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Abstract. An in-house fabricated portable device has been tested to detect cervical precancer through the intrin-
sic fluorescence from human cervix of the whole uterus in a clinical setting. A previously validated technique
based on simultaneously acquired polarized fluorescence and polarized elastic scattering spectra from a turbid
medium is used to extract the intrinsic fluorescence. Using a diode laser at 405 nm, intrinsic fluorescence of flavin
adenine dinucleotide, which is the dominant fluorophore and other contributing fluorophores in the epithelium of
cervical tissue, has been extracted. Different grades of cervical precancer (cervical intraepithelial neoplasia;
CIN) have been discriminated using principal component analysis-based Mahalanobis distance and linear
discriminant analysis. Normal, CIN I and CIN II samples have been discriminated from one another with
high sensitivity and specificity at 95% confidence level. This ex vivo study with cervix of whole uterus samples
immediately after hysterectomy in a clinical environment indicates that the in-house fabricated portable device
has the potential to be used as a screening tool for in vivo precancer detection using intrinsic fluorescence.© 2018
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1 Introduction
Globally, cervical cancer is the fourth most common cancer in
women, with incidence rate of 7.9% and mortality rate of 7.5%.1

Mortality due to cervical cancer can be minimized by detection
at an early stage. Conventional methods for detection of cervical
cancer are Pap smear (Papanicolaou test) and colposcopy
followed by biopsy and the histopathological examination for
final diagnosis and grading. Recent studies have suggested the
use of the human papillomavirus test as one of the conventional
tests for cervical cancer detection, which has comparatively high
sensitivity and specificity. However, high risk positive patients
still have to undergo yearly Pap tests to check any cell
changes.1–4 These conventional techniques are time consuming
and limited in sensitivity or specificity,3,5–7 which indicates
that many samples are overcalled or missed. To overcome
this limitation, a technique that is more accurate, fast, and
minimally invasive is needed. Optical detection methods such
as fluorescence spectroscopy, elastic scattering, and imaging
have the potential for early diagnosis and are able to monitor
cellular and chemical changes with disease progression.8–32

Fluorescence spectroscopy is one of the relatively sensitive
methods to probe subtle biochemical changes and this has
been used for in vitro and in vivo studies over the past three

decades.8–18 Since the fluorescence from tissue is significantly
modified by absorption and scattering effects at both excitation
and emission wavelengths, important diagnostic information of
biochemical changes with disease progression are hidden. It is
thus necessary to extract intrinsic fluorescence.23,33–39 We have
earlier developed an algorithm based on measured polarized
fluorescence and polarized elastic scattering to extract intrinsic
fluorescence, validated and tested it on tissue-mimicking
phantoms and biological tissue samples with a commercial
spectrofluorometer.34,35,39 The intrinsic fluorescence is free from
the distortion effects and hence provides more precise informa-
tion about biochemical changes compared to the co-, cross-, and
unpolarized spectrum.33–39

In this paper, we report ex vivo results of an in-house fabri-
cated portable device, for detection of early stage cervical cancer
by using polarized light at 405 nm excitation. The dominating
fluorophore at this wavelength is flavin adenine dinucleotide
(FAD)27,28,40,41 with contributions from porphyrin.40,41 With
the progression of disease, FAD is known to change to its
reduced form, which does not fluoresce.40–42 It is also well
known that deficiency of the enzyme ferrochelatase in tumors
results in accumulation of porphyrin but not in the normal
tissue.27,40,41 Our results indicate that the contribution of intrinsic
fluorescence of normal cervical tissue is higher than the
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abnormal signal. A principal component analysis (PCA) is
applied on the spectra, and Mahalanobis distances (MD) and
linear discrimination analysis (LDA) are used for classification
of different precancers of cervix.

