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Abstract. Live-subject microscopies, including microendoscopy and other related technologies, offer promise
for basic biology research as well as the optical biopsy of disease in the clinic. However, cellular resolution
generally comes with the trade-off of a microscopic field-of-view. Microimage mosaicking enables stitching many
small scenes together to aid visualization, quantitative interpretation, and mapping of microscale features, for
example, to guide surgical intervention. The development of hyperspectral and multispectral systems for bio-
medical applications provides motivation for adapting mosaicking algorithms to process a number of simulta-
neous spectral channels. We present an algorithm that mosaics multichannel video by correlating channels of
consecutive frames as a basis for efficiently calculating image alignments. We characterize the noise tolerance
of the algorithm by using simulated video with known ground-truth alignments to quantify mosaicking accuracy
and speed, showing that multiplexed molecular imaging enhances mosaic accuracy by leveraging observations
of distinct molecular constituents to inform frame alignment. A simple mathematical model is introduced to char-
acterize the noise suppression provided by a given group of spectral channels, thus predicting the performance
of selected subsets of data channels in order to balance mosaic computation accuracy and speed. The char-
acteristic noise tolerance of a given number of channels is shown to improve through selection of an optimal
subset of channels that maximizes this model. We also demonstrate that the multichannel algorithm produces
higher quality mosaics than the analogous single-channel methods in an empirical test case. To compensate for
the increased data rate of hyperspectral video compared to single-channel systems, we employ parallel process-
ing via GPUs to alleviate computational bottlenecks and to achieve real-time mosaicking even for video-rate
multichannel systems anticipated in the future. This implementation paves the way for real-time multichannel
mosaicking to accompany next-generation hyperspectral and multispectral video microscopy. © The Authors.
Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires
full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.24.12.126002]
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1 Introduction
The development of miniaturized devices for live subject
microscopy has potential for broad impact on a number of bio-
logical research questions and biomedical applications, includ-
ing the optical biopsy of cancer at the cellular and subcellular
levels.1 Although these devices are typically able to resolve cel-
lular objects, their relatively small field-of-view limits scalabil-
ity, as clinicians may need to survey large (macroscopic) areas.2

This limitation stands in the way of practical utility and trans-
lation to the clinic. Consequently, achieving both microscopic
resolution and macroscopic field-of-view optical imaging re-
mains a central challenge in the field, especially in fluorescence-
guided surgery.2

Microimage mosaicking offers an approach for expansion of
the field-of-view without loss of resolution, aiding visualization
and interpretation of microscale features across macroscopic
areas of tissue. Mosaicking is an image analysis technique in
which sequential frames from a sequence of images (i.e., video)
are examined for common spatial features and then stitched

together by overlapping the images’ shared regions pairwise.3

Previous elegant mosaicking algorithms were developed to
accompany monochrome (single-channel) microscopy, endomi-
croscopy, and other related modalities.4,5 These methods rely
only on spatial information to connect frames. These algorithms
have since been optimized to address the unique imaging arti-
facts associated with live-subject microscopy, using creative
image alignment and stitching methods.6,7

The advent of multidimensional imaging techniques, such as
multispectral and hyperspectral imaging,8–10 and their translation
to endoscopy and other multiplexed molecular imaging tech-
niques,11–13 provides novel information about frame-to-frame
motion that single-mode techniques are not equipped to analyze.
For example, the existence of strong narrow-band signals from
multiple fluorophores can be leveraged to solve the matching
problem in a higher signal-to-noise ratio (SNR) domain after
unmixing,14 simultaneously improving accuracy and computa-
tional efficiency. Thus, existing mosaicking algorithms should
be adapted to leverage spatial and spectral data and enable these
techniques to image micro- and macroscopic environments with
greater fidelity than their single-channel predecessors.

This work presents a first step in the development of multi-
channel mosaicking algorithms. We focus on characterizing and
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measuring the improvements to mosaic image registration and
alignment using spatial information across two or more channels
and comparing them to analogous single-channel methods.
Here, we use multichannel in reference to either the set of raw
spectral bands produced by hyperspectral imaging or the set of
endmember abundance maps calculated via spectral unmixing.
We present an application of this work using hyperspectral im-
aging in a biological context. However, the algorithm may be
useful in a broad range of applications where multichannel
methods are employed, such as remote geological sensing and
astronomical imaging, if used in a setting where the dominant
component of motion is translational and any nontranslational
motion is small in comparison (see Sec. 3.3).

