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Abstract. Laser speckle contrast imaging (LSCI) enables video rate imaging of blood flow. However, its relation
to tissue blood perfusion is nonlinear and depends strongly on exposure time. By contrast, the perfusion estimate
from the slower laser Doppler flowmetry (LDF) technique has a relationship to blood perfusion that is better
understood. Multiexposure LSCI (MELSCI) enables a perfusion estimate closer to the actual perfusion than
that using a single exposure time. We present and evaluate a method that utilizes contrasts from seven exposure
times between 1 and 64 ms to calculate a perfusion estimate that resembles the perfusion estimate from LDF.
The method is based on artificial neural networks (ANN) for fast and accurate processing of MELSCI contrasts to
perfusion. The networks are trained using modeling of Doppler histograms and speckle contrasts from tissue
models. The importance of accounting for noise is demonstrated. Results show that by using ANN, MELSCI data
can be processed to LDF perfusion with high accuracy, with a correlation coefficient R ¼ 1.000 for noise-free
data, R ¼ 0.993 when a moderate degree of noise is present, and R ¼ 0.995 for in vivo data from an occlusion-
release experiment. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction
of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.24.1.016001]
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1 Introduction
The microcirculatory blood flow can be assessed using laser-
based techniques, which indirectly quantify the Doppler shifts
that occur when light is scattered by moving red blood cells.
These techniques are commonly based on either a temporal1,2

or spatial3,4 analysis of the dynamic speckle pattern formed
when Doppler shifted and nonshifted light is backscattered
from a laser illuminated tissue and mixed on a detector. In
laser Doppler flowmetry (LDF), an almost direct mapping of
Doppler shifts can be attained by studying the frequency distri-
bution of the temporal speckle fluctuations. This technique can
produce perfusion estimations that are proportional to the blood
flow speed if the Nyquist criterion for the photodetector current
is fulfilled. Sampling rates well above 10 kHz are typically
required, which has limited the LDF applicability to mainly
include single point instruments capable of studying variations
in tissue perfusion over time, or slow scanning systems meas-
uring one point after the other. Laser speckle contrast imaging
(LSCI) presents one way of overcoming the single point limi-
tation while keeping a high time-resolution. The LSCI technique
is based on a spatial analysis of the speckle dynamics, where
Doppler effects are indirectly quantified as local blurring caused
by speckle motion. The speckle blurring effect, measured as
the local image contrast, depends on the exposure time of the
camera. While short exposure times can capture fast variations
related to high Doppler shifts, longer exposure times can be
related to the degree of Doppler shifted light.5 Compared to
LDF, there is no direct relationship between the distribution

of Doppler frequencies and the speckle contrast for single expo-
sure time LSCI.

The relation between LSCI and LDF has been the subject of
many papers. Several studies6–8 have investigated the relation
between single-point LDF and LSCI during induced postocclu-
sive reactive hyperemia, with the observation that LSCI under-
estimates high perfusions compared to LDF and that the relation
is nonlinear. Based on empirical measurements, both Tew et al.6

and Humeau-Hurtier et al.7 concluded that the relation could be
described by a power function, although their function coeffi-
cients did not agree. Binzoni et al.8 also found the same non-
linearity and proposed a subject-dependent calibration method
to adjust this, again based on empirical measurements. Common
for these papers is that they are empirical and lack a solid theo-
retical base for the models connecting LDF and LSCI.

Sun et al.9 showed that the relation between LSCI and LDF is
dependent on exposure time, where increasing exposure time
increases nonlinearity. Therefore, it seems plausible to assume
that multiexposure LSCI (MELSCI) provides a more complete
picture that could explain the relation. Thompson and Andrews10

showed that MELSCI, with sufficiently many exposure times
over the approximate range 50 μs to 400 ms can be used to recon-
struct the LDF power spectrum for in vivomeasurements, proving
that MELSCI and LDF are, in essence, equivalent measurements.
Parthasarathy et al.11 presented a speckle model for use with mul-
tiexposure data, which accounted specifically for the effect of
static scatterers. This model was later expanded by Kazmi et al.12

The recent theoretical framework on the relationship between
LDF and LSCI5 shows a pathway for calculating LDF perfusion
from MELSCI data. However, previous proposed methods for
estimating perfusion from MELSCI data are either too computa-
tionally demanding to be suitable for real-time applications where
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perfusion images are presented at video frame rates,12 or require
frame-rates that are too high for continuous recording.10

The aim of this study was to present a computationally effec-
tive method to calculate a perfusion estimate, based on multiple
exposure speckle contrasts, that accurately resembles the perfu-
sion estimate retrieved from conventional LDF.

