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ABSTRACT. Significance: Label-free, two-photon excited fluorescence (TPEF) imaging cap-
tures morphological and functional metabolic tissue changes and enables enhanced
understanding of numerous diseases. However, noise and other artifacts present in
these images severely complicate the extraction of biologically useful information.

Aim: We aim to employ deep neural architectures in the synthesis of a multiscale
denoising algorithm optimized for restoring metrics of metabolic activity from
low-signal-to-noise ratio (SNR), TPEF images.

Approach: TPEF images of reduced nicotinamide adenine dinucleotide (phosphate)
(NAD(P)H) and flavoproteins (FAD) from freshly excised human cervical tissues are
used to assess the impact of various denoising models, preprocessing methods, and
data on metrics of image quality and the recovery of six metrics of metabolic function
from the images relative to ground truth images.

Results: Optimized recovery of the redox ratio and mitochondrial organization is
achieved using a novel algorithm based on deep denoising in the wavelet transform
domain. This algorithm also leads to significant improvements in peak-SNR (PSNR)
and structural similarity index measure (SSIM) for all images. Interestingly, other
models yield even higher PSNR and SSIM improvements, but they are not optimal
for recovery of metabolic function metrics.

Conclusions: Denoising algorithms can recover diagnostically useful information
from low SNR label-free TPEF images and will be useful for the clinical translation
of such imaging.
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1 Introduction
Metabolism refers to the set of chemical reactions that occur within a cell to produce energy and
to build the necessary macromolecules to sustain life.1 The energetic and macromolecular
demands of a cell often change with aging and the onset of several diseases, including cancer,
diabetes, neurodegenerative disorders, and cardiovascular diseases.2 Therefore, it is clear that
understanding the nature of such metabolic changes at the cellular level to characterize hetero-
geneity and dynamic interactions among different cell populations is critical for the development
of improved diagnostic and treatment methods.3 However, established methods to assess
metabolic function in the clinic and the laboratory either lack resolution4 or are destructive.5

One approach that is capable of probing the tissue metabolic state with high three-
dimensional resolution in a non-destructive manner is two-photon excited fluorescence
(TPEF) microscopy.6 TPEF is a non-linear imaging technique that benefits from intrinsic optical
sectioning and the ability to penetrate hundreds of micrometers into bulk tissue.7 TPEF is also
uniquely suited to capture images from endogenous fluorophores, such as NAD(P)H and FAD.8

NADH and FAD are coenzymes that facilitate energy generation and biomolecular synthesis via
a number of pathways.9 Several of these pathways, including the tricarboxylic acid cycle,
glutaminolysis, fatty acid oxidation, and oxidative phosphorylation, occur in the mitochondria.10

NADPH plays an important role in anti-oxidant pathways and has similar fluorescence character-
istics to those of NADH.11 Thus, the term NAD(P)H is used throughout this paper to refer to the
fluorescence of both NADH and NADPH. A large fraction of the flavin-associated cellular
fluorescence is attributed to FAD bound to lipoamide dehydrogenase (LipDH), even though
contributions from free FAD and FAD bound to complex II (electron transfer flavoprotein) may
also be significant. Here, we use the term FAD to refer to all flavin-associated fluorescence
detected from cells.

Despite the lack of specificity in the origins of the fluorescence signals, the ratio of FAD/
NAD(P)H or its normalized definition of FAD/(NAD(P)H+FAD) has been shown to correlate to
the oxido-reductive state of the cells in many studies.12–15 Mitochondria are also characterized by
the ability to fuse and fission to enhance energy production and delivery in response to stress or to
facilitate the removal of damaged mitochondria.16 Such differences in mitochondrial organiza-
tion have also been quantified based on analysis of NAD(P)H TPEF images.17,18 NAD(P)H flu-
oresces more efficiently when bound to enzymes typically in the mitochondria; therefore
variations in NAD(P)H TPEF intensity fluctuations can be exploited for label-free quantitative
assessments of mitochondrial organization (clustering) in cells, tissues, and living humans.17,19

Changes in mitochondrial organization have in turn been attributed to metabolic function
changes.20–22 The heterogeneity of parameters such as the redox ratio and mitochondrial cluster-
ing within a tissue have also been identified as important indicators of metabolic state.23–25 A
number of studies have already highlighted the diagnostic potential of such assessments in living
humans, and there is growing interest in performing such measurements at the bedside or via
endoscopes to expand the range of diagnostic applications to several organs beyond the skin.26–29