2 Materials and Methods

2.1 Instrumentation

A schematic diagram, cartoon, and photograph of the instrument
fabricated in-house are shown in Figs. 1(a)–1(c). The device
consists of two light sources, a laser diode (405 nm, Pegasus,
Shanghai, Optical System Co. Ltd.) and a Xe-lamp (Newport
Oriel Instruments) to measure polarized fluorescence and polar-
ized elastic scattering spectra, respectively. Vertically polarized
light is incident on a sample through beam splitters and lenses
and by rotating the analyzer, co- and crosspolarized spectra are
recorded. A high pass filter (450 nm cut off) is used to eliminate
source effect. Signal is directed to a spectrometer (HR2000+,
Ocean Optics, Inc., Dunedin, Florida) through an optical fiber
and spectra recorded.

2.2 Sample Handling and Analysis Method

The study protocol was reviewed and approved by the institu-
tional review board at the IIT Kanpur, India, and GSVM
Medical College Kanpur, India. All samples were taken from
hysterectomy cases and a written consent form was obtained
from each patient by the doctors involved in this study. The pro-
tocol number for this work from the Institute Ethical Committee
(IEC) of IIT Kanpur was IITK/IEC/2012-13/1/3. Studies using

the probe were performed on whole uterus samples directly after
hysterectomy in the GSVM medical college.

Figure 1(d) shows the photograph of the cervix where the
12 o’clock position is selected as a reference point, while
inner and outer circles show loci of the points in T-zone and
outer-zone areas, respectively. Data are taken every 30 deg from
the 12 o’clock position. T-zone area is an area of the cervix
where endocervical cells (columnar cells) convert to ectocervi-
cal cells (squamous cells) and cervical cancer almost always
originates from this area [Fig. 1(d)]. The whole uterus was
first placed suitably (with the cervix area open to the probe)
in a perspex box immediately after hysterectomy and measure-
ments were taken from the cervix of the whole uterus. For the
collection of data, a reference position was selected and tagged
as 12 o’clock, and measurements taken at every 30 deg interval
as shown in Fig. 1(d). Before recording the spectra, samples
were rinsed with saline water to remove blood from the surface
of the cervix. After experiments, these samples were sent to
the pathology laboratory of GSVM medical college for histo-
pathology. Polarized fluorescence and elastic scattering spectra
for copolarized and crosspolarized states were recorded with
incident polarized light. For fluorescence, the sample was
illuminated with 405-nm wavelength and for elastic scattering,
sample was illuminated with white light from a xenon arc lamp.
Although intensities as well as integration times of these two
sources were different, they were kept constant throughout
the study for all samples and background corrections were
performed for fluorescence and elastic scattering measurements
separately. Measurements were taken from a total of 62 sites
from T-zone and 94 sites from outer-zone areas of the cervix
of 28 patients. The patients were from different age groups

Fig. 1 (a) Block diagram, (b) cartoon, and (c) photograph of system for polarized fluorescence measure-
ments, showing light delivery to sample through optical fiber, other associated optical components and
collection fiber. (d) Photograph of cervix showing the points in T-zone and outer-zone areas from where
data are taken during the experiment.
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(45 to 65 years) and economic backgrounds. Table 1 shows
data sets of different categories of the cervix of the whole uterus
based on prebiopsy, postbiopsy, and spectroscopy findings.
Spectroscopy measurements were performed on two to five
sites of each sample. In some cases where the cervix was wide
open, measurements were done from eight sites. Comparison of
spectral data and histopathology of each uterus sample was done
and summarized as data for PCA.