2 Materials and Methods
The basic idea of the developed method is to exploit the Monte
Carlo-based method we have developed in several studies for
light transport in an individualized multilayer skin model.13–15

LDF perfusion and MELSCI contrasts are calculated for the
same tissue models, and an artificial neural network (ANN)
is trained with contrasts as input and LDF perfusion as target.
The outline for Sec. 2 is that the calculation of conventional per-
fusion estimates for LDF and LSCI is introduced in Sec. 2.1.1.
The concept of MELSCI is introduced in Sec. 2.1.2 together
with the presentation of an existing method to estimate perfusion
from MELSCI. In Sec. 2.1.3, the proposed method based on
ANN is introduced. A description of how the various perfusion
estimates from single- and multiexposure LSCI are compared to
LDF is found in Sec. 2.1.4. In Sec. 2.2, the tissue model that is
used to generate training data, for example, is introduced
(Sec. 2.2.1) as well as how speckle contrasts are calculated
from the model (Sec. 2.2.2). Furthermore, speckle simulation
setups for simulating the speckle patterns from the models
are described in Sec. 2.2.3. These simulations are used to
develop a realistic noise model that can be added to the training
and evaluation data (Sec. 2.2.4). Finally, the measurement setup
and processing of in vivo measurements is described in Sec. 2.3.
Figure 1 presents a flowchart of the principles of how the pro-
posed method is trained and evaluated.

2.1 Methods for Perfusion Estimation

2.1.1 Conventional perfusion estimates

In conventional LDF, the perfusion estimate is calculated from
the first order moment of the photodetector current power spec-
trum PðfÞ as follows:

EQ-TARGET;temp:intralink-;e001;326;752sperf;LDF ¼ kLDF
i2dc

Z
fmax

0

fPðfÞdf; (1)

where idc is the average detected light intensity, kLDF is a
calibration constant, and fmax is the maximum frequency of the
Doppler power spectrum, 25 kHz in this study unless otherwise
stated. The Doppler power spectrum is calculated as follows:

EQ-TARGET;temp:intralink-;e002;326;673PðfÞ ¼ jFðiacÞ2j; (2)

where Fð·Þ denotes the Fourier transform and iac is the time
fluctuating detected light intensity, where the intensity is fluc-
tuating because of the moving speckle pattern.

In conventional single exposure LSCI, the perfusion estimate
can be calculated from the spatial contrast KðTÞ as in Ref. 4:

EQ-TARGET;temp:intralink-;e003;326;586sperf;LSCI ¼ kLSCI
1

KðTÞn − 1; (3)

where kLSCI is a calibration constant, n equals 1 or 2, and T is
the exposure time. We have previously shown that by choosing
n ¼ 1, the perfusion estimate becomes stronger correlated to
LDF perfusion, and by choosing n ¼ 2, the true tissue perfusion
is closer resembled.5 The contrast is calculated as follows:

EQ-TARGET;temp:intralink-;e004;326;487KðTÞ ¼ σðTÞ
hIðTÞi ; (4)

where σðTÞ is the standard deviation of the intensities in a small
submatrix of the acquired image, and hIðTÞi is the average
intensity in the same submatrix. In this study, we use a subma-
trix size of 4 × 4 pixels unless otherwise stated. When calculat-
ing the single exposure time perfusion, we used an exposure
time of 6 ms. It should be noted that idc is the same as
hIðTÞi but, due to conventional notation, we use idc in the con-
text of LDF and hIðTÞi in the context of LSCI. Furthermore, the
calibration constants kLDF in Eq. (1) and kLSCI in Eq. (3) are
chosen so that the perfusion estimate equals 250 perfusion
units (PU) when measuring on a calibration standard of poly-
styrene microspheres.

Fig. 1 Flowchart showing the principles of the training for MELSCI perfusion calculations and the
validation to LDF perfusion. References to subsections in Sec. 2 are found within parenthesis.
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2.1.2 Multiexposure LSCI

The conventional LSCI perfusion estimate [Eq. (3)] uses the
contrast from a single exposure time. Contrasts from multiple
exposure times obviously contain more information, thus
enabling the calculation of a more accurate perfusion estimate.
This is referred to as multiexposure LSCI (MELSCI).

In this paper, we use contrasts from seven exposure times T:
1, 2, 4, 8, 16, 32, and 64 ms. The contrasts for these exposure
times are calculated from the same 64 consecutive exposures of
1 ms. The contrast for T ¼ 1 ms is calculated as the average of
the contrast of all 64 exposures. The contrast for T ¼ 2 ms is
calculated by summating the intensity of consecutive pairs of
1 ms exposures, and then calculating the average contrast of
the 32 resulting speckle patterns, and so on until for T ¼ 64
ms, the intensity for all 64 exposures is first summated and
the contrast is calculated from the resulting summated speckle
pattern. This is referred to as synthetic multiexposures and is
described in more detail elsewhere.16

Kazmi et al.12 have proposed the following model to utilize
the MELSCI data:

EQ-TARGET;temp:intralink-;e005;63;525K2ðTÞ ¼ β
ρ2τ2

2T2

�
e

−2T
τ − 1þ 2T

τ

�

þ β
4ρð1 − ρÞτ2

T2

�
e
−T
τ − 1þ T

τ

�
þ βð1 − ρÞ2 þ vn:

(5)