Fast image acquisition in these settings is critical; however, endoscope designs typically include
relatively low numerical aperture (0.5 to 0.7) objectives and are not as efficient in the generation
and collection of TPEF.30 As a result, low resolution, noise, and other degradations may mask the
diagnostically useful functional features. Thus, approaches to enhance label-free, TPEF images
could play a transformative role in the successful translation of this technique to improve tissue
metabolic function assessments in the context of diagnosis or treatment.

Traditionally, both standard image processing methods as well as inverse techniques have
been used to enhance the interpretability of TPEF data.31 These methods are most appropriate
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when the forward signal model is known (preferably linear) and when stochasticity is either
additive noise with a known distribution or the data are Poisson with the mean given by the
forward signal model.32 Neither is the case for TPEF sensing in which the interaction of light
with tissue leads to a highly complex forward model and the data are a mix of Poisson statistics
and additive Gaussian noise.33 Motivated by these challenges as well as the recent success of
machine learning methods for addressing a range of image analysis and interpretation problems,
we consider the use of deep-learning methods for enhancing TPEF images to improve the extrac-
tion of metabolically relevant information.

Deep-learning-based methods have already been shown to enhance the quality and resolu-
tion of a wide range of images, including label-free two-photon images.34–38 Convolutional
neural network-based content-aware image restoration (CARE), residual channel attention
networks (RCAN), and super-resolution generative adversarial networks (SRGAN) have been
developed for this purpose.34–36 Although these models have been applied to fluorescence
microscopy data, their use has been limited to exogenously labeled samples, which have
enhanced contrast compared to label-free images. However, recently, Shen et al. demonstrated
the application of a generative adversarial networks (GAN) for the restoration of label-free multi-
modal nonlinear images.37 We note that, in these and related studies, standard metrics, such as
peak SNR (PSNR) and structural similarity index measure (SSIM), are used widely as indicators
of the quality of image restoration, even though they may not always match the human visual
system’s assessment of image quality (measured by mean opinion score).34,35,37,38

Here, we report on the ability of deep-learning based denoising approaches to restore
functional metabolic metrics extracted from label-free TPEF images. Specifically, we consider
the recovery of average and depth dependent variations in the redox ratio (FAD/(NAD(P)H
+FAD)) and mitochondrial clustering extracted from analysis of TPEF images acquired from
freshly excised human cervical epithelia, including healthy and precancerous lesions.
Accurate extraction of the depth-dependent variations in these metrics have been identified as
important diagnostic biomarkers of metabolic function, especially in stratified squamous epithelia,
such as the skin and the cervix, where the proliferative and differentiation state of cells at distinct
depths is expected to vary significantly in healthy tissues.22,25,29,39–41 In addition, we assess
whether PSNR and SSIM improvements are correlated with the restoration of the functional met-
abolic metrics. We consider CARE (a U-Net), GANs (SRGAN), and RCAN networks and assess
nine loss functions, including mean average error (MAE), mean square error (MSE), SSIM, fre-
quency focal loss (FFL), coefficient of variation (R2), redox ratio loss, and three combinations of
these loss functions (see Discussion S1 and Table S2 in the Supplementary Material). We also
examine whether training on FAD or NAD(P)H images impacts the successful restoration of met-
abolic function metrics from the corresponding denoised images.

We find that a novel combination of a one level wavelet transformation and CARE models
trained to denoise each of the four wavelet domain sub-bands yields denoised images that enable
optimized recovery of all metabolic function metrics. Interestingly, we observe that the archi-
tecture most successful in recovering metabolic metrics is not optimal in terms of more standard
metrics used to measure performance, such as PSNR and SSIM. Thus, our results indicate that
deep-learning based denoising algorithms may require distinct multiscale training and testing
approaches for the recovery of functional metrics needed for improved diagnosis, understanding
the drivers of disease, and the development of novel therapeutics, instead of traditional morpho-
logical image quality metrics.