The spectra are used in a multistep classification process to
determine the tissue type of any unknown sample. This multi-
step classification process consists of the following steps:
(1) extraction of intrinsic fluorescence, (2) use of principal
components analysis to reduce the dimension of data, and
(3) classification of tissue samples using MD and linear dis-
criminant analysis algorithms. We extract the intrinsic fluores-
cence through34,39

EQ-TARGET;temp:intralink-;e001;63;376IF ¼ ½IvvðλÞ − GðλÞ � IvhðλÞ�fl
½IvvðλÞ − GðλÞ � IvhðλÞ�scat

; (1)

where IvvðλÞ and IvhðλÞ are co- and crosspolarized signal and
GðλÞ½¼ IhhðλÞ∕IhvðλÞ� is the ratio of the sensitivity of instru-
ments to the vertically and horizontally polarized light, keeping
the source light in horizontal polarized state. Here, the subscripts
“fl” and “scat” represent fluorescence and elastic scattering,
respectively. The polarized fluorescence and polarized elastic
scattering spectra, which are free from diffuse elastic scattering
effect, were generated by subtracting crosspolarized signal from
copolarized signal. The copolarized signal goes through a small
number of scattering events before the polarization is random-
ized. This component of the signal is the reduced component.
On randomization, the components of both polarizations are
equal and are the diffuse components of co- and crosspolariza-
tions. The reduced component of the crosspolarized signal is
negligible. A difference of co- and crosspolarized states thus
retains only the reduced component of the copolarized signal,
whereby scattering effects are almost eliminated. Normalizing
polarized fluorescence spectrum ½IvvðλÞ −GðλÞ � IvhðλÞ�fl with
polarized elastic spectrum ½IvvðλÞ −GðλÞ � IvhðλÞ�Scat corre-
sponding to the same wavelength range of fluorescence spec-
trum reduces the absorption effects. The validation of this
technique has been previously reported on tissue mimicking
phantoms and on in vitro measurements with cervical tissue
samples.34,35,39

The technique has also been validated using the fabricated
device with tissue-mimicking liquid phantoms. Both spectral
shape and intensity of original fluorescence spectra were
recovered from a fluorophore in the turbid medium. The probe
was subsequently tested on cervical biopsy tissue samples with
promising results using the same classification described below.

After extraction of intrinsic fluorescence, PCA was applied
for dimension reduction, after which the scores of the principal
components (eigenvectors) of the spectra, which contain maxi-
mum variance of the complete data were determined.13,39,43

In this case, the first seven principal components PC1, PC2,
PC3, PC4, PC5, PC6, and PC7 corresponding to the first seven
eigenvalues of the correlation matrix of whole data were
calculated, which captured almost more than 99% variance of
the original data. Subsequently, MDs and LDA were used to
classify the tissue grades. The scores of selected principal com-
ponents (PCs) of each sample group were divided into training
and validation data sets and the MDs from the validation data
sets (v) to the centroid of training data (tm) set points of
each tissue class were calculated with the help of following
Mahalanobis equation:39,43–45

EQ-TARGET;temp:intralink-;e002;326;404r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv − tmÞ 0 � c 0

t � ðv − tmÞ
p

; (2)

where ct is the covariance matrix for the training data set of
that tissue sample class. The training and validation grouping
was done on the basis of the sites from different categories
of the sample as shown in Table 1. An unknown sample was
classified according to the minimum distance r from the cent-
roid of a particular class. To avoid the biasedness and validate
the results of this multivariate approach in classifying the
unknown sample, the data sets of the two tissue types were
each divided randomly into two groups, with one half of the
sample from each class taken as the training set and the other
half taken as the validation set. Selection of training and
validation data sets for this study is shown in Table 2.

MDs were calculated using the training data set for each class
and each validation sample was classified by selecting the neigh-
borhood for which the distance to the validation sample was
minimum. This was repeated by taking randomly selected
samples in training and validation data sets and no significant
differences in classification could be seen. Further, the same
scores of selected PCs of each sample group were taken and
LDA was used to classify all three classes together.

3 Results and Discussion
Figures 2(a)–2(b) show the copolarized, crosspolarized,
polarized fluorescence, polarized elastic scattering, and intrinsic
fluorescence spectra from a typical cervical intraepithelial
neoplasia (CIN) I sample with 405-nm excitation wavelength.
A broad fluorescence profile with peak at 505 nm is obtained,
which is ascribed to FAD.27,28,40,41 Although the major

Table 1 Number of subjects and sites from different categories used
in this study (age: 45 to 65 years).