The model is an extension of a similar model first presented
by Parthasarathy et al.11 Here, τ is the speckle decorrelation time
that is inversely proportional to the average flow speed, ρ is the
fraction of Doppler shifted light, and T is the exposure time. The
parameter β is a constant instrument dependent correction factor
accounting for the number of speckles per pixel and is set to 1 in
this paper because the model is only used on modeled data.
The constant vn accounts for contrast due to noise and is
assumed to be zero in this paper as the model is only used
on modeled data without noise. Fitting the model to the multi-
exposure data requires a nonlinear optimization algorithm, in
our case the trust-region-reflective algorithm in MATLAB
2017a (MathWorks Inc.). From the optimal model parameters,
a perfusion estimate is calculated as follows:

EQ-TARGET;temp:intralink-;e006;63;282sperf;Kazmi ¼
ρ

τ
: (6)

This estimate is an extension to the 1∕τ expression that is
sometimes used as a speckle flow index in LSCI, accounting
for variations in blood amount estimated by ρ, in a similar man-
ner to that done in LDF. Note, however, that ρ is also dependent
on other tissue properties, such as the epidermis thickness and
the scattering properties of the static tissue, similarly to that
of the concentration of moving blood cells (CMBC) estimate
in LDF.

2.1.3 Artificial neural network

The principle is to translate the contrast values at various expo-
sure times to LDF perfusion. A machine learning approach
using ANN was developed for this translation. A batch of 25
nets was trained on a set of 100,000 training examples (see
Sec. 2.2) with seven inputs K2ðTÞ, T ∈ ½1; 2; 4; 8; 16; 32; 64�,

and one output sperf;LDF, using the neural network toolbox in
MATLAB 2017a. Using the default settings in the neural
network toolbox, the data set was randomly split into three
parts. 70% of the data was used as a training set and 15%
was used for validation. If the performance on the validation
set decreased during six successive iterations, the training
was aborted early. The final 15% was used for evaluation,
obtaining a performance number that is unbiased in regard to
the other 85% of the data. The best performing network in
the batch of 25 was then evaluated on a different set of
50,000 examples to avoid any bias in the performance numbers
and to allow for comparison with the other perfusion estimates.
Selecting the best network from a batch of 25 greatly reduced
the influence of the random initialization of the network and was
sufficient to make the training reproducible.

Several net architectures were investigated, including single-
and multilayer networks with different numbers of nodes. We
found no significant performance increase when using multiple
hidden layers or when using a single hidden layer with more
than 10 nodes. Therefore, the results presented in this paper
are from a net with one hidden layer with 10 nodes. The acti-
vation function used in the hidden layer was the commonly used
hyperbolic tangent function. In the output layer, a linear activa-
tion function was used.

2.1.4 Performance estimation

The performance of the trained ANN-MELSCI as well as the
perfusion estimates from single exposure LSCI and the Kazmi
model for MELSCI were determined by calculating the corre-
lation coefficient (R) between the LDF perfusion and the esti-
mated perfusion for the evaluation set (N ¼ 50;000), as well as
the root mean square of the absolute and relative differences,
respectively (RMSa and RMSr). When calculating RMSr,
data points with LDF perfusion <1.5 PU were excluded. This
corresponds to less than 1% of the data points. In addition,
the 50,000 evaluation models were grouped into 100 bins con-
taining 500 data points each, sorted on LDF perfusion. For each
bin, the average perfusion as well as the standard deviation of
the estimated perfusion values were calculated, and plots were
generated based on that data with the standard deviation indicat-
ing the precision.

2.2 Modeling

2.2.1 Tissue model

A three-layer tissue model with varying optical and geometrical
properties, covering a wide range of red blood cell tissue frac-
tions and speed distributions (see Fig. 2), was used to generate
the Doppler histograms and the speckle simulations. The tissue
model, as well as how to calculate Doppler histograms from the
model, has previously been described.14,15,17 Random models
were generated similarly, as described in Fredriksson and
Larsson.17 Three sets of random models were generated, one
training set consisting of 100,000 models, one evaluation set
consisting of 50,000 models, and one set of 2000 models,
that were used in speckle simulations (see Sec. 2.2.3).

2.2.2 Contrast calculation from model

Multiexposure laser speckle contrast values were calculated for
each of the simulated Doppler histograms HðfÞ, as described in
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Fredriksson and Larsson.17 This was done by first calculating
the Doppler power spectrum PðfÞ as follows:
EQ-TARGET;temp:intralink-;e007;63;553PðfÞ ¼ H �HðfÞ; (7)

where � denotes cross-correlation. This gives the intensity cor-
relation function gð2Þ as a function of time τ by taking the inverse
Fourier transform of the Doppler power spectrum as follows:

EQ-TARGET;temp:intralink-;e008;63;489gð2ÞðτÞ ¼ F−1fPðfÞg: (8)

An extension of the Siegert relation, valid for partly or fully
Doppler shifted light, was used to calculate the intensity corre-
lation function gð1Þ as follows:

EQ-TARGET;temp:intralink-;e009;63;424gð1ÞðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gð2ÞðτÞ − gð2Þð0Þ

q
: (9)

