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Abstract. Several algorithms exist to solve the photoacoustic image reconstruction problem depending on the
expected reconstructed image features. These reconstruction algorithms promote typically one feature, such as
being smooth or sharp, in the output image. Combining these features using a guided filtering approach was
attempted in this work, which requires an input and guiding image. This approach act as a postprocessing step to
improve commonly used Tikhonov or total variational regularization method. The result obtained from linear
backprojection was used as a guiding image to improve these results. Using both numerical and experimental
phantom cases, it was shown that the proposed guided filtering approach was able to improve (as high as
11.23 dB) the signal-to-noise ratio of the reconstructed images with the added advantage being computationally
efficient. This approach was compared with state-of-the-art basis pursuit deconvolution as well as standard
denoising methods and shown to outperform them. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10

.1117/1.JBO.23.9.091413]
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1 Introduction
Photoacoustic tomography (PAT) is a noninvasive imaging
modality combining benefits of optical contrast and ultrasonic
resolution.1–6 This modality uses a short pulsed laser as the radi-
ation source to irradiate the biological tissue. The tissue absorbs
the optical energy resulting in small temperature rise, in turn
generates pressure waves by photon absorption and thermoelas-
tic expansion. These pressure (acoustic) waves are detected by
the ultrasound transducers placed at the boundary of the imaging
domain. The major strength of the photoacoustic (PA) imaging
is that the detected acoustic waves have less scattering and
attenuation in biological tissues, making them propagate
through thick biological tissues easily. The detected PA waves
on the boundary are typically utilized to generate an initial
pressure distribution inside the tissue. The initial pressure dis-
tribution is proportional to the product of optical fluence and
absorption coefficient. The optical absorption provides informa-
tion about tissue components, such as melanin, bilirubin, lipids,
water, hemoglobin, and oxyhemoglobin.7,8 The biochromo-
phores are helpful in assessing the pathophysiological condition
of the tissue. The applications of PA imaging include monitoring
tissue health condition in the fields of cardiology,9 ophthalmol-
ogy,10 oncology,11,12 dermatology,13,14 and neurosciences.15

The important step in the PA tomographic imaging is the
image reconstruction, which is an initial value problem. In this,
the aim is to estimate the initial pressure at time t ¼ 0, given
the boundary pressure data at time “t.” Several reconstruction
methods are available for estimating the initial pressure. The
standard reconstruction algorithms include analytical algorithms

[backprojection (BP) and delay-and-sum] and time-reversal
(TR) algorithms.16–19 These are computationally efficient as
compared to the model-based reconstruction algorithms but
require a large amount of data to obtain meaningful results.
The requirement of a large amount of data results in either
increased scan time or expensive instrumentation setups.
Moreover, typical setups used for the PA tomographic measure-
ments record the ultrasound waves over an aperture, which may
not cover the object,20–22 resulting in only limited data.

Reconstruction of PA images in these limited data cases
using either analytical or TR methods results in poor quality
images, often having limited ability in terms of much required
contrast. The model-based image reconstruction algorithms
were proposed in the literature for these limited data cases,
which improve the quantitative accuracy of reconstructed
images.23–26 These algorithms especially iterative in nature
also provide robustness to noise in the boundary data,16,27

making them attractive in real-time. These model-based iterative
reconstruction algorithms tend to be computationally complex
compared to analytical algorithms like linear backprojection
(LBP) and require utilization of regularization to constrain the
solution space. Often, the reconstructed image characteristics
obtained by analytical algorithms are complimentary to the
model-based reconstruction algorithms.28–30

To improve the PA imaging performance, the earlier attempts
included applying signal enhancement methods on the PA data
collected.31–35 These methods typically apply deconvolution on
the raw data collected to improve recorded acoustic signal.31–35

These approaches have limited utility (will also be shown with
an example using the method attempted in Ref. 33) compared
to postprocessing of reconstructed PA images. In addition,
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applying an enhancement method for the recorded PA data may
be computationally expensive, especially in cases where large
amounts of data are collected.36 It will be ideal to develop a
method that work independent of the amount of the boundary
data collected.

Postprocessing of reconstructed medical images is part of
standard clinical diagnosis, which typically involves enhancing
the contrast of images.37 In this step, the reconstructed images
are typically either normalized in terms of the histogram or
applied a filter to enhance the diagnostic accuracy. Specific
to PA imaging, there were attempts earlier to perform blind
deconvolution to improve the resolution in optical-resolution
PA microscopy (OR-PAM).38 This blind deconvolution process
involves estimation of the blur kernel or point spread function
using a Wiener filter type estimator, which needs prior informa-
tion about the signal-to-noise ratio (SNR) of the input image.38

In continuation of these efforts, assuming that regularization in
the model-based image reconstruction can be used to provide
the blurring matrix, the image reconstruction was considered as
a two step process.28,39 The first step being model-based image
reconstruction and the second one being the deblurring using the
estimated model-resolution matrix via sparse recovery-based
methods that utilized the l1-based regularization.28 Often,
these postprocessing methods, especially like deblurring/
deconvolution steps, are computationally demanding requiring
computational times on par with the initial step of model-based
reconstruction.28,39

The recent advances in image fusion in computer vision
enabled researchers to effectively combine the best features
from the input and guiding images to provide an output image
that is superior to both of them.40 Especially, in areas such as
multicamera as well as multifocus fusion, the results have
been encouraging with utility of guided filtering, which can
be seen as a state-of-the-art image fusion method with little
to no computational complexity.41 In this work, the same guided
filtering42 based approach has been used to improve the
reconstruction results obtained from various reconstruction
schemes that are typically used in PA image reconstruction.
The proposed approach also can be seen as a two step process,
initially, one performs reconstruction using two reconstruction
methods [examples could be LBP28,30,43 and total variational
(TV) based regularization method]44,45 and the reconstruction
results are combined using guided filtering to provide superior
reconstruction result compared to both of them. It is also dem-
onstrated that the standard denoising methods, such as wavelet
thresholding and nonlocal means (NLM), which are typically
applied in standard postprocessing of reconstructed images,
provides very limited utility in cases discussed here. It is shown
using both numerical and experimental phantom along with
in-vivo results that the guided filtering approach provides
superior results compared to the established basis pursuit decon-
volution (BPD) method.28,39 More importantly, these results also
establish the utility of the image fusion methods to improve PA
image reconstruction. All discussion in this work is limited to
two-dimensional imaging as the aim is to show the utility of
the proposed guided filtering approach in PA imaging.

2 Photoacoustic Image Reconstruction
The forward problem in the PAT involves collecting the pressure
data by ultrasound detectors on the boundary of the imaging
domain, given an initial pressure distribution. The PA wave
equation can be written as follows:6

EQ-TARGET;temp:intralink-;e001;326;752∇2Pðx; tÞ − 1

c2
∂2Pðx; tÞ

∂t2
¼ −β

Cp

∂Hðx; tÞ
∂t

; (1)

where Pðx; tÞ is the pressure at position x and time t, c is the
speed of sound in the medium, β is the thermal expansion
coefficient, Cp is the specific heat capacity, and Hðx; tÞ repre-
sents the energy deposited per unit time per unit volume. The
reconstruction (inverse) problem involves an estimate of the ini-
tial pressure [Pðx; tÞ at t ¼ 0] inside the imaging domain, given
the boundary measurements at time t, making the reconstruction
(inverse) problem equivalent to an initial value problem.

2.1 System Matrix Building

The numerical experiments setup carried out in this work is the
same as in Refs. 29, 30, and 46. For completeness, it is briefly
reviewed here. The imaging domain has a dimension of n × n
(herein, n ¼ 201). It is vectorized by stacking the columns into
a n2 × 1 vector and represented as x. The system matrix ðAÞ
has a dimension of m × n2. Here, m is the number of detectors
multiplied with number of time samples. Each column of the
system matrix represents the impulse response corresponding to
every entry in the vectorized image. The columns of the data
are also stacked into a long vector ðbÞ (dimension m × 1).29,30

The forward model for PA imaging can be written as
follows:

EQ-TARGET;temp:intralink-;e002;326;465Ax ¼ b; (2)

where x is a long column vector having a dimension of n2 × 1
(n ¼ 201) and b is the measurement vector with a dimension
of m × 1ðm ¼ 100 × 500Þ.

LBP image ðxLBPÞ can be obtained as follows:28,43

EQ-TARGET;temp:intralink-;e003;326;390xLBP ¼ ATb; (3)

where T indicates the transpose of the matrix. BP methods are
noniterative in nature making them computationally efficient.
The drawback of BP methods is that they provide only qualita-
tive results especially in limited data cases, and hence avoided
for quantitative imaging.27 This BP image (xLBP) is typically
used as an initial guess for iterative model-based image
reconstruction methods.26,30 In this work, xLBP was used as guid-
ing image to improve the reconstruction results obtained from
model-based reconstruction methods.