When processing multiple spectral (spatially coinciding)
channels, it is clear that a single unique spatial alignment should
be applied across all channels in a set of hyperspectral frames
(provided achromatic optical performance). Independent align-
ment of different channels could obscure colocalization infor-
mation, which is often of primary interest in hyperspectral
data analysis.10,15 By calculating alignments independently for
several spectral channels and leveraging this extra information,
we demonstrate that it is possible to improve frame alignment
accuracy and tolerance to noise beyond the performance metrics
set by their single-channel counterparts.

The inclusion of spectral information into the image align-
ment calculations adds nuance to the method and is explored
in this work. Specifically, there is a trade-off between the addi-
tion of spectral channels for increased accuracy and computa-
tional speed, from which the user should be able to determine
the optimal configuration for their data set. First, some channels
within a multichannel data set may be more valuable to the
mosaicking accuracy than others depending on their degree
of correlation with each other. That is, using totally uncorrelated
channels (e.g., two spectrally distinct fluorescence channels)
increases the noise tolerance of the mosaic more than the addi-
tion of correlated channels. Therefore, a subset of the higher
priority channels may be selected to reach a target accuracy and
speed. Informed by this, we present a method to choose the opti-
mal subset of channels that maximizes the mosaicking perfor-
mance. We show that this new metric, called the dimensionality
score (D), reliably predicts the noise tolerance of both hyper-
spectral and unmixed multichannel data sets. Therefore, the
highest priority channels are predicted to be those that maximize
this metric.

Previous reports simulate video registrations from a single
image to characterize mosaicking accuracy against a known
ground truth.16 Here, we employ a similar method to character-
ize the noise tolerance and computational efficiency of the
presented algorithm to enable quantification of mosaicking
performance relative to single-channel analogues. Simulated
hyperspectral video frames were generated with a constant, high
percentage (94%) area overlap between consecutive frames to
approximate conditions for video-rate imaging. The current
algorithm is primarily intended for handheld probes, for which
probe motion during acquisition is unavoidable. To combat
motion artifacts, these probes are operated at fast imaging rates
(video-rate speeds) that outpace the probe motion during image
acquisition. The nonoverlap area percentage is simply the ratio
of probe displacement (i.e., in pixels traveled) to image size,
which must be kept small as a direct consequence of this method
of minimizing motion artifacts. Therefore, while a low amount
of overlap is common for microscopy tilings or similar methods,

this algorithm is intended for use with systems that produce
sequential images with large overlapping areas.

Noise was then introduced to the simulated frames to stress
the algorithm and introduce inaccuracies. Additive Gaussian,
multiplicative Gaussian, and Poisson noise types were investi-
gated, covering common models that approximate dominant
noise sources in both confocal microscopy and hyperspectral
imaging.17,18 We apply the simulated noise tests to quantify
the improvements made by the present multichannel mosaicking
algorithm as well as to measure the predictive power of the
aforementioned dimensionality score. These hyperspectral
images were also linearly unmixed into their molecular constitu-
ents, creating unmixed channels for which D was calculated.
However, note that unmixed channels are generally denoised
compared to spectral channels,14 which is intrinsically superior
to using raw spectral channels but relies on faster than real-time
unmixing for online applications.

Developing a precise quantification of mosaicking error to
measure the noise tolerance requires objective quantification
that may be beyond human perceptions of mosaicking errors and
artifacts. To ensure that the improvements found for the noise
tolerance translate into improvements in image quality as per-
ceived by the eye, we developed a separate empirical test.
We collected a second set of hyperspectral frames using a com-
mercial microscope and compared mosaics made from our algo-
rithm to gold standard tiling of the same area assembled using
the microscope’s precision stage and software.

Furthermore, we leverage improvements in computational
throughput available with parallelized computing and graphics
processing units (GPUs),19 allowing computationally expensive
multichannel analysis at video-rate (15 frames-per-second, fps)
speeds for up to 10-channel mosaicking. Thus, image compu-
tation speeds can be comparable to associated data acquisition
rates,20 enabling future online applications in the clinic. These
improvements may be applied to mosaicking, and pairing these
algorithms with the development of faster-than-real-time spec-
tral decomposition20 would pave the way for real-time construc-
tion of macroscopic maps of multiple molecular constituents
(endmembers) of tissue with microscopic resolution.