Prebiopsy
diagnosis

(colposcopy
findings)

Postbiopsy
diagnosis

(histopathology
findings)

Spectroscopic
diagnosis

Number of
subjects (sites)

28 (156) 28 (156) 28 (156)

Abnormal (sites) 16 (98) 15 (88) 15 (88)

Normal (sites) 12 (58) 13 (68) 13 (68)

CIN I (sites) — 13 (72) 13 (72)

CIN II (sites) — 2 (16) 2 (16)

Table 2 Training and validation data sets of all sites for MD
calculation.

Tissue class Training data Validation data

Normal 34 34

CIN I 36 36

CIN II 8 8
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contributing fluorophore at 405 nm excitation wavelength is
FAD, NADH and porphyrin also show their signatures. The
characteristic absorption dips of hemoglobin (Hb)/oxygenated
Hb and porphyrin absorption, at 476 nm, 527 and 556 nm
can be seen in both polarized fluorescence and polarized elastic
scattering spectra in Fig. 2(b). As expected, normalizing polar-
ized fluorescence with polarized scattering eliminates the
absorption dips and recovery of spectral line shape is clearly
visible in the intrinsic fluorescence spectra of Fig. 2(b). The
change in the area under the curve of fluorescence spectra aver-
aged over all the sites of the T-zone of each subject with their
corresponding counterparts in the outer zone are displayed in
Figs. 3(a) and 3(b). The area under the curve is seen to decrease
from normal to increasing grades of precancer, which confirms
the decrease in contribution of the major fluorophore (FAD)
due to its conversion to the reduced nonfluorescent form with
disease progression.40–42

Figures 4(a) and 4(b) show the weightage distribution of
eigenvalues and total percentage variance of the eigenvalues,
respectively. This shows that even though the eigenvalue con-
tributions with seven PCs are drastically decreased, the variance

is found to be 99%. Hence, seven PCs were used in the analysis.
Figures 5(a) and 5(b) show the reconstruction of the original
data with the first six and first seven PCs, respectively. It can
be seen that the reconstruction of the spectra with the first
six PCs is not as good as that with the first seven PCs.
Figure 6 shows the scatter plot of MD of each sample from
the training centroids of an individual class for discrimination
of tissue grades. In Fig. 6(a), the samples that lie farthest
from x-axis are characterized as normal and samples farthest
from y-axis are CIN I, which are separated by a discrimination
line at 45 deg angle with respect to x and y axes. Figures 6(b)
and 6(c) similarly show the discrimination between normal and
CIN II and CIN I and CIN II samples, respectively.

Sensitivity and specificity are found from results of scatter
plots and statistical findings are shown in Table 3. Excellent
discrimination of CIN I and CIN II from corresponding normal
samples is obtained and CIN I can also be distinguished from
CIN II with a very high sensitivity. Figure 7 shows the scatter
plot of first and second linear discriminants (LD1 and LD2) of
normal, CIN I, and CIN II. The statistical findings of LDA are
given in Table 3. It is pertinent to note that results different
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Fig. 2 Typical plots of (a) co- and crosspolarized fluorescence, (b) polarized fluorescence, polarized
elastic scattering, and intrinsic fluorescence spectra.
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versus CIN I and (b) CIN I versus CIN II.
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Fig. 5 Typical plots of original and reconstructed spectra of normal data with (a) first six principal
components and (b) first seven principal components.
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from these in vivo studies may require appropriate changes in
the classification algorithm. These results indicate that our
in-house fabricated portable device based on polarized fluores-
cence and elastic scattering measurements has the potential to
diagnose cervical precancer in vivo and can be a part of regular
screening techniques for cervical precancer detection.
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