2.2 k -Wave Time Reversal Method

The TR is a standard one-step image reconstruction method that
can be performed using the open-source k-wave toolbox.47 In this
method, the solution of the wave equation Pðx; tÞ vanishes out-
side the time point N (the longest time for which the PAwave is
traveling inside the domain).48 The zero initial conditions are
imposed and the model is solved backward in time, thus giving
the solution [Pðx; 0Þ] at t ¼ 0. Even though TR provides a
model-based solution, often the reconstruction results are depen-
dent on the amount of available data as well as bandwidth of
acoustic detectors.18,48 As the boundary data considered here
are limited, the interpolated data were used to estimate the initial
pressure inside the imaging domain.47 This method was utilized
to reconstruct the initial pressure distribution using both limited
bandwidth as well as full bandwidth data. Note that as all
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experimental acoustic detectors are always band-limited, the full
bandwidth results are limited to numerical phantom cases consid-
ered here.

2.3 Lanczos Tikhonov Regularization Method

In cases of limited data, the PA tomographic image
reconstruction problem becomes ill-conditioned. The Tikhonov
regularization method is the most commonly used regularization
method for solving these ill-conditioned problems. Tikhonov
regularization works on the principle of minimizing the residual
of the linear equations along with smooth regularization term.
The objective function for Tikhonov regularization can be
written as follows:

EQ-TARGET;temp:intralink-;e004;63;601Ω ¼ kAx − bk22 þ αkxk22; (4)

where α is the regularization parameter, which provides a bal-
ance between the residual and the expected initial pressure dis-
tribution. The function to be minimized is Ω and the l2-norm is
represented by k:k2. Equation (4) minimized with respect to
x results in

EQ-TARGET;temp:intralink-;e005;63;515ðATAþ αIÞxTikh ¼ ATb: (5)

The regularization parameter ðαÞ controls the reconstructed
initial pressure distribution characteristics. Higher regularization
tends to oversmooth the image, while a lower value of regulari-
zation parameter amplifies the noise in the image. Solving these
linear systems of equations [Eq. (5)] requires Oðn6Þ operations
with n ¼ 201 for the problem at hand, making it computation-
ally demanding.

The Lanczos bidiagonalization49 provides dimensionality
reduction of the problem, making the reconstruction problem
more tractable in terms of required number of operations
as well as storage. This method was previously described in
Ref. 29 for estimation of the optimal regularization parameter
(α) in the Tikhonov-framework that utilizes the QR decompo-
sition. The dimensionality reduction is performed on system
matrix, A, via Lanczos bidiagonalization, as given in Ref. 49.
The left and right Lanczos matrices and the bidiagonal matrix
are related to the system matrix A as follows:29,46

EQ-TARGET;temp:intralink-;e006;63;296Mkþ1ðβ0e1Þ ¼ b; (6)

EQ-TARGET;temp:intralink-;e007;63;266ANk ¼ Mkþ1Bk; (7)

EQ-TARGET;temp:intralink-;e008;63;241ATMkþ1 ¼ NKBT
k þ αkþ1nkþ1eTkþ1; (8)

where BK represents the lower bidiagonal matrix, MK and NK
represent the left and right orthogonal Lanczos matrices, and β0
is the l2-norm of b. The dimensions of left and right orthogonal
Lanczos matrices are ðm × kÞ and ðn2 × kÞ, respectively, with k
representing the number of iterations for which bidiagonaliza-
tion was performed. The unit vector of dimension k is repre-
sented as ek (=1 at the k’th and 0 otherwise).

Equations (6)–(8) can be utilized to rewrite as follows:

EQ-TARGET;temp:intralink-;e009;63;125b − Ax ¼ MKþ1ðβ0e1 − BKxðkÞÞ; x ¼ NKxðkÞ; (9)

where xðkÞ represents the dimensionality reduced version of
x with k ≪ n2. Substituting Eq. (9) in Eq. (4) and using the

property MT
Kþ1MKþ1 ¼ I, the cost function can be rewritten

as follows:29,46

EQ-TARGET;temp:intralink-;e010;326;729Ω̂ ¼ kβ0e1 − BKxðkÞk22 þ αkxðkÞk22: (10)

Considering the first-order condition, the solution becomes

EQ-TARGET;temp:intralink-;e011;326;685xðkÞest ¼ ðBT
KBK þ αIÞ−1β0BT

Ke1; xest ¼ NKx
ðkÞ
est ; (11)

where xðkÞest is the estimate of xðkÞ for a fixed k and a given regu-
larization parameter α.50 Note that xest ¼ xTikh only if k ¼ n2 for
a given value of α. For other cases, xest becomes an approxima-
tion of xTikh. There exists an optimal k, which reduces the error
between xest and xTikh within the precision limits.46,49 Since
dimensionality reduction is obtained using the Lanczos algo-
rithm, this method offers computationally efficient solutions
as compared to the other methods, including the solution
given in Eq. (5).

The performance of model-based reconstruction scheme
depends on the choice of reconstruction parameter, such as α
and k.51,52 Error estimate methods have been utilized for finding
the number of iterations (k) for the Lanczos method51–53 along
with α (readers are encouraged to refer to Bhatt et al.53 for more
details, it is briefly reviewed here). The residual of the system r
is defined as follows:

EQ-TARGET;temp:intralink-;e012;326;475r ¼ b − Ax: (12)

The norm of the error estimate can be written as follows:53

EQ-TARGET;temp:intralink-;e013;326;433kek22 ≈ η2v ≔ ev−10 e5−2v1 ev−32 ; (13)

where v ∈ R, e0 ≔ krk22, e1 ≔ kATrk22, and e1 ≔ kAATrk22.
The error estimate for v ¼ 2 becomes53

EQ-TARGET;temp:intralink-;e014;326;378η2 ¼
krk2kATrk2
kAATrk2

: (14)

The regularization parameter α is found by minimizing
Eq. (14):

EQ-TARGET;temp:intralink-;e015;326;310η2ðαÞ ¼
krk22kATrk22
kAATrk22

: (15)

For the minimum value of α, the number of steps k is calcu-
lated. This error estimate approach53 was utilized to get the opti-
mal values for k and α in this work and the reconstructed image
is represented by xLTO. For the case of k and α being chosen
heuristically, it is represented by xLTH.

2.4 Basis Pursuit Deconvolution Method

In Ref. 28, BPD was utilized to deblur the solution obtained
using the Lanczos-Tikhonov regularization method (discussed
in Sec. 2.2). As regularization blurs the solution, the effect of
regularization can be overcome by the BPD method, so it is
typically used for deblurring the xLTH. It utilizes the split
augmented Lagrangian shrinkage algorithm (SALSA)54 to
minimize the following objective function, which uses l1-type
regularization to promote sharp features:

EQ-TARGET;temp:intralink-;e016;326;91Ω ¼ kHxðkÞ − xðkÞestk22 þ σkxðkÞk1; (16)
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where H is the model resolution matrix, which represents the
blur matrix, defined as

EQ-TARGET;temp:intralink-;e017;63;556H ¼ ðBT
KBK þ αIÞ−1BT

KBk: (17)

The solution obtained by minimizing Eq. (16) with respect to
xðkÞ is denoted as xðkÞd (solved by utilizing Algorithm 1) and
the final deblurred solution becomes

EQ-TARGET;temp:intralink-;e018;63;491xBPD ¼ Nkx
ðkÞ
d : (18)

2.5 Total Variational Regularization Method

The Tikhonov regularization [Eq. (4) or Eq. (10)] promotes a
smooth solution due to the quadratic nature of regularization.
The TV regularization method is used for solving the ill-posed
problem by introducing a regularization term minimizing the
variation in the solution (x). The cost function for the same
can be written as follows:44,45

EQ-TARGET;temp:intralink-;e019;63;360Γ ¼ kAx − bk22 þ λkxk0TV; (19)

where λ is the regularization parameter. Here, k:kTV denotes the
isotropic TVutilizing the form in Ref. 55. For TV regularization,
the alternating direction method of the multipliers framework
given in Ref. 56 was utilized, and the algorithm known as
SALSA54 (given in Algorithm 1) was deployed in this work.

2.6 Denoising Using Wavelet Thresholding
(Hard and Soft)

One of the standard techniques used for denoising of images is
wavelet thresholding. Its application ranges from noise reduc-
tion, signal and image compression up to signal recognition.57

Thresholding works by setting the high frequency sub-band
coefficients that are less than a threshold to zero.57 Both hard
thresholding (HT) and soft thresholding (ST) have been used
in this work.58 The advantage of this method is that the denois-
ing approach is model-free and can be applied as a postprocess-
ing step. As the aim of this work was to show that the guided
filtering performs better than the standard denoising method,
here, the input image was chosen to be xLTO (which has best
image quality among the reconstructed results). The input
image xLTO is transformed into the wavelet domain:

EQ-TARGET;temp:intralink-;e020;63;90â ¼ DWTðxLTOÞ; (20)

where â represents the image in the wavelet domain and DWT
stands for discrete wavelet transform (here, Haar wavelets were
utilized).58,59 The coefficients in the wavelet domain are repre-
sented by a. After thresholding is performed on all wavelet
coefficients, the coefficients are represented as y. The image is
again transformed from wavelet domain to x domain, which is
represented as x̂:

EQ-TARGET;temp:intralink-;e021;326;675x̂ ¼ IDWTðyÞ; (21)

with IDWT representing inverse DWT. As it is expected that
noise is present in the higher order wavelet coefficients, this
thresholding will eliminate the noise.