2 Methods

2.1 Multichannel Mosaicking Algorithm

The presented algorithm applies pairwise normalized cross-cor-
relation21 (NCC) as a basis for frame registration. Following
Bedard et al.,5 cross-correlation maps are calculated between
consecutive image frames [Figs. 1(a) and 1(b)] and the maps
are normalized to an in-place autocorrelation (i.e., the theoretical
maximum correlation). Correlation space then maps the proba-
bility of alignment across the spatial domain spanned by the
intersection of two images being aligned, from which the loca-
tion of maximum likelihood is selected as the “true” alignment
location for the subsequent stitching step. We calculate the spa-
tial cross-correlation map separately for each additional channel
and average the maps in correlation space, producing a single
map [Figs. 1(c) and 1(d)].

The code enabling this algorithm was developed in
MATLAB R2019a (The MathWorks) in a Linux environment
(Ubuntu 18.04LTS) with an Intel i7 6800K 3.40 GHz CPU and
32 GB DDR4 2400 MT/s RAM. The substantial computational
cost of calculating multiple cross-correlations per frame-pair
was alleviated by using MATLAB’s Parallel Computing
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Toolbox v7.0 for GPU interfacing. Speed benchmarks were
carried out using a GeForce GTX 1080 Ti graphics card
(NVIDIA). The code implementing this algorithm is available
at the GitHub repository https://github.com/springlabnu/Multi-
Channel-Mosaicking.

2.2 Simulated Data Generation and Mosaicking
Performance

Quantitative analysis and comparison to equivalent single-
channel methods was carried out using a simulated video-rate
data set derived from images obtained by empirical microscopy.
We acquired a hyperspectral image cube (26 spectral bands,
images shown in Fig S1 in the Supplemental Materials) of fixed
Madin–Darby canine kidney cells stained with three dyes for
visualization of the nucleus (Hoechst 33342), cytoskeleton
(Alexa Fluor 488-Phalloidin), and mitochondria (MitoTracker
Red CMXRos) using a laser scanning confocal microscope
(Olympus FV3000). An artificial hyperspectral video stream
was then generated from this data by cropping the field-of-view

and traversing the image in a continuous raster scan with 94%
area overlap between pairs of images [raster scan pattern illus-
trated in Fig. S2(a) in the Supplemental Materials]. This created
a sequence of 65 hyperspectral image cubes (512 × 512 pixels)
with a known ground truth alignment for quantitative algorithm
characterization. The image cubes were also linearly unmixed
into their three molecular constituents, creating three unmixed
channels that could also be used for comparative analysis.

Having the ground truth location for each frame means that,
for each trial, the alignments may be checked against the lookup
table of correct locations without the need to visualize the full
mosaic. From here, we quantified mosaicking accuracy η as
the fraction of the 64 frame pairs (one less than the number of
frames) that were correctly aligned compared to the ground truth
(i.e., the original image). The alignment was counted as correct
only for an exact match. Zero-mean additive Gaussian noise was
added to each image in every frame, in order to degrade image
quality and to mimic challenging experiments that could poten-
tially cause alignment mistakes. In order to quantify noise power
of the simulated images, we use the peak SNR, defined as

Fig. 1 Exemplary cross-correlation maps demonstrate improved noise tolerance for multichannel versus
single-channel micromosaicking. (a) Single-channel NCCmap shows typical landscape with global maxi-
mum representing location of the correct image alignment. (b) Gaussian noise (σ2 ¼ 0.02) added to the
images correlated in (a) results in fluctuations in the NCC map that obscure the location of the correct
alignment. (c) NCC landscape averaged over 10 spectral channels reduces the probability of an incorrect
alignment. (d) The location of the true alignment is not obscured after Gaussian noise [σ2 ¼ 0.14, a 7-fold
increase from (b)] is added to the 10-channel NCC configuration in (c), demonstrating robust noise tol-
erance compared to the single-channel analog. Image insets provide a visual juxtaposition of noise
strength.
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EQ-TARGET;temp:intralink-;e001;63;741PSNR ¼ 10 log10
M2

σ2
; (1)

where σ2 is the added noise variance and M is the maximal
detector readout value of pixels in the image. For this data, the
pixel brightness is normalized (M ¼ 1) for ease of comparison
to σ2. For example, σ2 ¼ 0.2 corresponds to a variance that is
20% of the peak signal.