The multiexposure contrast K, as a function of exposure time
T, is then given by

EQ-TARGET;temp:intralink-;e010;63;362K2ðTÞ ¼ 2β

T

Z
T

0

jgð1ÞðτÞj2
�
1 −

τ

T

�
dτ; (10)

where the coherence factor β was set to 1 for contrasts calculated
from the models. It should be noted that in the models, no
speckle averaging caused by multiple speckles per pixel, multi-
ple polarization directions, or multiple laser longitudinal modes
exist.18

2.2.3 Speckle simulations

Speckle simulations were performed as described by
Fredriksson and Larsson.5 These simulations were mainly per-
formed to statistically characterize the contrast variations that
occur due to different speckle realizations over time for
a given Doppler histogram. The simulation setup consisted of
a 4 × 4 pixel detector with a pixel size of 8 × 8 μm, mimicking
the camera sensor used in our measurement setup (see Sec. 2.3).
Spatial and temporal oversampling was used to properly capture
the full statistics of the speckle pattern dynamics. Therefore,
the intensity was simulated in 64 × 64 spatial points, each
placed 0.5 μm apart, for times 0 to 640 ms with a time-step
of 20 μs. A temporal average of 50 consecutive speckle images
was used to mimic an exposure time of 1 ms. A spatial average
of 16 × 16 (x- and y-directions) points constituted one pixel.
In each simulation setup, 2000 electric field (E-field) sources

were uniformly and randomly positioned to mimic the c-mount
lens arrangement used in our measurement setup (see Sec. 2.3),
with a flange focal distance of 17.5 mm and an f-number
N ¼ 1.4 (i.e., f∕1.4). This setup resulted in a theoretical speckle
diameter ds ¼ 1.4 μm for a wavelength λ ¼ 785 nm, calculated
as in Ref. 19:

EQ-TARGET;temp:intralink-;e011;326;509ds ¼
4

π
λN: (11)

This gives a total of 42 speckles over an 8 × 8 μm pixel area.
The Doppler frequencies for the 2000 E-field sources were gen-
erated for 2000 tissue models, as described in Sec. 2.1.4. An
example of a simulated 64 × 64 speckle cube at 50 timepoints
is given in Fig. 3.

The speckle simulations were also used to calculate unique
realizations of the Doppler power spectrum, based on the aver-
age detector intensity for each 20 μs, for each of the ten 64 ms
intervals for each of the 2000 models. The LDF perfusion was
calculated from the Doppler power spectra using Eq. (1). In that
way, the effect of stochastic noise on LDF perfusion could be
studied.

To investigate the validity of having more than one speckle
per pixel, 10 of the models were simulated at 1024 × 1024
points, each placed 0.0625 μm apart (i.e., eight times higher res-
olution compared to previous simulations). Spatial binning was
done at six levels ranging from 8 × 8 points to 256 × 256 points.
Corresponding pixel sizes and theoretical number of speckles
per pixel are given in Table 1.

2.2.4 Stochastic contrast noise model

The laser speckles formed on the detector can be considered
unique realizations of a stochastic process, where each realiza-
tion is dependent on the exact phase of each E-field, even if the
frequency distribution is constant. Therefore, the measured
contrast contains stochastic noise that can only be reduced by
averaging over several realizations, spatially and/or temporally.
Thus, stochastic noise will affect both the Doppler power spectra
and the contrast values. The theoretically calculated contrast,
Sec. 2.2.2, does not contain stochastic noise. Therefore, to
account for stochastic noise in modeled data used in the evalu-
ation and training, a noise model was developed.

The noise model was based on simulated speckle patterns
from 2000 tissue models, as described in Sec. 2.2.3. The simu-
lated time series of speckle images was divided into 10 intervals,
each 64 ms long. For each interval, multiexposure contrast data

(a) (b)

Fig. 2 (a) Histograms over the RBC tissue fraction and (b) average speed in the 100,000 training models.
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were calculated at exposure times of 1, 2, 4,. . . , 64 ms, as
described in Sec. 2.1.2. An example of the 10 realizations of
multiexposure contrast decays for one tissue model is given
in Fig. 4(a). Note that the maximum contrast is much lower
than unity and is due to there being several speckles per pixel.

It was noted that the unique realizations of the contrast at
each exposure time followed a normal distribution. Therefore,
the noise η can be described as the standard deviation divided
by the average contrast for each exposure time as follows:

EQ-TARGET;temp:intralink-;e012;63;355ηðTÞ ¼ stdðKrðTÞÞ�
KrðTÞ

� ; ðr ∈ ½1; : : : ; 10�Þ; (12)

where KrðTÞ denotes a unique realization of the contrast at
exposure time T. It was also noted that ηðTÞ was proportional
to the average contrast of all exposure times as follows:

EQ-TARGET;temp:intralink-;e013;326;454η ∝ hhKrðTÞiriT;
�

r ∈ ½1; : : : ; 10�
T ∈ ½1;2; 4; : : : ; 64�

�
: (13)