2.6.1 Hard thresholding

It works on the rule that if a wavelet coefficient value is less than
a threshold, it is set to zero:57

EQ-TARGET;temp:intralink-;e022;326;559y ¼
�
a if jaj ≥ σ
0 if jaj < σ

; (22)

where σ is the threshold value, a is the input wavelet coefficient,
and y is the output wavelet coefficient. A large value of thresh-
old leads to a large bias error while a smaller value increases the
variance.

2.6.2 Soft thresholding

It is defined as follows:57

EQ-TARGET;temp:intralink-;e023;326;430y ¼
�
sgnðaÞfðjaj − σÞ if jaj ≥ σ

0 if jaj < σ
; (23)

where fðaÞ is a linear function, which is a straight line with
slope being dependent on σ57 and sgnðaÞ is defined as follows:

EQ-TARGET;temp:intralink-;e024;326;363sgnðaÞ ¼
8<
:

−1 if a < 0

0 if a ¼ 0

1 if a > 0

: (24)

The ST provides a better alternative to HT. In simple terms,
the ST can be considered as linear transformed version of HT
results with an aim to enhance the signal content in the recon-
structed image along with suppression of noise. Note that σ was
chosen in this work based on the SNR of the raw/boundary data.

2.7 Denoising Using Nonlocal Mean Filter

The other standard method for denoising of images is NLM
filtering.60 Similar to the wavelet denoising method, this also
does not rely on any imaging model and can be applied as a
postprocessing method to denoise images that are corrupted
with Gaussian noise. It is defined as follows:

EQ-TARGET;temp:intralink-;e025;326;166NL½xLTO�ðiÞ ¼
X
j∈I

wði; jÞxLTOðjÞ; (25)

where the weights wði; jÞ depend on the similarity between pix-
els and satisfy conditions 0 ≤ wði; jÞ ≤ 1 and

P
jwði; jÞ ¼ 1.

The similarity between two pixels depend on the closeness of
the intensity gray level vectors xLTOðNiÞ and xLTOðNjÞ. Here,
Nk denotes a grid of fixed size having center at pixel k. The

Algorithm 1 Algorithm of SALSA.

Input: A, b, λ, k ¼ 0, v0 and d0

Output: Solution vector: xkþ1

1 Repeat 2-5 till convergence is satisfied

2 xkþ1 ¼ arg minx kAx − bk22 þ λkx − vk − dkk22
3 vkþ1 ¼ arg minv τϕðvÞ þ ðλ∕2Þkxkþ1 − v − dkk22
4 dkþ1 ¼ dk − ðxkþ1 − vkþ1Þ

5 k ¼ k þ 1
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similarity is a decreasing function of the weighted Euclidean
distance, kxLTOðNiÞ − xLTOðNjÞk22;a, where a > 0 is the stan-
dard deviation of the Gaussian kernel.60 The weights in
Eq. (25) are defined as follows:

EQ-TARGET;temp:intralink-;e026;63;706wði; jÞ ¼ 1

ZðiÞ e
kxLTOðNiÞ−xLTOðNjÞk22;a

h2 ; (26)

with ZðiÞ being the normalizing constant, given as

EQ-TARGET;temp:intralink-;e027;63;648ZðiÞ ¼
X
j

e
kxLTOðNiÞ−xLTOðNjÞk22;a

h2 ; (27)

where h is the degree of filtering, which controls the decay of
the exponential function. The filter parameters are chosen as
described in Ref. 60. The NLM-based filtering is considered
as the state-of-the-art denoising method that is purely image
driven and has been widely applied for medical images.

2.8 Image-Guided Filtering (Proposed Method)

In many applications of computer vision, filtering is used to
enhance the signal content and suppress the noise in images.
Various linear translation-invariant (LTI) filters, such as
Gaussian, Laplacian, and NLM (discussed above), have been
used in image restoration, deblurring/sharpening of images,
etc.61 These filters (LTI) are spatially invariant and independent
of the imaging model. They are deployed depending on the
application and the performance of these filters varies depending
on the extra information that could be used in the filtering proc-
ess, which can be provided by a different image. For example, in
anisotropic diffusion,62 gradient information has been utilized as
extra information, which helps in avoiding smooth edges. The
weighted least squares filter63 utilizes the filtering input as the
guidance. The guiding/guidance image can be another image
instead of the filtering image as in image matting,64 haze
removal,65 and colorization.66 This process optimizes a quad-
ratic function involving large sparse matrices and is computa-
tionally demanding,63–66 making their utility limited in real-
time. Another way to make use of the guiding image is by
explicitly introducing it in the filter kernels as in bilateral
filter.67–69 Here, the output becomes a weighted average of
the nearby pixels and the weights are calculated using the inten-
sity in the guiding image. The bilateral filter can smooth small
fluctuations in the image and preserve edges, but it is often
prone to gradient reversal artifacts.63 Thus, there is a need for
a filter that can perform image fusion, which is computationally
efficient and simultaneously enhance the information of the
input image based on guiding image.

A recently proposed guided filter produces the output by
combining the content of an input (to be filtered) image and
guiding image, by performing a linear transform of the guiding
image.42 It has better behavior compared to the bilateral filter (no
gradient reversal) and it is not a smoothing filter.42 It can transfer
structures of the guiding image to the input (to be filtered)
image, which found applications in filtering techniques, such
as dehazing and guided feathering. Also, it uses a fast linear
time algorithm, which is invariant to the kernel size or the inten-
sity range of the image.

The guided filter has become a state-of-the-art method in
computer vision and computer graphics fields with specific
applications, including image fusion,41 edge aware smoothing,

structure transferring, high dynamic range compression, image
feathering/matting, dehazing,70 detail enhancement,71 flash/
no-flash denoising,72 and joint upsampling. These applications
have been encouraging to apply the guided filtering in the PA
image reconstruction framework.

In PA imaging, the reconstructed image characteristics are
dependent on reconstruction technique and there are both ana-
lytical and model-based reconstruction methods that are being
widely used. Moreover, each reconstruction scheme has variable
computational complexity, for example, the analytical-based
ones being fast and model-based ones being relatively computa-
tionally complex. It will be ideal to develop a fusion method
that can combine the features obtained by two different
reconstruction methods to result in a superior fused/filtered
image. In this work, with the help of guided filtering, the recon-
structed image details were enhanced by combining results from
two different reconstruction methods that provide distinct image
characteristics. For example, the LBP image typically tends to
be smooth but is prone to streak artifacts and also lacks sharp
features, especially in limited data cases. The TV or any other
sparse reconstruction method (such as Lanczos Tikhonov) will
be able to provide these sharp features, but often they also
enhance the noise present in the boundary data. It will be
ideal to develop a image fusion method that can effectively
fuse BP (analytical type result) and model-based (here either
TV or Lanczos Tikhonov) reconstructed images, which is pro-
posed here with utility of image-guided filter.

The joint image filtering (involving guiding and to-be-fil-
tered image) frameworks, including the current one, is derived
from minimizing an objective function involving a fidelity term
and a regularization term. The regularization in the guided filter-
ing case is implicitly imposed on the objective function with
the fidelity term only. With addition of the smoothness term,
the regularization scheme becomes explicit. There are methods
that utilize the explicit regularization73 in the joint image filter-
ing, but are often computationally more expensive compared to
implicit methods. In the implicit regularization case (applicable
to the proposed method), the guiding image is utilized within a
local window to implicitly result in a weight/filter function to be
applied on the input image. This allows the structure of the guid-
ing image to be transferred to the input image (similar to bilat-
eral filter67) with important features like edges as well as corners
to be preserved while allowing noise suppression. This results in
a spatially variant filtering kernel, depending on the local win-
dow, that is utilized in the guided filtering approach. Simply, the
weighted averaging regularizes the filtering process, resulting in
a regularized output image. As this process is applied locally, all
implicit methods are easy to implement involving little to no
computational burden. The detailed discussion about implicit
and explicit image filtering approaches is present in Ref. 73
for the interested readers.