2 Materials and Methods

2.1 Sample Acquisition
All activities pertaining to cervical tissue biopsy handling were done in accordance with
approved Tufts Health Sciences IRB protocol #10283. Patients over the age of 18 with a recent
low-grade squamous intraepithelial lesion (LSIL) or high-grade squamous intraepithelial lesion
(HSIL) pap smear diagnosis undergoing a colposcopy or loop electrosurgical excision procedure
were recruited to the study. Informed consent was acquired from all study subjects before
participation. During the routine procedure, a second biopsy from a colposcopically abnormal
region of the cervix was taken and placed in a custom-built tissue carrier containing keratinocyte
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serum-free media (Lonza). Biopsies were transported via personal vehicle to the Tufts Advanced
Microscopy Imaging Center for imaging. All imaging was conducted within 4 h post-biopsy.
Immediately after imaging, biopsies were fixed in 10% neutral buffered formalin. Biopsies were
returned within 5 business days to the Tufts Medical Center Department of Pathology for
standard histopathological diagnosis.

Patients over the age of 18 undergoing hysterectomies for benign gynecological disease were
also recruited to the study as healthy controls. The only difference between healthy and precan-
cerous biopsy acquisition was in the actual biopsy excision. Healthy biopsies were sampled from
the resected cervix by a pathologist after macroscopic inspection to rule out abnormalities.

2.2 Deep Learning Dataset Details
A total of 151 regions of interest (ROIs) (image stacks) were collected from 54 patients. The
training and validation sets were comprised of 100 ROIs featuring 5 to 50 optical sections (OSs)
per ROI. 75% of the ROIs were randomly selected for training, and the remaining 25% were set
aside as the validation set (1657 training OSs and 554 validation OSs). To prevent data leakage,
training and validation OSs were separated on an ROI basis. The test set featured 51 ROIs (with
10 to 50 OSs per ROI) and was excluded from all training (1018 OSs). For k-fold validation, the
100 training and validation ROIs were shuffled and split again using the same 75:25 ratio for up
to five times to ensure robustness of denoising on a constant test set (see Fig. S5 in the
Supplementary Material). The dataset features images from tissues with three diagnoses: benign,
LSIL, and HSIL. The test set was composed of 25 benign ROIs (49.02%), 14 LSIL ROIs
(27.45%), and 12 HSIL ROIs (23.53%). The training and validation sets were composed of
55 benign ROIs (54.45%), 25 LSIL ROIs (24.75%), and 21 HSIL ROIs (20.79%). Based on
training/validation splitting seed, these values could range from 52% to 57.3% benign, 25.3
to 26.7% LSIL, and 18.7% to 22.7% HSIL in the training set and 48% to 64% benign, 20%
to 24% LSIL, and 16% to 28% HSIL in the validation set. An alternative training scheme was
initially attempted. In this scheme, only benign ROIs were used in training with 112 ROIs of
mixed diagnosis being used in the test set and 39 benign ROIs being used for training. The
training set was later modified as it became evident that training on a mixture of diagnoses
resulted in superior restoration of downstream metrics (Fig. 5).

2.3 Optical Instrumentation and Image Acquisition
Images were collected using a commercially available Leica SP8 inverted microscope system
equipped with an Insight fs laser. Tissue biopsies were placed epithelial side down onto a glass
bottom dish and light was delivered using an epi-illumination scheme. 10 to 60 mW of power
were delivered at the tissue surface with power being varied linearly through the depth of the
tissue during acquisition. The rate of power increase was determined based on achieving minimal
pixel saturation in the most superficial and most basal OSs. The 60 mW threshold was motivated
by the finding that this power equates to a 0.6 minimal erythma dose. The threshold of sunburn
development is a 1.0 minimal erythma dose.42 The maintenance of safe excitation power levels
supports the translational relevance of the present dataset. Images were acquired using bidirec-
tional scanning with a 600 Hz line scan frequency and a 400 ns pixel dwell time. Tissue biopsies
were excited with 755 and 860 nm light. Two hybrid photodetectors were set up to collect the
two-photon autofluorescence signal from NAD(P)H (460� 25 nm) and FAD (525� 25 nm).
Hybrid photodetectors were used in place of photomultiplier tubes due to their increased sensi-
tivity to low intensity fluorescence signal compared with photomultiplier tubes.43,44 Two photo-
multiplier tubes were set up to collect the second harmonic generation signal from collagen fibers
(430� 12 nm) and the red autofluorescence signal (624� 20 nm). Light was delivered and
collected using a 40X/1.1 NA water-immersion objective lens (290 × 290-μm2 field-of-view).
Images were collected through the full thickness of the epithelium using a depth-sampling rate
of 4 μm. Six individual frames were collected at each depth. On average, 3 to 5 ROIs were
sampled from each biopsy.