The mosaicking accuracy η is approximately equal to the
probability that a single pair of frames are correctly aligned
[PðcorrectÞ]; that is, correct alignment is a Bernoulli variable
with probability η for which the amount of noise is a predictor.
The probability of Bernoulli variables is given by a logistic
function;22 this allows us to connect the fraction of correct align-
ments (η) to the noise strength causing the misalignments
(PSNR) by

EQ-TARGET;temp:intralink-;e002;63;576η ≃ PðcorrectÞ ¼ ½1þ e−kðPSNR−PSNR50Þ�−1; (2)

where k and PSNR50 are the free parameters of the logistic fit.
While k, the logistic growth rate, is approximately the same for
these trials, the midpoint PSNR50 (PSNR at which 50% of
frames are correctly aligned or where η ¼ 0.5) is used as a met-
ric of noise tolerance. Finally, σ250, the variance corresponding to
PSNR50 [Eq. (1)], is used as a measure of the tolerated noise.

Testing of the present algorithm was carried out using n ¼
½2;26� raw spectral channels. The unmixed channels were only
analyzed by calculating their D score to compare their predicted
performance. For each n value, D was calculated for every
permutation of n channels, from which the permutation with
the maximal D value was selected as the optimal subset. As
a control, a permutation was selected subjectively by an operator
based on prioritizing channels with the brightest signal corre-
sponding to each molecular constituent, intended to mimic

selection of channels without knowledge of D. Histograms of
all possible D values (all possible permutations) are shown for
these cases in Fig. S3 in the Supplemental Materials to demon-
strate the optimization versus the user-selected permutations.
Additive Gaussian noise with σ2 ¼ ½0.003; 1.000� was added
to each channel in each image within the configuration, after
which the algorithm was run five times, with η being saved after
each trial. The time for each trial to complete the full mosaic
was also saved. The applied variance was translated to PSNR
using Eq. (1), fit to Eq. (2), from which the σ250 was extracted.
Independent two-sample t-tests (Welch’s t-test) were calculated
to find the significance of the improvements in σ250 through opti-
mization of subset permutation, as well as other comparisons.

These experiments were repeated for multiplicative Gaussian
and Poisson noise. For these noise types, the amount of noise
power delivered depends on signal, so the σ250 value extracted
is signal dependent as well. The characteristic performance is
thus amended to σ250∕I2 (i.e., normalized by the intensity)
accordingly for these noise types.

2.3 Empirical Data Generation

While the simulated data analysis thoroughly examines and
characterizes the present methods, the ultimate test of the multi-
channel algorithm and the predictive power of D is to verify that
they produce useful images from an empirical data set subject
to real-data constraints (Fig. 2). To create an empirical data set,
ovarian cancer cells (POWDER cell line, Cellaria Biosciences)
were plated and stained with two fluorescent dye stains (Hoechst
33342 and DiI) and two fluorescent dye–antibody conjugate
markers (PerCP-CD44 and AF647-EGFR). Using a confocal
fluorescent microscope with a 32-channel hyperspectral detector
(Zeiss LSM880, channel bands shown in Table S1 in the
Supplemental Materials) 30 frames were generated by taking

Fig. 2 For real data applications, ground truth knowledge is unavailable, requiring users to apply the
principles shown here to improve mosaicking accuracy under noise loads without quantitative feedback.
Dimensionality scores (D) must be calculated from sample frames, which is shown to have some effect
on subset optimization (see Fig. S4 in the Supplemental Materials). In addition, the cutoff value ϵmust be
estimated using a histogram rather than determined quantitatively. If the channels calculated to maximize
D are not sufficient to prevent unacceptable mosaicking errors, users may include additional channels or
attempt to fine-tune the estimation of ϵ until results are satisfactory. Note that the � symbol indicates a
logical “or.”
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separate images after manual movements of the stage, generat-
ing a set of frames with a wide range of overlap amounts (esti-
mated at 77% to 96% based on alignments reported by the
algorithm). Mosaicking was carried out for a 10-channel con-
figuration, whose channel constituents were chosen as the set
that maximizesD (i.e., the optimal 10-channel subset). This was
compared to a single-channel control representing the analogous
single-channel method. The same area was imaged using a tiling
protocol available in the microscope’s software (ZEN Blue 2.6)
to create a gold standard image for qualitative comparison of the
mosaics.