Specifically, the input image for image-guided filter can be
the Lanczos Tikhonov image obtained either using the heuristic
(xLTH) or optimal (xLTO), or the TV image (xTV), which needs to
be filtered (also known as to be guided image, represented by
xTG). The guiding image represented by xGð¼ xLBPÞ obtained
via Eq. (3) can be used to make xTG more structured and
less noisy to result in the filtered image (xF). In this approach,
the output image (xF) is a transformation of xG in a window ωp
centred at pixel p and is given as follows:41,42

EQ-TARGET;temp:intralink-;e028;326;93xiF ¼ apxiG þ bp; ∀ i ∈ ωp; (28)
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where ap and bp are linear coefficients that are constant in ωp
that needs to be determined. The model ensures that xF has an
edge only if xG has an edge, as ∇xF ¼ a∇xG. Suppose ni is the
amount of noise present in the xTG image, then the reconstructed
image xF can be represented as follows:

EQ-TARGET;temp:intralink-;e029;63;697xiF ¼ xiTG − ni: (29)

The determination of coefficients (ap and bp) were achieved
by minimizing the cost function obtained after combining
Eqs. (28) and (29) and is written as follows:41

EQ-TARGET;temp:intralink-;e030;63;633Eðap; bpÞ ¼
X
i∈ωp

½ðapxiG þ bp − xiTGÞ2 þ ϵa2p�; (30)

where ϵ is the regularization parameter penalizing larger values
of coefficient ap. The coefficients obtained after minimizing
Eq. (30) are given as follows:41

EQ-TARGET;temp:intralink-;e031;63;555ap ¼
1
jωj

P
i∈ωp

xiGx
i
TG − μpxiTG

σ2p þ ϵ
; (31)

EQ-TARGET;temp:intralink-;e032;63;488bp ¼ xpTG − apμp; (32)

with μp and σ2p being the mean and variance of xG, respectively,
in ωp, jωj is the number of pixels inωp, and xiTG ¼ 1

jωj
P

i∈ωp
xiTG

is the mean of xTG in ωp. For the modified filter, Eqs. (31) and
(32) are changed as in Ref. 74. Since a pixel is involved in all
the overlapping windows, xF is computed using an average
over all the windows and the output thus becomes41

EQ-TARGET;temp:intralink-;e033;63;390xiF ¼ 1

jωj
X

pji∈ωp

ðapxiG þ bpÞ: (33)

Due to the symmetry,
P

pji∈ωp
ap ¼ P

p∈ωi
ap, Eq. (33) can

be written as follows:

EQ-TARGET;temp:intralink-;e034;63;318xiF ¼ aixiG þ bi: (34)

Algorithm 2 lists all important steps including variations for
the original guided filter. Note that in Algorithm 2, β acts as the
control parameter and α is the parameter helping in making a
sharper transition from the low-pass to high-pass filtering mode.

The guided filter has distinct advantages of improving image
quality as it is an edge preserving, gradient preserving, and
structure transferring filter.41,42 This method is applied as a post-
processing step after reconstruction and its performance is com-
pared against wavelet-based ST as well as HT techniques and
NLM filtering-based denoising methods.

The edge preserving can be explained, when one assumes
that the guiding image is the same as the input (to be guided)
image. In this case, the guiding filter coefficients can be

written as ap ¼ σ2p
σ2pþϵ

and bp ¼ ð1 − apÞμp. When ϵ > 0, two

cases arise:

• If the image xG has high variance in ωp, then σp ≫ ϵ, so
ap ≈ 1 and bp ≈ 0. Thus, if a pixel is in a high variance
area, then its value remains same, i.e., xF ¼ xG.

• If the image xG is almost constant in ωp, then σp ≪ ϵ, so
ap ≈ 0 and bp ≈ μp. Thus, if the pixel is in a flat patch
area, then its value becomes the average of neighboring
pixels.

The guided filter performs gradient preserving since it uses a
patchwise model. For the self-guiding image, ap < 1 and bp are
constant. Suppose the detail layer is given as d ¼ xTG − xF and
utilizing ∂xxF ¼ ap∂xxTG, one can write

EQ-TARGET;temp:intralink-;e035;326;305∂xd ¼ ∂xxTG − ∂xxF ¼ ð1 − apÞ∂xxTG; (35)

which implies that ∂xxd and ∂xxTG are always in the same direc-
tion, thus, the gradient is always preserved.

2.9 Automated Wavelet Denoising of Recorded
Photoacoustic Data

One of the standard denoising method in the data domain is
the wavelet denoising,33 using maximum overlap DWT
(MODWT),75 which is a non-orthogonal transform. The benefit
of using the MODWT is that it is applicable for any sample size
(not restricted to powers of 2) and hence zero padding is not
necessary along with eliminating arbitrary truncation. The
MODWT contrast to DWT forms a zero-phase filter, resulting
in lining up features with original signal. For complete discus-
sion of MODWT, please see Ref. 75, and with respect to appli-
cation to the PA image, the readers are encouraged to see
Ref. 33. In this work, we have utilized the MODWT to imple-
ment wavelet smoothing on the noisy PA signals, which auto-
matically sets a denoising threshold using universal threshold

Algorithm 2 Modified guided filter ðxTG; xG; r ; ϵ; α; βÞ with f að:Þ
representing performing operation “a” on the arguments.

Input: xTG-To be Filtered input image ðxLTO; xLTH; xTVÞ

xG −Guidance ImageðxLBPÞ

r -Window radius (patch size)

ϵ; α; β − Regularization Parameters

Output: xF − Filtered Image

1: meanxG
¼ fmeanðxGÞ;

meanxTG
¼ fmeanðxTGÞ

2: corrxG
¼ fmeanðxG: � xGÞ;

corrxG−TG
¼ fmeanðxG: � xTGÞ

3: varxG
¼ corrxG

−meanxG
: �meanxG

;

covxG−TG
¼ corrxG−TG

−meanxG
: �meanxTG

4: a ¼ ½covxG−TG
∕ðvarxG

þ ϵÞ�α;

b ¼ meanxTG
− β � a: �meanxG

5: meana ¼ fmeanðaÞ;

meanb ¼ fmeanðbÞ

6: xF ¼ meana: � xG þmeanb
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criteria.76 Earlier attempts of using this method have been shown
to improve the image quality by 22%.33

3 Figures of Merit
To quantitatively assess reconstructed image quality using meth-
ods discussed till now, image metrics, such as root mean square
error (RMSE), contrast-to-noise ratio (CNR), and SNR, were
utilized in this study. The first two were utilized in cases of
numerical phantoms, where the target/expected initial pressure
distribution is available. The latter one is applied in experimental
phantom cases, where the ground truth is not available.

3.1 Root Mean Square Error

The RMSE is a common metric for assessing the performance of
reconstructed images in PAT23,77–79 and it is defined as follows:

EQ-TARGET;temp:intralink-;e036;63;578RMSEðxtarget; x̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σðxtarget − x̂Þ2

N

r
; (36)

where N is the total number of pixels of the imaging domain,
xtarget is the expected initial pressure distribution, and x̂ is the
reconstructed (or filtered) initial pressure distribution. The lesser
value of RMSE indicates the closeness of the reconstructed/
denoised image with the expected image.

3.2 Contrast-to-Noise Ratio

CNR is defined as follows:36,80,81

EQ-TARGET;temp:intralink-;e037;63;437CNR ¼ μroi − μback
ðδ2roiaroi þ δ2backabackÞ1∕2

; (37)

where μ and δ represent the mean and the variance correspond-
ing to the region of interest (roi) and the background (back) in
the reconstructed/filtered initial pressure. The roi refers to the
region of the phantom, where initial pressure values are greater
than zero and the background refers to the region of the phan-
tom, where it is 0. The aroi ¼ Aroi

Atot
and aback ¼ Aback

Atot
represent the

area ratio.80 Aroi represents area of the region of interest and
Aback represents area of the background. Atot is the sum of
areas of the region of interest and the background. aroi and
aback are the noise weights for the region of interest and the
background, respectively. Higher value of CNR represents
the better contrast recovery of the reconstructed/filtering
method.81

3.3 Signal-to-Noise Ratio

The SNR is expressed as follows:82

EQ-TARGET;temp:intralink-;e038;63;207SNRr ðin dBÞ ¼ 20 × log10

�
S
n

�
; (38)

where S denotes the peak initial pressure value and n corre-
sponds to standard deviation of the whole image. This is
standard metric for defining the image quality.61 Higher SNR
represents the lesser noise in the reconstructed image and
thus better performance of the reconstruction/filtering method.
To differentiate it from the SNR of the boundary data, this figure
of merit for the reconstructed image was denoted by SNRr.

4 Numerical and Experimental Studies
The measurement of actual initial pressure distribution in real
experiments is challenging. Comparing of performance of dif-
ferent reconstruction algorithms in these cases is challenging,
so, typically, numerical phantoms are deployed for effective
comparison. In this work, four such numerical phantoms were
considered.

