherence tomography,” Science 254(5035),

1178–1181 (1991).
2. M. R. Hee et al., “Optical coherence tomography of the human retina,”

Arch. Ophthalmol. 113(3), 325–332 (1995).
3. M. Pircher et al., “Speckle reduction in optical coherence tomography

by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
4. B. F. Kennedy et al., “Speckle reduction in optical coherence tomog-

raphy by strain compounding,” Opt. Lett. 35(14), 2445–2447 (2010).
5. Z. Amini and H. Rabbani, “Classification of medical image modeling

methods: a review,” Curr. Med. Imaging Rev. 12(2), 130–148 (2016).
6. T. M. Jørgensen et al., “Enhancing the signal-to-noise ratio in ophthal-

mic optical coherence tomography by image registration—method and
clinical examples,” J. Biomed. Opt. 12(4), 041208 (2007).

7. D. Alonso-Caneiro, S. A. Read, and M. J. Collins, “Speckle reduction in
optical coherence tomography imaging by affine-motion image registra-
tion,” J. Biomed. Opt. 16(11), 116027 (2011).

8. D. C. Fernández et al., “Comparing total macular volume changes
measured by optical coherence tomography with retinal lesion volume
estimated by active contours,” Invest. Ophthalmol. Visual Sci. 45(13),
3072 (2004).

9. P. Puvanathasan and K. Bizheva, “Interval type-II fuzzy anisotropic
diffusion algorithm for speckle noise reduction in optical coherence
tomography images,” Opt. Express 17(2), 733–746 (2009).

10. R. Bernardes et al., “Improved adaptive complex diffusion despeckling
filter,” Opt. Express 18(23), 24048–24059 (2010).

11. H. M. Salinas and D. C. Fernández, “Comparison of PDE-based non-
linear diffusion approaches for image enhancement and denoising in
optical coherence tomography,” IEEE Trans. Med. Imaging 26(6),
761–771 (2007).

12. A. M. Bagci et al., “Thickness profiles of retinal layers by optical coher-
ence tomography image segmentation,” Am. J. Ophthalmol. 146(5),
679–687.e1 (2008).

13. J. Rogowska and M. E. Brezinski, “Evaluation of the adaptive speckle
suppression filter for coronary optical coherence tomography imaging,”
IEEE Trans. Med. Imaging 19(12), 1261–1266 (2000).

14. A. Mishra et al., “Intra-retinal layer segmentation in optical coherence
tomography images,” Opt. Express 17(26), 23719–23728 (2009).

15. A. R. Fuller et al., “Segmentation of three-dimensional retinal image
data,” IEEE Trans. Visual Comput. Graphics 13(6), 1719–1726 (2007).

16. A. Wong et al., “General Bayesian estimation for speckle noise reduc-
tion in optical coherence tomography retinal imagery,” Opt. Express
18(8), 8338–8352 (2010).

17. F. Luan and Y. Wu, “Application of RPCA in optical coherence tomog-
raphy for speckle noise reduction,” Laser Phys. Lett. 10(3), 035603
(2013).

18. L. Fang et al., “Sparsity based denoising of spectral domain optical
coherence tomography images,” Biomed. Opt. Express 3(5), 927–942
(2012).

19. L. Fang et al., “Fast acquisition and reconstruction of optical coherence
tomography images via sparse representation,” IEEE Trans. Med.
Imaging 32(11), 2034–2049 (2013).

20. D. C. Adler, T. H. Ko, and J. G. Fujimoto, “Speckle reduction in optical
coherence tomography images by use of a spatially adaptive wavelet
filter,” Opt. Lett. 29(24), 2878–2880 (2004).

21. V. Gupta et al., “Computerized automation of wavelet based denoising
method to reduce speckle noise in OCT images,” in Int. Conf. on
Information Technology and Applications in Biomedicine (ITAB
2008), IEEE (2008).

22. M. A. Mayer et al., “Wavelet denoising of multiframe optical coherence
tomography data,” Biomed. Opt. Express 3(3), 572–589 (2012).

23. H. Rabbani, M. Sonka, andM. D. Abramoff, “Optical coherence tomog-
raphy noise reduction using anisotropic local bivariate Gaussian mixture
prior in 3D complex wavelet domain,” J. Biomed. Imaging 2013,
417491 (2013).

24. Z. Jian et al., “Speckle attenuation in optical coherence tomography by
curvelet shrinkage,” Opt. Lett. 34(10), 1516–1518 (2009).