2.4 Morphological and Functional Metrics
Images were calibrated and processed as described in detail previously to extract images that
represented NAD(P)H and FAD TPEF intensity fluctuations.23–25,45 At each optical depth,
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NAD(P)H and FAD images were used to define a corresponding redox ratio for each pixel of the
field, given as

EQ-TARGET;temp:intralink-;e001;117;712Optical Redox Ratio ðRRÞ ¼ FAD

ðFAD þ NADðPÞHÞ : (1)

From the RR distributions for each OS, we calculated the mean RR and the interquartile
range (IQR) as metrics of the overall oxidation-reduction tissue state and the corresponding
heterogeneity, respectively. The mean and sample variance (variability) of the mean OS RR and
the OS RR IQR for all images in an epithelial stack were calculated to assess the depth-
dependence of these metrics.

NAD(P)H images were analyzed as described previously17,18,21,22 using a Fourier based
approach to extract a value for the parameter β as a metric of the level of mitochondrial frag-
mentation and networking, which also depends highly on the metabolic activity of the tissue.
Briefly, an inverse power law was fit to the power spectral density (PSD) of the two-dimensional
Fourier transform of the cytoplasmic NAD(P)H intensity fluctuation images, given as

EQ-TARGET;temp:intralink-;e002;117;555RðkÞ ¼ Ak−β; (2)

where R is the fit to the PSD, k is the magnitude of the spatial frequency, β is the power law
exponent, and A is a constant. The mean and sample variance of β were assessed as a function of
depth for each image stack.

2.5 Deep Learning Model Description
The basic structure of the CARE network has been described extensively [Fig. S3(a) in the
Supplementary Material].34 The network was implemented through Keras and TensorFlow.46,47

A copy of the CSBDeep repository (available in a Github repository: https://github.com/
CSBDeep/CSBDeep) was locally imported into an anaconda environment.48 The network was
configured to take a 256 × 256 × 1 input image and generate a 256 × 256 × 1 denoised image.
A 40-gigabyte Nvidia Tesla A100 GPU card was used for all training and evaluation. Typically, a
1 × 512 × 512 × z-depth image stack was split into 4 × 256 × 256 × z-depth image patches before
training using a 2 × 2 grid as previously described.49 A starting learning rate of 1 × 10−5 was used
with an Adam optimizer.50 Training was allowed to continue for 300 epochs with a scheduler
reducing the learning rate when the network performance stagnated for more than 20 epochs.
Early stopping was not implemented to allow the model to improve with lower learning rates.
Model improvement was generally observed to stagnate after 75 to 100 epochs with the best
model weights being saved. The loss functions were varied to find the optimal function to improve
the downstream analysis performance. The loss functions used include SSIM loss, R2 loss, FFL,
MAE (L1) loss, MSE (L2) loss, Redox ratio loss, and combined losses, such as a combined
SSIM + L2, SSIM + FFL, SSIM + R2 loss.51 Combined loss functions were weighted using
an α term to control the contribution of SSIM loss and L2, FFL, R2 loss. An α ¼ 0.84 was used
in this study, in line with other studies, to balance the contribution of both loss functions.52 Six
down-sampling and up-sampling layers were generated with the first layer expanding the single-
channel images to 32 channels. Residual connections were used to preserve encoded information
from each down sampled layer and pass it forward to the decoder layers (see Fig. S3 in the
Supplementary Material).

For the wavelet U-Net (WU-net) architecture, four CARE networks, one per sub-band, were
built as described above. A discrete wavelet transform (DWT) was used to decompose a
1 × 256 × 256 optical section patch (OSP) into 1 × 128 × 128 × 4 frequency band images.
The four frequency bands would then be individually input to each CARE network for denoising.
After denoising, an inverse DWT (iDWT) was used to reconstruct the 1 × 256 × 256 OSP
(for greater detail see Fig. S4 in the Supplementary Material).