The noise model was used to generate contrast offsets
KnoiseðTÞ that are added to the actual contrast KðTÞ. When
inspecting Fig. 4(a), it can be realized that there is a strong
dependency between KnoiseðTÞ for neighboring exposure
times T, which also must be considered in the model. The var-
iable ηdiffðTÞ describes the standard deviation of the difference
in KnoiseðTÞ compared to the one step shorter exposure time
[e.g., the difference between Kð16Þ and Kð8Þ]. Based on this
information, the noise model is given by

EQ-TARGET;temp:intralink-;e014;326;327KnoiseðTÞ ¼ hhKrðTÞiriT
×
	
ξTηðTÞ for T ¼ 1

KnoiseðT∕2Þ þ ξTηdiffðTÞ for T ∈ ½2;4; 8; : : : ; 64� ;
(14)

Fig. 3 Example of a 64 × 64 point speckle cube simulated at 50 timepoints over 1 ms (left) and the
resulting 4 × 4 pixel speckle image (right). The intensity in each of the 4 × 4 pixels is based on a spatial
(16 × 16 points) and temporal (50 timepoints) average.

Table 1 Corresponding pixel sizes and theoretical number of speckles per pixel for different number of spatial points per pixel. The points were
separated by 0.0625 μm.

Spatial points per pixel [—] 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

Pixel size (μm) 0.5 × 0.5 1 × 1 2 × 2 4 × 4 8 × 8 16 × 16

Speckles per pixel [—] 0.16 0.65 2.6 10 42 166

(a) (b)

Fig. 4 (a) Example of 10 realizations of speckle contrast curves from 10 consecutive speckle simulations
with the same tissue model. (b) Example of 10 realizations of the stochastic noise model added to the
average of the contrast curves in A.
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where ξT is a unique random number for each T, originating
from a zero mean normal distribution with standard deviation
of unity.

The seven parameters in the noise model (ηð1Þ and ηdiffðTÞ
for T ∈ ½2;4; 8; : : : ; 64�) were quantified using speckle simula-
tions, as described above. The parameter values depend on the
optical setup, i.e., how many speckles are formed on each pixel.

Ten realizations of the stochastic noise model [Eq. (7)] were
added to the average of the contrast curves, as shown in Fig. 4(a)
and plotted in Fig. 4(b). Figure 4(b) shows that realizations of
contrast curves with the noise model are comparable to those
inherent in the speckle simulations in Fig. 4(a).

2.3 In Vivo Measurement Setup and Data
Processing

2.3.1 Comparison of LDF and ANN-MELSCI perfusion
estimates

An occlusion-release provocation of the forearm was performed.
The provocation protocol included 2 min of baseline, followed
by 5 min of occlusion and 5 min of reperfusion. The subject was
a 26-year old Caucasian male without any known afflictions of
the microcirculation. The subject was acclimatized in the lab
10 min before the experiment. The measurement protocol was
approved by the Regional Ethical Review Board at Linköping
University, Linköping, Sweden (D.nr 2015/392-31).

During the provocation, high-speed speckle images from
a laser illuminated (785 nm) vein-free area (4 × 2 mm) of
the skin were captured at a 128 × 60 pixel resolution using
a high-speed CMOS camera (EoSens 3CXP, Mikrotron GmbH,
Germany) equipped with a 12.5 mm lens (CF12.5HA-1, Fujinon
Fujifilm, Japan) set to an f-number N ¼ 1.4 (i.e., f∕1.4). Each
set of high-speed data consisted of 1280 speckle images
acquired during 64 ms at a speed of 20 kHz using a 45 μs expo-
sure time. Each set was preprocessed in two ways before data
were stored. First, 20 consecutive images were accumulated into
1 ms exposure time images, resulting in 64 speckle images for
calculation of MELSCI data. The spatially averaged contrast
over the entire image was used for further calculations.
Second, for calculation of laser Doppler power spectra, an
area-averaging over both the left and the right side of each
45-μs exposure time image was performed, resulting in two
detector currents captured during 64 ms at 20 kHz. This
image acquisition, preprocessing, and data storing was repeated
continuously during the measurement at an average rate of
9.9 per second.

For calibration and noise subtraction, additional measure-
ments were performed. These included the acquisition of
dark images and measurements on a static target. The static tar-
get consisted of a solid homogeneous turbid phantom with opti-
cal properties close to those found in tissue. Measurements were
also performed on a microsphere solution (PF1001, Perimed
AB, Sweden).

The acquired and stored speckle images were first processed
by subtracting a dark image. MELSCI data were then calculated,
as described in Sec. 2.1.2, before a normalization was done
against the maximum contrast taken from the measurement
on the static target. No calibration against the minimum contrast
level, caused by system noise, was needed as this level was neg-
ligible. ANN-MELSCI perfusion was then calculated from the
MELSCI data, as described in Sec. 2.1.3 (i.e., ANN trained with
modeled data).

The LDF perfusion was calculated, as outlined in Sec. 2.1.1,
using the differential detector current calculated as the differ-
ence between the left and right detector currents. This differen-
tial detector scheme effectively removed any common mode
noise while retaining the Doppler-related information. The cal-
culated perfusion values were also noise-compensated using
the calibration measurements on the static target.