25. Z. Jian et al., “Three-dimensional speckle suppression in optical coher-
ence tomography based on the curvelet transform,” Opt. Express 18(2),
1024–1032 (2010).

26. R. Kafieh et al., “Curvature correction of retinal OCTs using
graph-based geometry detection,” Phys. Med. Biol. 58(9), 2925–2938
(2013).

27. R. Kafieh, H. Rabbani, and I. Selesnick, “Three dimensional data-driven
multi scale atomic representation of optical coherence tomography,”
IEEE Trans. Med. Imaging 34(5), 1042–1062 (2015).

28. N. M. Grzywacz et al., “Statistics of optical coherence tomography data
from human retina,” IEEE Trans. Med. Imaging 29(6), 1224–1237
(2010).

29. A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image
denoising,” in IEEE Computer Society Conf. on Computer Vision and
Pattern Recognition (CVPR 2005), IEEE (2005).

30. M. Elad and M. Aharon, “Image denoising via sparse and redundant
representations over learned dictionaries,” IEEE Trans. Image Process.
15(12), 3736–3745 (2006).

31. K. Dabov et al., “Image denoising by sparse 3-D transform-domain
collaborative filtering,” IEEE Trans. Image Process. 16(8), 2080–2095
(2007).

32. M. Niknejad, H. Rabbani, and M. Babaie-Zadeh, “Image restoration
using Gaussian mixture models with spatially constrained patch cluster-
ing,” IEEE Trans. Image Process. 24(11), 3624–3636 (2015).

33. X. Li, “Exemplar-based EM-like image denoising via manifold
reconstruction,” in 17th IEEE Int. Conf. on Image Processing (ICIP
2010), IEEE (2010).

34. G. Yu, G. Sapiro, and S. Mallat, “Solving inverse problems with piece-
wise linear estimators: from Gaussian mixture models to structured
sparsity,” IEEE Trans. Image Process. 21(5), 2481–2499 (2012).

35. Z. Amini and H. Rabbani, “Statistical modeling of retinal optical coher-
ent tomography,” IEEE Trans. Med. Imaging 35(6), 1544 (2016).

36. A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” J. Royal Stat. Soc. Ser. B
(Methodol.) 39(1), 1–38 (1977).

Table 4 Improvement of the proposed method compared with SC-
GMM, BM3D, and 3DCWT-KSVD algorithm, on the 8th to 12th boun-
daries of retinal OCT.

Boundary number

p-value
(our alg.
versus

SC-GMM)

p-value
(our alg.
versus
BM3D)

p-value
(our alg.
versus

3DCWT-KSVD)

8 (IS/CL) 0.0044 0.0591 0.1306

9 (CL/OS) 0.0075 0.0664 0.4699

10 (RPE complex) 0.0221 0.0900 0.4441

11 (RPE complex) 0.0117 0.0457 0.0021

12 (RPE complex) <0.0001 0.0030 0.0005

Journal of Biomedical Optics 086011-11 August 2017 • Vol. 22(8)

Amini and Rabbani: Optical coherence tomography image denoising using Gaussianization. . .

http://dx.doi.org/10.1126/science.1957169
http://dx.doi.org/10.1001/archopht.1995.01100030081025
http://dx.doi.org/10.1117/1.1578087
http://dx.doi.org/10.1364/OL.35.002445
http://dx.doi.org/10.1117/1.2772879
http://dx.doi.org/10.1117/1.3652713
http://dx.doi.org/10.1364/OE.17.000733
http://dx.doi.org/10.1364/OE.18.024048
http://dx.doi.org/10.1109/TMI.2006.887375
http://dx.doi.org/10.1016/j.ajo.2008.06.010
http://dx.doi.org/10.1109/42.897820
http://dx.doi.org/10.1364/OE.17.023719
http://dx.doi.org/10.1109/TVCG.2007.70590
http://dx.doi.org/10.1364/OE.18.008338
http://dx.doi.org/10.1088/1612-2011/10/3/035603
http://dx.doi.org/10.1364/BOE.3.000927
http://dx.doi.org/10.1109/TMI.2013.2271904
http://dx.doi.org/10.1109/TMI.2013.2271904
http://dx.doi.org/10.1364/OL.29.002878
http://dx.doi.org/10.1109/ITAB.2008.4570582
http://dx.doi.org/10.1109/ITAB.2008.4570582
http://dx.doi.org/10.1109/ITAB.2008.4570582
http://dx.doi.org/10.1364/BOE.3.000572
http://dx.doi.org/10.1155/2013/417491
http://dx.doi.org/10.1364/OL.34.001516
http://dx.doi.org/10.1364/OE.18.001024
http://dx.doi.org/10.1088/0031-9155/58/9/2925
http://dx.doi.org/10.1109/TMI.2014.2374354
http://dx.doi.org/10.1109/TMI.2009.2038375
http://dx.doi.org/10.1109/CVPR.2005.38
http://dx.doi.org/10.1109/CVPR.2005.38
http://dx.doi.org/10.1109/TIP.2006.881969
http://dx.doi.org/10.1109/TIP.2007.901238
http://dx.doi.org/10.1109/TIP.2015.2447836
http://dx.doi.org/10.1109/ICIP.2010.5652529
http://dx.doi.org/10.1109/ICIP.2010.5652529
http://dx.doi.org/10.1109/TIP.2011.2176743
http://dx.doi.org/10.1109/TMI.2016.2519439