3 Results and Discussion

3.1 Dimensionality Score

In an effort to predict the optimal subset of channels for multi-
channel mosaicking, we developed a new metric termed
“dimensionality score” that quantifies the degree of independ-
ence of a given grouping of data channels, and by extension,
predicts the characteristic noise tolerance. The optimal channel
set, then, is predicted to be that which maximizes this score
(thereby maximizing noise tolerance). This metric must capture
the primary means by which the present multichannel algorithm
suppresses the effects of noise to retain mosaicking accuracy.

The multichannel integrated NCC map (the mean NCC map;
Fig. 1) suggests that the present approach offers two means of
noise suppression. Adding noise to the image channels gener-
ates similar noise levels but with uncorrelated patterns in the
individual correlation maps, and comparison of Figs. 1(b) and
1(d) shows that the variance in NCC space is reduced by taking
the mean of multiple NCC maps, since random noise fluctua-
tions area averaged out and reduced over several spectral chan-
nels. However, comparison of Figs. 1(a) and 1(c) reveals that
this process also populates (sharpens) the central true peak fea-
ture while reducing the magnitudes of false peaks. Hence, multi-
channel mosaicking is more immune to noise compared to the
single-channel case not only through averaging out random
noise in NCC space but also because this spectral averaging
apparently suppresses the false NCC peaks due to separate bio-
logical objects that share similar structural features, and there-
fore enhances the strength of the true peak versus false peaks.
The strength of this suppression of false peaks is dependent on
averaging over diverse NCC landscapes. Averaging multiple
NCC maps from weakly correlated or uncorrelated channels
causes true peak enhancement by utilizing a set of independent
NCC maps with the same true peak location while stochastic
false peaks generally are not amplified and tend to average
to zero.

By this reasoning, the noise tolerance of a given set of
channels depends primarily on the number of channels and the
degree of dependence between those channels. The coefficient
of correlation is already a well-known descriptor of the degree
of dependence between two samples,23 so it forms a natural
basis for constructing such a descriptor. Since the samples here
are images, we can calculate the two-dimensional (2-D) coeffi-
cient of correlation R2D, which is defined for 2-D matrices
(images) A and B as

EQ-TARGET;temp:intralink-;e003;63;122R2D ¼
P

m;nðAmn − AÞðBmn − BÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Pm;nðAmn − AÞ2�½Pm;nðBmn − BÞ2�

q ; (3)

where m and n denote rows and columns of the matrix, and A
and B denote averages of the matrix elements. This 2-D corre-
lation is computed between pairs of channels i and j using the
associated ground-truth image for each channel as matrices A
and B in the formulation above (i.e., matrices A and B are given
by images from channels i and j). These Rij values are then
separated into two populations based on a cutoff ϵ; strongly cor-
related channel pairs (Rij > ϵ) have correlation values denoted
RC and weak correlations (Rij < ϵ) are similarly grouped as RI .
Hence, ϵ acts as a cutoff for deeming channel pairs as either
independent (RI) or correlated (RC). The dimensionality score
D is then calculated for n channels as

EQ-TARGET;temp:intralink-;e004;326;620D ¼ 1þ ð1 − RIÞ � nind þ ð1 − RCÞ � n; (4)

where nind is the number of independent channels (i.e., channels
with no correlation values greater than ϵ) and the overbar sig-
nifies the mean across each separate collection of channels. The
dimensionality score is bounded on the range ½1; nþ 1�; a score
of 1 indicates that all channels are exact copies of each other (or
at least, are proportional) whereas a score of nþ 1 indicates that
all channels are completely independent (all Rij ¼ 0). The split-
ting of Rij into RC and RI attempts to capture the two means of
noise suppression discussed above: ð1 − RIÞ � nind models the
effect of true peak sharpening by largely uncorrelated channels
and ð1 − RCÞ � n estimates the contribution of all channels that
reduce the noise variance in correlation space through averaging
to suppress stochastic fluctuations.