The computational imaging grid has a dimension of
501 × 501 (0.1 mm∕pixel) and the detectors were placed on
a circle of radius 22 mm. The schematic diagram showing
the data acquisition setup along with acoustic detectors place-
ment is given in Fig. 1. The experimental data were generated
on a high dimensional grid having a dimension of 401 × 401 and
the reconstruction was performed on a lower dimensional grid
having a dimension of 201 × 201 to mimic real experimental
scenario. The numerical phantoms spans the imaging domain
of size 20.1 mm × 20.1 mm. The data generated using the
high dimensional grid were added with white Gaussian noise
to result in SNR levels ranging from 20 to 60 dB. An open
source toolbox k-wave47 in MATLAB was used for generating
the data. The sampling frequency used for the data collection is
20 MHz and the number of time samples for each detector
was 500. A hundred acoustic detectors placed on the circle at
equidistance (as depicted in Fig. 1) with center frequency of
2.25 MHz and 70% bandwidth collected the boundary data.
The system matrix (A) thus formed has a dimension of
50;000 × 40;401. The speed of sound was assumed to be
1500 m∕s and the medium was assumed to be homogeneous
with no dispersion or absorption of sound.

Initially, three numerical phantoms with maximum initial
pressure distribution of 1 kPa [blood vessel (BV), modified
Derenzo, and PAT, as given in Figs. 3(a)–3(c), respectively]
were used to show the effectiveness of the proposed method.
The numerical BV phantom [Fig. 3(a)] consists of thick and
thin BV mimicking the typical BV structures. The modified
Derenzo phantom [Fig. 3(b)], which consists of circular objects
with varying diameter grouped according to size, was also used
to assess the performance of the reconstruction method in terms

Fig. 1 Schematic diagram of PA data acquisition geometry along
with depiction of position of 100 acoustic detectors (shown by dots)
around the imaging domain. The computational imaging grid size is
50.1 mm × 50.1 mm.
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of size. Another phantom consisting of the letters “PAT”
[Fig. 3(c)] was also used to determine the ability of the
reconstruction method in terms of recovering sharp edges.
The fourth numerical phantom mimics the single slice of real
breast, which was created using contrast-enhanced imaging
data.83,84 In this phantom, the initial pressure was varied from
0 to 5 and the expected initial pressure distribution is given in
Fig. 3(d). The experiments were also performed using 50 detec-
tors with the BV phantom to assess the ability to recover
the structures with sparse data (here, the dimension of b and
A is 25;000 × 1 and 25;000 × 40;401, respectively).

The schematic of the experimental setup for the collection of
the PA data is shown in Fig. 2(a). It is similar to Fig. 1(e) of
Ref. 85 (as well as Fig. 2 in Ref. 30). A Q-switched Nd:
YAG laser (Continuum, Surelite Ex) was used to deliver a laser
pulse of 5-ns duration at 10-Hz repetition rate having wave-
length of 532 nm. Four right-angle uncoated prisms (PS911,
Thorlabs) and one uncoated planoconcave lens L1 (LC1715,
Thorlabs) were utilized to deliver the laser pulses to the sample.
The laser energy density on the phantom was 9 mJ∕cm2, which
is within the safety limit (<20 mJ∕cm2: ANSI safety limit86). A
triangular shaped horse hair phantom was utilized [photograph
is shown in Fig. 2(c)] having side-length and diameter of 10 and
0.15 mm, respectively. The horse hair phantom was attached to
the pipette tips adhered on acrylic slab.87 The PA data were col-
lected continuously around the horse hair phantom for full
360 deg using a 2.25-MHz flat ultrasound transducer (Olympus
NDT, V306-SU) with a 13-mm diameter active area and 70%
nominal bandwidth. Another experimental phantom was used

consisting of circular tubes. It was made using low density
polyethylene tubes (5-mm inner diameter) and were filled with
Indian black ink [photograph is shown in Fig. 2(b)]. The tubes
were placed at 0 and 15 mm from the scanning center and
affixed at the bottom of the acrylic slab. The reconstructed
slice in these cases is the middle slice of the imaging phantom.

Using the same set-up, as in Fig. 2, in vivo rat brain imaging
(healthy one) was carried out at 1064-nm wavelength as the light
penetration is deeper in the near-infrared region. The laser
energy density on the animal head (skin) was 9.7 mJ∕cm2,
which was well below the ANSI safety limit of 100 mJ∕cm2

at 1064 nm. Healthy female rats weighing 90� 5 g were pro-
cured from InVivos Pte Ltd. to conduct this in vivo animal
experiment. All animal experiments were carried out according
to the guidelines and regulations approved by the institutional
Animal Care and Use committee of Nanyang Technological
University, Singapore (Animal Protocol Number ARF-SBS/
NIE-A0263). Before performing the experiments, rats were
anesthetized using a mixture containing ketamine (85 mg∕Kg)
and xylazine (15 mg∕Kg) by injecting a dosage of
0.2 mL∕100 g intraperitoneally. The animals were placed in
the PA scanner after trimming the hair on the head and epilating
using hair removal cream. The animal was maintained under
anesthesia during the experiments using 0.75% isoflurane gas
(Medical Plus Pte Ltd., Singapore) along with oxygen
(1.2 L∕min). The anesthesia mixture was delivered through a
nose cone with a breathing mask covering the nose and
mouth of the animal. A custom made animal holder was
used to place the animal in a sitting position on its abdomen

Fig. 2 (a) Schematic diagram showing the experimental PA data acquisition. The major components of
the experimental set-up are: CRP, circular rotating plate; SM, stepper motor; SMP, stepper motor pulley
unit; P1,P2,P3,P4, uncoated right-angled prisms; L1, planoconcave lens; R/A/F, receiver, amplifier, and
filter for PA signal; DAQ, data acquisition card; UST, ultrasound transducer. (b) Photograph of circular-
shaped tubes filled with India black ink. (c) Photograph of triangular-shaped horse hair phantom.
(d) Photograph of rat brain after trimming and removal of hair on the head before PAT imaging.
(e) Photograph of rat brain after cutting and open the top skin layer in the head region after the PAT
imaging is done.
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and surgical tapes were used to hold the animal in this position.
Then, the animal along with the animal holder was mounted on a
translational stage during the experiment. Height of the animal
was adjusted using this translational stage in order to adjust the
scanning plane of the rat brain. The photograph of the lateral
plane with and without skin layer is shown in Figs. 2(d) and
2(e), respectively. Animals were euthanized after the experiment
by injecting an overdose of Valabarb (sodium pentobarbitone)
intraperitoneally.

The acquired PA signals were first amplified and filtered
using a pulse amplifier (Olympus-NDT, 5072PR) and then
recorded using a data acquisition (DAQ) card (GaGe, compu-
scope 4227) using a single channel with a sampling frequency
of 25 MHz inside a desktop (Intel Xeon 3.7 GHz 64-bit proc-
essor, 16 GB RAM, running windows 10 operating system). The
synchronization of data acquisition with laser illumination was
achieved using a sync signal from the laser. The reconstructed
PA imaging region contains 200 × 200 pixels and has a size of
40 mm × 40 mm. The data collected have 2400 A-lines aver-
aged over six times resulting in 400 detected signals collected
by the ultrasound transducers acquiring the data continuously
around the hair phantom and tube phantom in full 360 deg
for an acquisition time of 240 s with a rotational speed of
1.5 deg∕s. The data collected for in vivo animal brain had
4800 A-lines averaged over 48 times resulting in 100 detected
signals acquired by the ultrasound transducer continuously in
full 360 deg for an acquisition time of 480 s with a rotational
speed of 0.75 deg∕s. This averaging of A-lines reduced the
energy fluctuations during multiple firings of the laser. The
ultrasound transducer and the phantom were immersed in
water to enable ultrasound coupling. The distance from the
center of the system to the face of the ultrasonic transducer
is 37.02 mm for hair phantom, 38.22 mm for tube phantom,
and 50.76 mm for in vivo imaging. The speed of sound was con-
sidered to be 1500 m∕s in all cases. The PA data were acquired
with sampling frequency of 25 MHz (1024 samples), and
subsampled at half the rate at 12.5 MHz to result in 512
time samples. The system matrix ðAÞ had a dimension of
51;200 × 40;000 (51,200: number of detectors are 100 with

each collecting 512 time samples, 40,000: dimensions of the im-
aging domain being 200 × 200). Determining the actual initial
pressure rise (target values) in these experiments is not plausible,
so the performance of each reconstruction method was quanti-
tatively compared with SNR_r [Eq. (38)] being the figure of
merit. Note that a Linux workstation with 32 cores of Intel
Xeon processor having a speed of 3.1 GHz with 128 GB
RAM was used for all computations performed in this work.

5 Results and Discussion
For completeness, in numerical phantom cases, initially, the TR
method (based on k-wave) was utilized on full bandwidth data
collected from 100 detectors with SNR of 40 dB and these
results are compiled in Figs. 3(e)–3(h). As the number of detec-
tors is still 100 (limited), the corners of these images have a blur-
ring effect due to partial volume effect. The figures of merit—
RMSE and CNR—for these results along with data SNR being
20 and 60 dB, are compiled in Table 2. Note that as real acoustic
detectors are always band-limited, it is not possible to obtain
these results in case of experimental and in-vivo phantom cases.