In order to show the ability of the ANN to accurately mimic
LDF perfusion, special care was taken to make the training data
reflect the measurement setup. This included accounting for ali-
asing in the LDF signal processing, and for the low-pass filter
effect that occurs in the signal due to the 45-μs exposure time of
the camera. A small nonlinearity remained for low perfusions
when training ANN-MELSCI with these effects. This was lin-
earized using a fourth degree polynomial fit to the training data
and applied to the in vivo ANN-MELSCI perfusion estimate.
Note that this polynomial was constructed purely based on
the training data and was thus not biased with respect to the
in vivo data. Before comparing LDF and ANN-MELSCI perfu-
sion values, calibration against the microsphere solution perfu-
sion was done for each of the two methods.

2.3.2 Spatial map of perfusion from ANN-MELSCI

In addition to the measurements described above, another in
vivo measurement was performed during an occlusion-release
provocation of a finger. This measurement was recorded with
the same camera and laser but with an exposure time of 1 ms
and a pixel-resolution of 1024 × 1000. Multiexposure contrasts
were calculated using a 4 × 4 pixel submatrix resulting in con-
trast data in 256 × 250 pixels. Perfusion data were calculated
with the ANN detailed in Table 3 and Fig. 6(d).

The purpose of this experiment was to qualitatively evaluate
the technique on a spatial map of perfusion. Note that at this
pixel-resolution, it is not possible to measure at a framerate
high enough to compute LDF perfusion, thus, there is no way
to quantitatively compare the MELSCI perfusion and LDF
perfusion.

3 Results

3.1 Speckles Per Pixel

The amount of stochastic noise in relation to the contrast, i.e.,
ηðTÞ in Eq. (5), was evaluated for optical setups with 0.16 to 166
speckles/pixel (see Table 1). The average noise decreased with
the number of speckles per pixel, as shown in Fig. 5, which
shows the average noise for 10 evaluated models. These simu-
lation results also showed that the number of speckles per pixel
did not affect the shape of the contrast curve. It only affected the
overall magnitude of the contrast. Furthermore, the stochastic
noise as a function of the size of the submatrix was evaluated.
It was concluded that the stochastic noise was inversely propor-
tional to the square root of the size of the submatrix. Averaging
several small submatrices will thus have the same effect as cal-
culating the contrast of a larger submatrix from the perspective
of noise.

3.2 Performance on Noise-Free Data

In Figs. 6(a)–6(c), the relationship between LDF perfusion and
single exposure time LSCI perfusion [Eq. (3), n ¼ 1], the
MELSCI perfusion based on the Kazmi model [Eq. (5)], and
the ANN-MELSCI perfusion, is shown. The contrast values
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of these perfusion estimates contain no added stochastic noise.
The estimated perfusion values for single exposure time LSCI
and for the Kazmi model are normalized to the average LDF
perfusion before the analysis. The accuracy of predicting LDF
perfusion from the noise-free contrasts in terms of correlation
coefficient (R) as well as root mean square absolute and relative
differences (RMSa and RMSr) is summarized in Table 2.
Data are shown for single exposure time LSCI [Eq. (3),
n ¼ 1 and n ¼ 2)], or the Kazmi model perfusion, and for

ANN-MELSCI. For comparison, the root mean square of the
absolute difference can be related to the average LDF perfusion
that was 109 PU.

The ANN-MELSCI method has a markedly superior R-value
and lower RMSa and RMSr in predicting the LDF perfusion
than the single exposure time LSCI and the Kazmi model.
Therefore, only the ANN-MELSCI method is considered in
the rest of the results section.

3.3 Performance on Data with Added Stochastic
Noise

When adding stochastic noise to the contrast values according to
the noise model presented in Sec. 2.2.4, the performance of the
ANN-MELSCI decreases compared to the use of contrasts with-
out noise, as shown in Figs. 6(c) and 6(d). The performance of
the network when adding noise to the training and/or evaluation
data is summarized in Table 3.

The results from the speckle simulations were used to com-
pare the performance values to the effect of stochastic noise on
ordinary LDF perfusion. The correlation coefficient and the root
mean square differences were calculated by comparing the
calculated LDF perfusion from one of the ten realizations to
the mean of the other nine for all 2000 simulated models.
The results should thus be comparable with a model trained
and evaluated on contrasts with added noise from the described
noise model.

Fig. 5 Stochastic noise as a function of number of speckles per pixel.

(b)

(c)

(a)

(d)

Fig. 6 (a) Relation between LDF perfusion and single exposure time LSCI perfusion, (b) Kazmi model,
(c) ANN-MELSCI, and (d) ANN-MELSCI with added noise. The red curve is the average perfusion in
each bin, and the area indicates the standard deviation of estimated perfusion in each bin. Each bin
corresponds to 500 data points from the 50,000 evaluation models.
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It is apparent from Table 3 that it is essential to account for
noise in the training set if noise is present in the evaluation set.
The amount of stochastic noise can be reduced by using aver-
aging or filtering, where the amplitude of the noise reduces with
the square root of the number of averages. In Fig. 7, RMSr can
be studied for various numbers of averages in the training and
evaluation data for ANN-MELSCI. The performance was best
when there was the same amount of noise in both training and
evaluation data. However, it was much worse for the perfor-
mance with more noise in the evaluation data than in the training
data than the other way around.