The selection of ϵ has a significant effect on the performance
ofD as a predictor for σ250. An appropriate value of ϵ realizes the
separation of Rij values characteristic of channels that image
nearly identical features. For a matrix of Rij values, this effect
results in a characteristic division of the Rij matrix into distinct
neighborhoods [Fig. 3(a)]. We demonstrate this effect for
ϵ ¼ 0.89, leading to three such areas that likely correspond to
the three molecular constituents imaged in this dataset. Without
the knowledge of a ground truth for grading performance, an
appropriate value of ϵ may be estimated (Fig. 2) through analy-
sis of a histogram of Rij [Fig. 3(b)] with the intention of sepa-
rating the population of strongly correlated channel pairings
from the rest. Here, with knowledge of the ground truth, the
ϵ value that provides the greatest predictive strength may be
found by maximizing the Pearson correlation betweenD and σ250
(the characteristic noise tolerance), with a peak value at ϵ ¼ 0.89
giving a squared Pearson correlation of R2

p ¼ 0.97 [Fig. 3(c)].
However, our results indicate that a considerable range [shaded
area in Figs. 3(b) and 3(c)] of ϵ values correspond to a central
peak of Fig. 3(c), and therefore retain near-optimal predictive
performance. Therefore, we expect that an estimation of ϵ using
the aforementioned histogram method will still ensure that D
remains a reliable and useful predictor of mosaicking perfor-
mance. Note that the limits of ϵ → 0 and ϵ → 1 both reduce
D to 1þ ð1 − RÞ � n, which is an intuitive descriptor of dimen-
sionality; simply the mean of one minus cross-channel correla-
tion, scaled by n. However, in this limit, there is only one
operative term (R). Therefore, it is apparent that both noise
suppression modes are not captured in this limit, resulting in
a weakened (lower Pearson’s correlation) prediction of noise
tolerance.

Even with our parallelized implementation, calculating the
cross-correlation remains the dominant computational bottle-
neck, and the mosaicking computation time thus linearly scales
with the number of channels used. D is employed to optimize
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the selection of a high-priority subset of channels in an effort
to lessen this computational load. The optimal configuration
is found by maximizing D over channel selection choices that
are sufficiently speedy (i.e., limiting the number of channels to
reach a target mosaicking rate). This enables D to be a practical
tool for optimizing the selection of subsets of available channels.
A brute-force calculation of D scores for all possible permu-
tations of the desired configuration (of which there may be
hundreds or thousands) can be computed in a reasonable time
frame, providing comparative values that predict each permuta-
tion’s noise tolerance. The problem of selecting the optimally
performing subset of channels for mosaicking is, to the best
of our knowledge, otherwise intractable, except by empirical
trial-and-error by the operator combined with a heuristic quality
criterion.

3.2 Quantitative Mosaicking Performance

Increasing the number of spectral channels improves the
mosaicking accuracy under noise load, as indicated by plotting
η versus PSNR [Fig. 4(a); see also Eq. (2)]. For a given PSNR,
more channels always perform better (higher η), and at a given η,
having more channels allows us to tolerate stronger noise levels
(see Table S3 in the Supplemental Materials). These results are
replicated for multiplicative Gaussian noise and Poisson noise,
as shown in Fig. S5 in the Supplemental Materials. Therefore,
the multichannel algorithm is expected to achieve greater accu-
racy than equivalent single-channel methods for noise models
relevant in microscopy. Two permutations were tested for each
configuration (number of channels): the optimal permutation
predicted by D and an operator-selected control (these permu-
tations are shown in Table S2 in the Supplemental Materials).
The control was assembled by selecting subsets of channels that
evenly sampled the three molecular constituents, intended to re-
present an operator’s educated guess at the optimal configura-
tion of channels (the alternative to using the dimensionality
score for optimization). In all cases, the optimized permutation
was superior (lower PSNR50) to the control [Fig. 4(b)].

The correlation and thus predictive strength remains high
between the σ250 values and D [Fig. 4(c), R2

p ¼ 0.95] for the

optimized subsets. This is very similar to the previous correla-
tion value of 0.97 between σ250 values and D for the operator
control channel sets. Therefore, D retains its prediction strength
among the various subsets of optimized permutations. In all
cases tested, the optimized permutations provide superior per-
formance over the operator-selected ones [Fig. 4(d); at least
p < 0.05]. While the improvement is most striking for small
numbers of channels, the effect is present for all cases, confirm-
ing an increase in noise tolerance by use of the dimensionality
score to predict the optimally performing subset of channels.