The reconstructed initial pressure distributions for the
numerical BV phantom [Fig. 3(a)] limited bandwidth data col-
lected from 100 detectors with SNR of 40 dB using k-wave TR
method is shown in Fig. 4(a) and for LBP in Fig. 4(b). The result
obtained using the Lanczos Tikhonov method using the heuristic
parameters (α ¼ 0.3 and k ¼ 40), xLTH, is shown in Fig. 4(c).
Note that the same k and α values were used for other experi-
ments in obtaining xLTH. The same effort in terms of performing
reconstruction using the Lanczos Tikhonov method with the
reconstruction parameters chosen by the error estimate method,
known as xLTO, is given in Fig. 4(d). One of the advantage of the
BPD method lies with its ability to improve the reconstruction
results that are obtained by heuristic choice of reconstruction
parameters,28 so the reconstruction result presented in Fig. 4(c)
was deconvolved using BPD and the output is shown in
Fig. 4(e). The reconstruction result using TV regularization,
xTV, is provided in Fig. 4(f). The proposed image-guided filter-
ing results with input images being xLTH, xLTO, and xTV are
given correspondingly in Figs. 4(j)–4(l) with guiding image

Fig. 3 The target numerical phantoms that were considered in this work: (a) BV phantom, (b) modified
Derenzo phantom, (c) “PAT” phantom, and (d) realistic breast phantom. The reconstructed initial pres-
sure rise using full bandwidth data with SNR of 40 dB corresponding to 100 detectors using k-wave TR
corresponding to each target phantom (a, b, c, d) are given as (e, f, g, h). The corresponding figures of
merit—RMSE and CNR—are given in Table 2 against the row “TR (full).”
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being xLBP [Fig. 4(b)]. For obtaining these results, the value of
ϵ was chosen to be 1 × 10−3. The patch size was taken as one
(corresponding to 3 × 3 neighborhood), while the value of α and
β being 1.05. The results using standard denoising methods
applied to xLTO [Fig. 4(d)] using NLM filtering and wavelet
thresholding-based methods are shown in Figs. 4(g)–4(i),
respectively. The computational time recorded for reconstruct-
ing these images is listed in Table 1. The third column of Table 2
provides recorded figures of merit, RMSE and CNR, for these
results.

From these results, it is obvious that the guided filtering
approach improves the reconstructed images using either
Tikhonov or TV regularization methods without adding any
significant computational burden. Even though the standard
denoising methods (NLM and wavelet thresholding) were able
to improve marginally these results, the computational complex-
ity for methods like NLM is far superior to be utilized in real-

time. Also, the bipolar effect is more pronounced for the TR case
mainly due to band-limited data utilized here [compare with the
result shown in Fig. 3(e)]. From these results (given in Table 2),
the guided filter results with xLTO method, the improvement
obtained in the RMSE is 45% while for the CNR, the improve-
ment obtained is 79% for 40 dB SNR case compared to the TV
method, which gives the best RMSE and CNR without filtering.
The performance compared to methods like BPD is superior,
improving the figures of merit by 100% [comparing guided filter
(TV) result with BPD result in Table 2].

The automated wavelet denoising of recorded PA data using
MODWT (described in Sec. 2.9) was utilized to denoise the sig-
nals recorded on the numerical BV phantom [Fig. 3(a)]. The
SNR of the recorded data was 40 dB. An example of denoised
and recorded noisy PA signals are given in Fig. 5. The RMSE
between the noise-free PA signal and noisy signal (dashed line)
is 0.744. The RMSE in the case of denoised PA signal (solid

Fig. 4 The reconstructed initial pressure distribution using 100 detectors data with SNR of 40 dB cor-
responding to numerical BV phantom using (a) k-wave TR, (b) LBP, (c) LTH, (d) LTO, and (e) BPD with
input image being (c), (f) TV, (g) NLM, wavelet, (h) ST, and (i) HT denoising with input image being (d).
The proposed guided filter results with input images being (c), (d), and (f) are given in (j), (k), and (l),
respectively, with (b) being the guiding image. The target/expected distribution is given in Fig. 3(a). The
corresponding figures of merit—RMSE and CNR—are given in Table 2. The computational times cor-
responding to these methods are presented in Table 1.

Table 1 Recorded computational time (in seconds) for the results presented in Fig. 4.

Method TR LBP LTH LTO BPD TV ST HT NLM Guided filtering

Figure 4(a) 4(b) 4(c) 4(d) 4(e) 4(f) 4(g) 4(h) 4(i) 4(j)–4(l)

Time 78.12 0.5 38 166.89 0.001 5.92 0.05 0.05 375.15 0.01
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Fig. 5 The reconstructed initial pressure distribution for the BV phantom [Fig. 3(a)] with SNR of data
being 40 dB for a single detector located at 12 ‘o’ clock position. The dashed line represents the
noisy PA signal and the solid black line represents the denoised PA signal using automated wavelet
denoising method (Sec. 2.9). The reconstructed images are shown in Fig. 6.

Fig. 6 The reconstructed initial pressure distribution using denoised (Sec. 2.9) PA data corresponding to
numerical BV phantom using (a) k-wave TR, (b) LBP, (c) LTH, (d) LTO, and (e) BPD with input image
being (c), (f) TV, (g) NLM, wavelet, (h) ST, and (i) HT denoising with input image being (d). The target/
expected distribution is given in Fig. 3(a). The corresponding figures of merit—RMSE and CNR—are
given below each figure.
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line) is 0.114. The computational time required for denoising the
recorded signals from 100 detectors is 0.3 s. These denoised PA
signals were utilized as input to the reconstruction methods dis-
cussed in this work and results of the same are given in Fig. 6.
The figures of merit—RMSE and CNR—are also reported in the
same figure below each image. Note that the corresponding
results with utilization of recorded raw data are given in Fig. 4
and figures of merit in Table 2. The improvement of utilizing the
wavelet denoising on the raw data is less than 2% in all cases in
terms of figures of merit and in comparison to the proposed
guided filter approach. Note that for the data having SNR of
20 dB, the improvement is as high as 25% (results are not
shown). It is also important to note that there are sophisticated
methods proposed in the literature,34,35 which could improve the
reconstruction performance significantly (latest one being based
on deep learning35), but the computational complexity of these
methods is at least one order higher than the wavelet denoising
method utilized here, which has the computational complexity
similar to the proposed guided filter approach.

To understand changes in the reconstructed image frequency
spectrum with the utilization of the guided filtering approach
proposed here, the frequency spectrum plots pertaining to
these along with input and guided images are shown in
Fig. 7. The center of these plots represents the low spatial
frequencies and the edges of these will provide high-frequency
components. One observation from these plots is that the guided
filtering approach significantly alters the frequency spectrum of
both input and guiding image to give an output that is an
improved version. More importantly, as the noise is known
to be existing in the high frequency components, it is able
to eliminate noise effectively. In these cases, the Pearson
correlation88,89 (PC) between (a) and others was utilized to cor-
relate these spectrums, which is known to be invariant to scale in
the frequency spectrums to provide required normalization. The
PC values given in Fig. 7 indicate that the guided filter applied to

xTV was having the highest correlation, thus in turn, giving the
closest approximation to the target/expected initial pressure
distribution.

To study the effect of parameters utilized in the guided filter,
patch size, and epsilon (ϵ) in Algorithm 2, a study was per-
formed to record CNR by varying them. These results are
reported in Fig. 8 for the case of the BV phantom. The patch
size defines the neighborhood around the pixel used in the
guided filtering. The ϵ defines the degree of smoothing (a
threshold value on the variance). If a small value is specified,
only neighborhoods with small variance will be smoothed
and neighborhoods with large variance will not be smoothed.
If a large value is specified, the neighborhoods with large
variance will also get smoothed. The values of α and β in
Algorithm 2 were chosen to be 1.05. From the results presented
in Fig. 8, it is obvious that a patch size of 1 and ϵ of 1 × 10−3

provide the optimal results, these values were utilized for
obtaining the results presented in this work.

The figures of merit—RMSE and CNR—for the cases of
data with SNR of 20 and 60 dB (reconstructed images are
not shown here) were compiled and listed in Table 2. Even
for these results, it is obvious that the guided filtering approach
provides the best performance with input image being either
xLTH or xLTO. The computational time recorded for obtaining
these results was in the similar orders as given in Table 1. It
is also important to note that the computational time required
for obtaining xLTO is at least five times more compared to
xLTH with xTV taking the least amount of computational time
among the input images for the guided filter (refer to Table 1).
The performance of xTV being the input image for the guided
filter compared to other input images (xLTH or xLTO) is compa-
rable with the added advantage of computation of xTV being
efficient.