37. H. Rabbani et al., “Speckle noise reduction of medical ultrasound
images in complex wavelet domain using mixture priors,” IEEE
Trans. Biomed. Eng. 55(9), 2152–2160 (2008).

38. H. Rabbani, M. Vafadust, and S. Gazor, “Image denoising based on a
mixture of Laplace distributions with local parameters in complex
wavelet domain,” in IEEE Int. Conf. on Image Processing, IEEE
(2006).

39. H. Rabbani, R. Nezafat, and S. Gazor, “Wavelet-domain medical image
denoising using bivariate Laplacian mixture model,” IEEE Trans.
Biomed. Eng. 56(12), 2826–2837 (2009).

40. A. Pizurica et al., “Multiresolution denoising for optical coherence
tomography: a review and evaluation,” Curr. Med. Imaging Rev.
4(4), 270–284 (2008).

41. Q. Yang et al., “Automated layer segmentation of macular OCT images
using dual-scale gradient information,” Opt. Express 18(20), 21293–
21307 (2010).

42. L. Fang et al., “Segmentation based sparse reconstruction of optical
coherence tomography images,” IEEE Trans. Med. Imaging 36(2),
407–421 (2016).

43. R. Kafieh et al., “Intra-retinal layer segmentation of 3D optical coher-
ence tomography using coarse grained diffusion map,” Med. Image
Anal. 17(8), 907–928 (2013).

Zahra Amini received her BSc degree from Isfahan University
of Technology (IUT), Iran, in 2007, her MSc degree from the
University of Yazd, Iran, in 2011, both in electrical engineering (com-
munications), and her PhD in biomedical engineering from Isfahan
University of Medical Sciences, Iran, in 2016. She is currently an
assistant professor in the Department of Biomedical Engineering,
School of Advanced Technologies in Medicine, Isfahan University
of Medical Sciences. Her research interests include medical image
modeling, signal and image processing, sparse transforms, and brain
computer interface.

Hossein Rabbani received his BSc degree in electrical engineering
from Isfahan University of Technology in 2000 with the highest hon-
ors, and his MSc degree and PhD in bioelectrical engineering in 2002
and 2008, respectively, from Tehran Polytechnic. In 2007, he was at
Queen’s University, as a visiting researcher; in 2011 at University of
Iowa as a postdoctoral research scholar; and from 2013 to 2014 at
Duke University Eye Center as a postdoctoral fellow. He is now senior
member of IEEE and an associate professor in Biomedical Engineering
Department and MISP Research Center, Isfahan University of Medical
Sciences. His main research interests are medical image analysis and
modeling, sparse transforms, and image restoration. He has published
more than 110 papers as an author or coauthor in these areas.

Journal of Biomedical Optics 086011-12 August 2017 • Vol. 22(8)

Amini and Rabbani: Optical coherence tomography image denoising using Gaussianization. . .

http://dx.doi.org/10.1109/TBME.2008.923140
http://dx.doi.org/10.1109/TBME.2008.923140
http://dx.doi.org/10.1109/ICIP.2006.313018
http://dx.doi.org/10.1109/TBME.2009.2028876
http://dx.doi.org/10.1109/TBME.2009.2028876
http://dx.doi.org/10.2174/157340508786404044
http://dx.doi.org/10.1364/OE.18.021293
http://dx.doi.org/10.1109/TMI.2016.2611503
http://dx.doi.org/10.1016/j.media.2013.05.006
http://dx.doi.org/10.1016/j.media.2013.05.006