The dimensionality score D plotted against the mosaicking
speed [Fig. 4(d)] demonstrates the trade-off between computa-
tional speed (increasing y) and dimensionality score (increasing
x) for both control and optimized permutations of the raw
channels, as well as the optimized permutations of unmixed
channels. These plots were fit to power law curves, and two-
tailed t-tests were evaluated for the coefficients of these fits
to show that: (1) unmixed channels outperform optimized raw
channels (p < 0.001) and (2) optimized raw channels outper-
form operator-selected channels (p < 0.001). Here, higher per-
formance is denoted by a more elevated trendline, delivering
faster performance and forecasting better noise tolerance.

3.3 Empirical Mosaicking

Based on these results, the multichannel algorithm and optimi-
zation of channel selection should enable greater accuracy for
real-data mosaicking. Section 2.3 outlines the generation of
an empirical data set (without the privilege of ground truth) for
this purpose. This empirical set consists of a series of images
with varying interframe overlap of a primary tumor cell culture
stained using four spectrally distinct fluorescent probes and cap-
tured by 32-channel microscopy using a precision stage. We
followed the previously discussed steps to optimize the choice
of channels for video-rate mosaicking (i.e., limited to up to 10
channels to retain video-rate computation). We estimated ϵ using
a histogram [Fig. 5(a)] of correlation values (Rij) from the first
video frame, finding that channels 1, 2, 12, 13, 21, 22, 26, 27,
28, and 32 maximized D. The images were analyzed by exam-
ining the unmixed composite images created by unmixing the

Fig. 3 Selection of the cross-channel correlation cutoff, ϵ, affects the predictive accuracy of D by chang-
ing the strictness of “independence” definition. (a) A heatmap of the Rij matrix shows ϵ ¼ 0.89 (dotted
line) segregating strongly correlated channel pairings into three major areas corresponding to the three
molecular constituents imaged. (b) A histogram of Rij values shows that ϵ values within the shaded area
separate a population of strongly correlated channel pairings (Rij values) from the rest (dotted line indi-
cates ϵ ¼ 0.89). (c) For data with known ground truth, predictive power may be optimized directly by
maximizing Pearson’s correlation (R2

p) of D and σ250 versus dimension score cutoff (ϵ). This reveals
an optimal ϵ ¼ 0.89 corresponding to R2

p ¼ 0.97; the shaded area from (b) now outlines a central peak,
indicating that subprime ϵ values estimated from (b) will still deliver near-optimal predictive strength.
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raw data into the four endmembers (dyes) and creating a color
map to represent all four dyes in one image. The Zeiss tiling
mentioned earlier [Fig. 5(b)] provides a gold standard for quali-
tative comparisons of mosaicking accuracy and for evaluating
the presence of artifacts.

The single channel method produced an image [Fig. 5(c)]
with many severe artifacts, including sharp edge artifacts and
clear examples of feature duplication. These errors are presumed
to result from alignment mistakes caused by noise distorting
similar areas between frame pairs, ultimately hindering the
NCC alignment step. The 10-channel optimized mosaicking
[Fig. 5(d)] qualitatively outperformed the one-channel control,
producing an image largely free of artifacts, substantially mim-
icking the gold standard. Additionally, step-by-step compari-
sons of the video feed and the associated intermediate mosaic
can be visualized in Video 1.

This empirical test demonstrates that significant improve-
ment was achieved in a real-data scenario compared to the
single-channel analog. Cross-correlation-based algorithms have
been implemented successfully for handheld microendoscopes
in the literature,5 so the methods here should achieve similar
results for multichannel versions of these probes. However, the
primary limitation of the cross-correlation-based method imple-
mented here is that alignments are limited to translational
corrections, and therefore nontranslational motion must be
negligible. To overcome this limitation, micromosaicking algo-
rithms have been developed far beyond single-channel cor-
relations and now typically utilize feature-based alignment
strategies that allow for more complex frame-pair alignments
such as affine transformations7 and local warping corrections.6

The success of the multichannel NCC method here motivates
integration of these advanced methods with the present