3.4 In Vivo Examples

The data from the first in vivo measurement were processed, as
described in Sec. 2.3.1, and with the LDF and ANN-MELSCI
algorithms described in this paper. The resulting perfusion esti-
mates can be seen in Fig. 8, where the correlation coefficient
between LDF and ANN-MELSCI perfusion was 0.995 and
the absolute and relative RMS deviations were 4.6 PU and
12%, respectively. Note that the perfusion estimates have
been separately normalized with respect to the measurement
on the microsphere solution, i.e., they have not been normalized
with respect to each other.

An illustration of measured contrast values and those in the
training data is found in Fig. 9. When considering two of the
seven dimensions [K(1) and K(64)], of the contrast space, it
can be observed that the training data cover a much larger
part of the contrast space than the measurement does. The con-
trast values in the training data are occasionally >1 due to the
added noise.

The second in vivo measurement, described in Sec. 2.3.2, is
shown in Fig. 10. Perfusion maps are shown for the occlusion

and reperfusion stages of the experiment, calculated as an aver-
age over four consecutive images. The increase in perfusion
from before to after the release of pressure is clearly visible in
the provoked finger.

4 Discussion
This study shows that by using a machine learning approach
with ANNs to analyze multiexposure laser speckle contrast
data, conventional laser Doppler perfusion can be resembled
with high accuracy. This finding indicates that the contrasts of
a set of well-selected exposure times contain essentially all the
information that is found in the Doppler power spectrum.

The claim that ANN in MELSCI can replace conventional
laser Doppler is foremost based on the evaluation results
using modeled data. For this to be valid, the modeled data
must reflect all shapes of the Doppler power spectra/contrast
curves that can be expected in measurements. Figure 2 shows
the range of RBC tissue fractions and average speeds that are
used in the models for the training data. The training data mod-
els are adapted for skin tissue but also covers geometrical, opti-
cal, and blood flow properties that can be expected in most other
types of tissues. One exception could be when measuring on
large superficial vessels. Such a measurement could result in
contrasts lying outside the contrast space of the training data
[for example, Kð1 msÞ < 0.4, see Fig. 9] and would thus result
in a high uncertainty in the predicted perfusion value. However,
this situation can easily be detected by comparing the contrasts
of the measurement with the contrast space of the training data.
It can then be solved by increasing the range in the training data.

Table 2 Performance for estimating LDF perfusion for conventional
single exposure time LSCI and for the Kazmi model and ANN-
MELSCI.

R [—] RMSa (PU) RMSr (%)

Single exposure time
perfusion 1∕K ð6Þ − 1

0.840 46 56

Single exposure time
perfusion 1∕K 2ð6Þ − 1

0.822 50 40

Kazmi model 0.976 20 14

ANN-MELSCI 1.000 0.69 2.0

Table 3 Performance for estimating LDF perfusion using the ANN on contrast values with added noise on training and/or evaluation data. The
effect of stochastic noise on conventional LDF perfusion is also shown for comparison.

Training set Evaluation set R [—] RMSa (PU) RMSr (%)

ANN Added noise Added noise 0.993 9.5 19

No noise Added noise 0.090 12,300 132,866

Added noise No noise 0.997 6.5 11

LDF from speckle simulations 0.997 6.4 9.9

Fig. 7 The effect on RMSr for various numbers of averages in the
training and evaluation data sets. The legend denotes the number
of averages in the evaluation dataset.
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The dynamics in the evaluation measurement (Fig. 8) is high
regarding perfusion, and it can be seen in Fig. 9 that the contrasts
found in that measurement are well covered by the contrast
space in the training data.

The ability of several LSCI models to resemble conventional
laser Doppler perfusion has previously been studied. As
expected, it was found that single exposure time LSCI per-
formed relatively poorly compared to models that included
multiple exposure times. The Kazmi model12 that has been
used in some studies for calculating perfusion or flow from mul-
tiexposure contrasts20–22 performed better. However, it was
inferior to the performance of ANN-MELSCI. The realization
of the Kazmi model is, moreover, considerably more computa-
tionally demanding, due to the nonlinear optimization. We have
not explicitly studied how the method presented by Thompson
and Andrews10 performs on our data, because they have already
shown how accurately the laser Doppler power spectrum can be
calculated from MELSCI contrasts. Compared to the ANN-
MELSCI method proposed in this paper, their method requires
much higher frame-rates and is more computationally demanding.

The speed of the calculations is relevant if the algorithms
were to be implemented in a real-time system. The proposed
ANN is able to calculate a perfusion image of 256 × 250 points,
i.e., 64,000 perfusion values, in about 25 ms using the MATLAB
implementation on a single core on a 3.5 GHz Intel Xeon CPU.
Thus, a real-time implementation is realistic, especially when
considering the possibility to optimize and parallelize the calcu-
lations. In comparison, our implementation of the Kazmi model
with nonlinear optimization in each point is 4 orders of magni-
tude slower.