The reconstruction results from the similar effort utilizing
data from 100 detectors with SNR being 40 dB for the modified

Fig. 7 The logarithm of amplitude of Fourier spectrum of results pertaining to (a) target BV phantom
[spatial distribution is given in Fig. 3(a)], (b) LTH [spatial distribution is given in Fig. 4(c)], (c) LTO [spatial
distribution is given in Fig. 4(d)], (d) TV [spatial distribution is given in Fig. 4(f)], and (e) LBP [spatial
distribution is given in Fig. 4(b)]. The guided filter results are given in (f), (g), and (h) corresponding
to spatial distribution given in Figs. 4(h), 4(j), and 4(k). The figure of merit, PC computed with
(a) being the target, is given correspondingly below each image.
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Derenzo phantom are provided in Fig. 9. The reconstructed ini-
tial pressure distribution using TR and LBP (xLBP) are shown
in Figs. 9(a) and 9(b), respectively. The reconstruction using
Lanczos-Tikhonov-Heuristic (LTH), Lanczos Tikhonov optimal
(LTO), BPD, and TV is shown in Figs. 9(c)–9(f). The guided
filtering approach results for the input image being LTH,

LTO, and TV are shown in Figs. 9(j)–9(l), respectively. The
denoised results of LTO using NLM and wavelet (ST and
HT) thresholding methods are given in Figs. 9(g)–9(i), respec-
tively. The required computational time for obtaining these
results is similar to the values given in Table 1. Similar to
the BV phantom, the figures of merit corresponding to these

Fig. 8 The plot of figure of merit, CNR as a function of (a) patch size and (b) epsilon (ϵ) for three numerical
phantoms considered in this work [given in the legend of (a)]. These results correspond to guided filter
results with TV reconstructed image being input and LBP being guiding image. The patch size was varied
for obtaining (a) with ϵ being constant (1 × 10−3) and the ϵ was varied for obtaining (b) with patch size
being constant (one).

Fig. 9 The reconstructed initial pressure distribution using 100 detectors data with SNR of 40 dB cor-
responding to numerical Derenzo phantom using (a) k-wave TR, (b) LBP, (c) LTH, (d) LTO, and (e) BPD
with input image being (c), (f) TV, (g) NLM, wavelet, (h) ST, and (i) HT denoising with input image being
(d). The proposed guided filter results with input images being (c), (d), and (f) are given in (j), (k), and (l),
respectively, with (b) being the guiding image. The target/expected distribution is given in Fig. 3(b).
The corresponding figures of merit—RMSE and CNR—are given in Table 2.
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results are given in Table 2 along with results pertaining to SNR
of data being 20 and 60 dB. A similar trend as observed in the
BV phantom case was observed here with the guided filtering
approach performing superior to all other approaches including
BPD. The improvement obtained for the guided filtering
approach for the SNR of 40 dB with xTV as the input images
were 40% for RMSE and 83% for the CNR compared to the
TV case. Similarly, the improvement obtained for SNR of
60 dB was 47% for RMSE and 131% compared to the TV
method, which provides best results without filtering. As
observed in the earlier case, the guided filtering approach
with xTV as the input provides the optimal performance in
terms of improvement in figures of merit as well as required
computational time. It should also be observed that bipolar
(donut shaped objects in place of filled circles) objects in TR
[Fig. 9(a)], LBP [Fig. 9(b)], and LTH [Fig. 9(c)] are mainly
due to the limited bandwidth of the boundary data and in
case of utilizing full bandwidth data, these bipolar objects
become unipolar [see Fig. 3(f)].

Another phantom consisting of letters “PAT” was also con-
sidered to compare the performance of the discussed methods in
terms of recovering sharp features. These results corresponding
to SNR of 40 dB (100 detectors) were given in Fig. 10. The TR
and LBP reconstruction results are given in Figs. 10(a) and 10(b)
correspondingly. The results from LTH, LTO, BPD, and TV are
shown in Figs. 10(c)–10(f) correspondingly. The proposed

guided filter approach results with input images being (c),
(d), and (f) are, respectively, presented in (j)–(l). The denoised
results of LTO using NLM and wavelet (ST and HT) threshold-
ing methods are given in Figs. 10(g)–10(i), respectively. The
figures of merit, similar to earlier cases, including results
from data with SNR of 20 and 60 dB, are compiled in
Table 2. The computational times observed were similar to
those reported in Table 1. The improvement obtained in
RMSE and CNR using the guided filter with TV results as
the input image as compared to the TV method was 40%
and 55%, respectively for SNR of 40 dB. For SNR of
60 dB, the improvement was 64% and 157% for RMSE and
CNR, respectively, compared to the TV method, which gives
the best result for the SNR of 60 dB. As observed earlier,
the guided filter with xTV as the input image provides the opti-
mal performance in terms of improvement in figures of merit as
well as required computational time.

To assess the observed trends with sparse data, having only
50 detectors, the experiments were repeated on the BV phantom.
The results pertaining to this experiment with SNR of data being
40 dB are shown in Fig. 11. These results are more prone to
streak artifacts as the data available is half compared to the
ones presented in Fig. 4. The TR method in this case has sig-
nificant aliasing artifacts as results presented in Fig. 4. Even the
denoised results using standard methods (NLM and wavelet
thresholding) show significant artifacts compared to the guided

Fig. 10 The reconstructed initial pressure distribution using hundred detectors data with SNR of 40 dB
corresponding to numerical “PAT” phantom using (a) k-wave TR, (b) LBP, (c) LTH, (d) LTO, and (e) BPD
with input image being (c), (f) TV, (g) NLM, wavelet, (h) ST, and (i) HT denoising with input image being
(d). The proposed guided filter results with input images being (c), (d), and (f) are given in (j), (k), and (l),
respectively, with (b) being the guiding image. The target/expected distribution is given in Fig. 3(c).
The corresponding figures of merit—RMSE and CNR—are given in Table 2.
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filter results. Similar to earlier cases, the RMSE and CNR were
compiled for these results along with SNR of data being 20 and
60 dB in Table 2. The results show similar trends as observed
earlier, with the guided filtering approach providing the best
results with input the image being xTV providing optimal results.
This experiment also showed that the guided filtering approach
can work well in the sparse data cases as well without adding
any significant computational burden.

The reconstruction results pertaining to the realistic breast
phantom [Fig. 3(d)] corresponding to the PA data with SNR
of 40 dB (100 detectors) are given in Fig. 12. The TR and
LBP reconstruction results are given in Figs. 12(a) and 12(b)
correspondingly. The results from LTH, LTO, BPD, and TV
are shown in Figs. 12(c)–12(f), respectively. The proposed
guided filter approach results with input images being (c),
(d), and (f) are, respectively, presented in (j)–(l). The denoised
results of LTO using NLM and wavelet (ST and HT) threshold-
ing methods are given in Figs. 12(g)–12(i), respectively.
The figures of merit, similar to earlier cases, including results
from data with SNR of 20 and 60 dB, were compiled in
Table 2. The computational times observed were similar to
those reported in Table 1. The improvement obtained in
RMSE and CNR using the guided filter with TV results as
the input image as compared to the TV method was 26%
and 201%, respectively, for SNR of 40 dB. For SNR of

60 dB, the improvement was 31% and 152% for RMSE and
CNR, respectively, compared to the TV method, which gives
the best result for the SNR of 60 dB. These results, which
were performed on a more realistic phantom, with more than
two grayscale values of initial pressure show the improved per-
formance with the guided filtering approach, showing its utility
in real time. It should also be noted that, overall, the figures of
merit are lower for this case compared to the remaining numeri-
cal phantom cases as the structures in these case are hetero-
geneous and complex.

The reconstructed results for the experimental horse-hair
phantom are shown in Fig. 13. The LBP result is shown as
Fig. 13(a) with LTO and TV results being Figs. 13(b) and 13(c),
respectively. The guided filtering approach results using xLTO(b)
and xTV(c) as the input images are given in Figs. 13(d) and 13(e)
correspondingly. Note that the results pertaining to LTH and
BPD were not considered here, as they were proven to be
not as effective as LTO and TV in numerical phantom studies.
Similarly, the standard denoising methods were also not utilized
as they were proven to be inferior compared to the guided filter
results in the numerical phantom cases. The figure of merit,
SNRr, for these reconstruction results is given at the bottom
of each result. The improvement in terms of SNRr with the
guided filter is at least 5.5 dB with the guided filter with
LTO [Fig. 13(d)], as the input image showing the best

Fig. 11 The reconstructed initial pressure distribution using fifty detectors data with SNR of 40 dB
corresponding to numerical BV phantom using (a) k-wave TR, (b) LBP, (c) LTH, (d) LTO, and
(e) BPD with input image being (c), (f) TV, (g) NLM, wavelet, (h) ST, and (i) HT denoising with input
image being (d). The proposed guided filter results with input images being (c), (d), and (f) are given
in (j), (k), and (l), respectively, with (b) being the guiding image. The target/expected distribution is
given in Fig. 3(a). The corresponding figures of merit—RMSE and CNR—are given in Table 2.
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performance with improvement of 10.6 dB. As TV is computa-
tionally efficient, the guided filter result with TV as the input
image provides optimal performance.