Fig. 4 Quantification and characterization of mosaicking accuracy, dimensionality score, and computa-
tional speed under noisy imaging conditions. (a) Mosaicking accuracy under noise load is modeled using
a logistic curve [Eq. (2)] where the logistic midpoint (dashed line) characterizes the noise tolerance.
Performance is improved both by adding more channels and optimizing (opt.) the subset of channels
utilized versus user-selected channels (ctrl.) based on even sampling of molecular constituents.
(b) σ250 values extracted from midpoints of (a) using Eq. (1) display improved noise tolerance through
selection of a channel subset that maximizes D; asterisks represent levels of significance (* signifies
p < 0.05, **** signifies p < 0.0001). (c) D correlates with σ250 for optimized permutations (R2 ¼ 0.95); data
labels denote number of channels used. (d) Mosaicking speed decreases with increasing dimensionality
score as a power law. Predicted performance of optimized channel sets is better than that of the user-
selected control sets, and unmixed channels provide the best predicted performance. Dotted line
denotes video-rate (15 fps) threshold.
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multichannel mosaicking algorithm in a manner that similarly
takes advantage of the unique information available in multi-
spectral and hyperspectral data. A limitation of this method is
that smooth image layering such as graph-cut-based stitching7,24

or alpha blending of overlapping areas4 have not yet been inte-
grated. The present algorithm also does not compensate for
compounding errors (or drift error), where small misalignments
may build up due to the pairwise image alignment method and
cause a significant discrepancy after many alignments, as it
cannot correct itself after misalignments, as demonstrated in
Fig. S2(b) in the Supplemental Materials. This problem has
been addressed in earlier publications6 by referencing a global
alignment system and refining pairwise alignments to fix these

issues. Here, the results motivate the integration of such methods
with the present algorithm in future work.

4 Conclusion
In summary, we report a multichannel micromosaicking algo-
rithm capable of processing up to 10 channels (spectral or
unmixed molecular basis channels) at video rate (15 fps).
This development is motivated by the anticipated need for
real-time analysis of multiplexed microscopy and microendo-
scopy image cube data streams, as hyperspectral technologies
continue to advance in speed and spectral resolution. We char-
acterized the noise tolerance of a given grouping of synthetic
spectral channels with a dimensionality score that captures two

(c)

500 µm

(b)

(d)

(a)

Hoechst 33342
PerCP-CD44
DiI (DiIC18(3))
AF647-EGFR

Fig. 5 Micromosaicking of an empirical hyperspectral data set (described in Sec. 2.3). (a) Histogram of
correlation values for 32 hyperspectral channels listed in Table S1 in the Supplemental Materials reveals
that a choice of ϵ ¼ 0.75 (dotted line) separates a population of strongly correlated channels, informing
calculation of D [Eq. (4)]. (b) Tiling of four unmixed dye channels (annotated on image) serves as a
qualitative gold standard to compare mosaics. (c) One-channel mosaicking produces severe artifacts
such as repeated features (red circle), sharp edges (red rectangle), and a notably different aspect ratio
compared to (b) despite being displayed at the same scale. These are indicative of significant misalign-
ments and this configuration ultimately fails to provide an accurate mosaic. (d) Micromosaicking using the
optimal 10 channels results in an image free of noticeable artifacts; qualitative comparison to the gold
standard (b) indicates that the images have only minute differences (Video 1, 4.93 MB, MP4 [URL: https://
doi.org/10.1117/1.JBO.24.12.126002.1]).
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forms of noise tolerance enforced by the algorithm, and show
that this dimensionality score is a reliable predictor of algorithm
accuracy and speed performance. This enables the determination
of a high-value subset of channels for computational bandwidth-
limited situations. The predicted trends from the dimensionality
score are matched by actual increases in performance in noisy
conditions. We empirically demonstrate the improved perfor-
mance with a second data set, showing higher mosaic fidelity
and fewer artifacts than the single-channel method when com-
pared to an accepted gold standard. We also demonstrate that
unmixed endmember abundance maps offer a better optimiza-
tion of mosaicking speed and dimensionality score than raw
spectral channels. This result motivates the further develop-
ment of accelerated real-time unmixing and its integration with
multichannel micromosaicking. Future work includes develop-
ment of a multichannel feature-based algorithm to unite hyper-
spectral micromosaicking methods with complex frame pair
alignment strategies needed for in vivo microscopy using hand-
held probes.
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