Fig. 8 Comparison of perfusion estimates from LDF and ANN-MELSCI during an occlusion-release
provocation of a forearm. The data on the long time-scale was low-pass filtered to make comparison
easier. The superimposed figure shows the same signal during 20 s of the experiment. The data in
the superimposed figure have not been low-pass filtered.

Fig. 9 Map over contrast at 1 and 64 ms for the 100,000 models used
in the training data (red-yellow color scale). Corresponding contrasts
in the in vivomeasurement (Fig. 8), where the cluster of purple dots in
the middle originates from baseline and postpeak, the cluster with
green points to the right from the occlusion phase, and the cluster
of blue dots to the left originates from the perfusion peak (421 to
444 s).

(a) (b)

Fig. 10 Spatial maps of the perfusion output from the ANN-MELSCI technique applied to each pixel.
Images depict (a) an occlusion-release provocation of a finger after 4 min of occlusion and (b) directly
after the release of pressure in the inflatable cuff.
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Traditionally, an optical setup resulting in about, or less than,
one speckle per pixel has been suggested as optimal for LSCI.23–26

The rational for that assumption is that the contrast decreases
when several speckles are formed per pixel, and that a proper
sampling should exceed the Nyquist criterion, i.e., at least 2
pixels per speckle. However, in line with the findings by Qiu
et al.,27 we report a reduced stochastic noise and increased sig-
nal-to-noise ratio (SNR) when the optical setup results in many
speckles per pixel, despite the fact that the overall contrast
decreases. The results shown in Fig. 5 suggest that SNR
increases with the number of speckles per pixel up to over
100 speckles per pixel. We also concluded that the shape of
the contrast decay was not affected by the number of speckles
per pixel. Therefore, we have chosen an optical setup with many
speckles per pixel to increase the SNR, i.e., contrast divided
by stochastic noise, in both the measurement system and in
the simulated setup. Smaller speckles can be achieved by an
increased lens aperture, i.e., allowing more light to be detected
by the camera sensor, which in turn decreases also the influence
of detector noise. However, in a system realization, too many
speckles per pixel will cause quantization noise in the contrast
calculations. In addition, we report that the size of the submatrix
does not matter from an SNR perspective, considering that sev-
eral small submatrices can be spatially averaged to form contrast
values with the same contrast as one larger submatrix. We have
chosen the unusual submatrix size of 4 × 4 pixels since it is com-
putationally efficient to have a submatrix size that is a power of
2 in the computational scheme using hyperparallel computa-
tional hardware, as proposed in Ref. 16.

The results in Sec. 3.3 clearly show the importance of con-
sidering noise when training the model. If noise is not included
in the training data, but in the evaluation/measurement data, the
ANN fails completely in estimating the perfusion. In this study,
stochastic noise was considered, but detector noise could also be
included if that is significant in relation to the stochastic noise.

When choosing a design for the neural network, the focus
was mainly on simplicity since the problem in question is a
seemingly simple one—a transfer function from seven variables
to one. We chose to present performance from the smallest pos-
sible net for which we saw no penalty due to size, in our case, 10
nodes in the hidden layer. While it is possible that a larger net-
work might have achieved a small increase in performance,
this would also have come at the cost of computational
power, and eventually the risk of overfitting to the training
data. Furthermore, at least in this relatively simple application
of ANN, optimizing the design of the network itself is not nearly
as important as optimizing the training data to accurately depict
reality.

The purpose of this paper was to show the ability to accu-
rately resemble LDF perfusion using MELSCI. For the in vivo
comparison between LDF and MELSCI perfusion, it was there-
fore important to include several effects of LDF acquisition and
processing in the training data for the ANN. Without consider-
ing aliasing and low-pass filtering when training the network,
the MELSCI perfusion and LDF perfusion would not match
in the in vivo recordings. This means that in order to use the
proposed method, a model of the measurement set-up is needed,
and the ability to create large datasets that accurately reflect this
set-up. A deviation between the LDF and MELSCI perfusion
estimates can be noted in the reperfusion peak in Fig. 8.
That deviation implies that we have not completely succeeded
in resembling all the effects of LDF acquisition and processing,

especially not those affecting high frequencies. Nevertheless,
the overall results in Fig. 8 provide evidence that MELSCI
can be used to resemble LDF perfusion.

We have previously shown that MELSCI data with exposure
times between 1 and 64 ms can be continuously acquired and
processed at 15.6 frames/s using a high-speed camera solution.16

This solution is several orders of magnitudes faster than scan-
ning LDF imagers. Using the ANN machine learning approach
presented in this study, real-time perfusion imaging can be
achieved from MELSCI data. The perfusion estimations from
100,000 simulated models are strongly correlated to conven-
tional LDF perfusion (R ¼ 0.993), as well as in the in vivo
occlusion-release experiment (R ¼ 0.995). Thus, it is concluded
that LDF scanners can be replaced by MELSCI and ANN,
allowing for perfusion imaging at high frame-rates.
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