Results from similar efforts for the case of the experimental
tube phantom are shown in Fig. 14. As observed earlier, the
guided filter approach provides the best performance in terms
of SNRr of the reconstructed image. In the guided filter
approach, the result pertaining to the input image being xLTO
is superior compared to the other result (SNRr improvement
of 9.38 dB). Even though the original result without the guided
filter shows suboptimal performance compared to others [com-
paring Fig. 14(b) with 14(a) and 14(c)], the guided filter
improves the Fig. 14(b) by at least 9.38 dB [Fig. 14(d)] in
terms of observed SNRr.

The results pertaining to the in-vivo rat brain imaging to
show the effectiveness of the proposed method in preclinical im-
aging were presented in Fig. 15. The LBP reconstruction is
shown in Fig. 15(a) and the reconstructions using LTO and
TV are shown in Figs. 15(b) and 15(c), respectively. Similar
to the previous observations, the guided filter out performs
others in terms of SNRr of the reconstructed image. Among
the guided filter reconstructions, the result obtained using the
input image being xLTO is superior compared to the other result
(SNRr improvement of 11.23 dB).

Overall, the guided filter approach has shown in all numeri-
cal, experimental, and in-vivo cases that it provides superior

performance. Specifically, the observed figures of merit for
the output (filtered) image are exceeding the input (to be filtered)
and guiding image figures of merit (Table 2, Figs. 13–15). This
process adds little to no computational time as reported in
Table 1, making it highly attractive. Also note that the guiding
image in all cases discussed here was chosen to be the
LBP image (xLBP), which is used as an input image to the
TV-regularized method. Thus, the guiding image is readily
available after the reconstruction process using TV-regularized
solution.

It is also important to note that it is possible to use other
images (such as using xLTO) as the guiding image rather than
xLBP, our experience shows that the improvement in these
cases is minimal. The guided filtering approach provides opti-
mal performance, when different characteristics in the input and
guiding image have to be combined to provide a filtered image.
The BP image being more smooth and xLTO or xTV promoting
sharp edges due to their sparse recovery nature, this combination
leads to superior results. The frequency spectrum presented in
Fig. 7 gives an insight into this choice of xLBP being the guiding
image as its frequency spectrum is complimentary to others,
such as xLTO and xTV. This method becomes ineffective if the
frequency spectrum of both input and guiding images is similar
(like xLTO and xTV). Moreover, if the choice is not proper, like
other explicit filters, the guided filter can exhibit artifacts of
unwanted smoothing near edges.41

Fig. 12 The reconstructed initial pressure distribution using hundred detectors data with SNR of 40 dB
corresponding to realistic breast phantom using (a) k-wave TR, (b) LBP, (c) LTH, (d) LTO, and (e) BPD
with input image being (c), (f) TV, (g) NLM, wavelet, (h) ST, and (i) HT denoising with input image being
(d). The proposed guided filter results with input images being (c), (d), and (f) are given in (j), (k), and (l),
respectively, with (b) being the guiding image. The target/expected distribution is given in Fig. 3(d).
The corresponding figures of merit—RMSE and CNR—are given in Table 1.
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Fig. 13 The reconstructed initial pressure distribution with experimental horse hair phantom data using
(a) LBP, (b) LTO, and (c) TV regularization. The guided filter results with input image being (b) and (c) are
correspondingly given in (d) and (e). The photograph of the horse hair phantom is shown in Fig. 2(c).
The figure of merit, SNR_r (in dB), of each reconstructed image is correspondingly given below. The
computational time required for generating (a), (b), (c), (d), and (e) is 0.5, 11.74, 4.10, 0.01, and
0.01 s, respectively.

Fig. 14 The reconstructed initial pressure distribution with experimental tube phantom data using
(a) LBP, (b) LTO, and (c) TV regularization. The guided filter results with input image being (b) and
(c) are correspondingly given in (d) and (e). The photograph of the ink tubes is shown in Fig. 2(b).
The figure of merit, SNR_r (in dB), of each reconstructed image is correspondingly given below.
The computational time required for generating (a), (b), (c), (d), and (e) is 0.5, 10.22, 9.10, 0.01, and
0.01 s, respectively.

Journal of Biomedical Optics 091413-18 September 2018 • Vol. 23(9)

Awasthi et al.: Image-guided filtering for improving photoacoustic tomographic image. . .



In this work, the BP image, which is typically used as an
initial guess for most model-based iterative reconstruction algo-
rithms, was utilized as the guiding image. This may not be an
optimal choice and exploration of optimal choice of guide and/
or input image along with development of automated methods
for an optimal choice will be taken up as future extension to
this work.

It may be feasible to utilize a model-free solution either as a
guiding or input image, such as delay-and-sum,90 but these tend
to have arbitrary units for the initial pressure requiring normali-
zation for each case making the comparison of reconstruction
results among discussed methods difficult. Also, for this
work, the limited data refer to the data availability in comparison
to the state-of-the-art clinical PAT setups. The current PAT scan-
ners with advances in instrumentation are capable of acquiring
boundary data with the number of detectors being 512 and
number of time samples for each detector being 2048.36 Here,
the maximum number of detectors utilized was 100 (maximum
time samples were 512), making the boundary data available for
image reconstruction still limited compared to these setups.

The figures of merit, such as RMSE and CNR, were utilized
extensively in the literature to assess the performance of
the reconstructed image quality in PA imaging.36,77,78,81 The
task-based image quality metrics can better assess the recon-
structed image quality,91,92 but use of RMSE and CNR as
metrics has been a common practice across tomographic
problems.36,77,78,81 As the main aim of this work has been to
introduce a image-guided filter as a fast postprocessing step
to improve the image characteristics of the reconstructed
image, which was clearly demonstrated through numerical
and experimental phantom as well as in-vivo cases, the other

metrics were not considered. The figures of merit—RMSE
and CNR—are also robust to different realizations of noise.
For example, the results presented in Table 2 differed by less
than 1% within 10 noise realizations for obtaining the required
SNR of boundary data.

The bipolar nature of the objects (even though expected in
uni-polar) in the reconstructed images (Figs. 4 and 9–15) can be
corrected using the Hilbert transform (which essentially elimi-
nates the negative initial pressure values).82,93,94 Utilization of
this might leads to inaccurate representation of the reconstructed
images, overshadowing the performance of postprocessing
methods utilized here (including wavelet thresholding, NLM,
and the proposed guided filter). As the dynamic range of the
reconstructed image can be utilized as a metric for knowing
the performance of algorithms used in this work, these trans-
forms that alter the raw performance of these methods were
not attempted here.

The postprocessing reconstructed images to improve their
utility are common among other imaging modalities, such as
emission computed tomography.37 The guided filter approach,
even though it is a postprocessing step, attempts to filter the
input image using another image as a guiding image. Here,
this guiding image is chosen to be the BP image, which is
also the initial guess for the iterative reconstruction methods.
The methods of this type are very simple to integrate into the
iterative image reconstruction framework of PAT, as the compu-
tational complexity is insignificant, and can work with any set of
images in terms of improving them. This work showed that stan-
dard denoising filters, such as wavelet thresholding as well as
NLM based ones, have limited utility in PA imaging. The pro-
posed guided filter can also be seen as an adaptive sharpening

Fig. 15 The reconstructed initial pressure distribution of in-vivo rat brain (lateral plane) using (a) LBP,
(b) LTO, and (c) TV regularization. The guided filter results with input image being (b) and (c) are
correspondingly given in (d) and (e). The photograph of the rat brain with and without skin is shown in
Figs. 2(d) and 2(e), respectively. The figure of merit, SNR_r (in dB), of each reconstructed image is cor-
respondingly given below. The computational time required for generating (a), (b), (c), (d), and (e) is 0.5,
10.55, 6.68, 0.01, and 0.01 s, respectively.
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filter, which increases the local contrast with removal of noise
based on guiding image.95,96 The reference sharpness level of the
guiding image acts as edge preserving to result in this adaptive
sharpening (see Fig. 7). Approaches such as the proposed
guided filter that improves the reconstructed images are of
high value as they leverage the best features of the input and
guiding images to provide high quality filtered image. The
developed algorithms were provided as an open source97 for
enthusiastic users.

6 Conclusions
The PA image reconstruction in case of limited data is ill-
conditioned, often necessitating the usage of regularization to
provide meaningful results. There are smooth and nonsmooth
regularization schemes that are available, which can promote
different characteristics in the reconstructed images. A simple
guided filtering approach was proposed here that combines
the best features in the input and guiding images (obtained
from different reconstruction methods). Utilizing both numeri-
cal and experimental data, it was shown that the guided filtering
approach improves the reconstructed images substantially (as
high as 11.23 dB in terms of SNR of reconstructed image)
with very little to no computational burden. It was also
shown that the performance of the proposed guided filter
approach even with sparse data (half of the original) is superior
compared to others. As this approach can be applied as a post-
processing step for the image reconstruction, it is easily integrat-
able into the existing reconstruction algorithmic framework.
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