The training time typically varied from 1 to 2 h, with an evaluation time of ∼24 s per image
stack. For all trained CARE networks, 3D SSIM, PSNR, mean β, β variability, mean RR, RR
variability, RR IQR, and RR IQR variability were analyzed. All final metrics were assessed using
a single frame input, denoised, and ground truth (six frame averaged) images with built-in and
custom MATLAB (MathWorks; Natick, Massachusetts) functions.
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2.6 Statistics
For Figs. 3–5(c) and Table 7, the Fisher r-to-z transformation was used to convert Pearson’s
correlation coefficients (r) to zr values.

53 This transform was calculated as

EQ-TARGET;temp:intralink-;e003;114;700zr ¼
1

2
log

�
1þ r
1 − r

�
: (3)

The zr value, unlike r, belongs to a normal distribution, allowing for the calculation of a
Z-statistic to determine confidence intervals. The test Z-statistic for comparison of zr values to
determine significance was calculated as

EQ-TARGET;temp:intralink-;e004;114;626Ztest ¼
zr1 − zr2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1−3
þ 1

n2−3

q ; (4)

where n1 and n2 are the sample size of r1 and r2, respectively.
54 The Ztest value was then com-

pared to the critical Z-values to determine the significance and p-values using a two-tailed
distribution.

3 Results

3.1 Identification of the Optimal Deep-Learning Model Architecture for
Denoising Label-Free, Optical TPEF Images to Enable Recovery of
Metabolic Function Metrics

Human cervical tissue biopsies were collected from 54 patients and imaged immediately upon
excision, as described in Sec. 2.3 (Fig. 1). Several ROIs were imaged from each biopsy. Multiple
OSs were imaged from each ROI at distinct depths. At each OS, we acquired TPEF images at a
combination of two excitation wavelengths (755 and 860 nm) and three or four emission bands.
Images collected at 755 nm excitation and 435 to 485 nm emission were attributed primarily to
NAD(P)H, whereas images at 860 nm excitation and 500 to 550 nm emission were considered to
contain signal primarily from FAD and FAD bound to lipoamide dehydrogenase. Six frames
were acquired at each wavelength setting. To reduce the contribution of noise, these six frames
were averaged together. The decision to use six frames was made based on data collected from
freshly excised rat oral squamous epithelial tissue. Analysis of this dataset highlighted that
six-frame images conveyed quite accurately the depth dependence of the metabolic function
metrics when compared with the analysis of 32 frame-averages (see Fig. S6 in the Supplementary
Material). Metrics extracted from these averaged images were previously observed to enable
highly sensitive and specific detection of cervical pre-cancer.25 The averaged image was therefore
considered the ground truth used for training and testing the denoising success of single frames.
Single frames, the corresponding denoised images, and ground truth images were analyzed using
established procedures to extract the RR and mitochondrial clustering (β) (Fig. 1). All models
(Fig. 1) were trained and evaluated with identically generated image stacks. Various combina-
tions of model architectures, loss functions, data transformations, and training data combinations,
as outlined in Table 1, were evaluated on 3229 total OSs (1657 training OSs + 554 validation
OSs + 1018 testing OSs) representing healthy/benign cervical tissues as well as precancerous
(low-grade and high grade) squamous intraepithelial lesions (LSIL and HSIL, respectively).

PSNR and SSIM improvements are standard metrics of image visual quality and have been
used in other studies focused on denoising biomedical images as indicators of model
success.34,35,37,38 We aim to assess whether images restored by models that yield optimized
PSNR and SSIM values result in accurate recovery of metabolic metrics (Fig. 2). For evaluation
of the model architecture, loss function, and signal type, only results from models trained on
NAD(P)H data from tissues of known benign status were included.

Leading denoising model architectures were selected for evaluation based on a comprehen-
sive literature search. CARE, RCAN, and SRGAN (Fig. 1) models were trained as described
in Sec. 2.5 and Supplementary Methods: Deep Learning Performance Benchmark in the
Supplementary Material. A representative OS from an LSIL biopsy is shown in Fig. 3(a).
The results shown were generated by models trained using an SSIM +MSE (or L2) loss function.
A summary of all parameters used to generate the figures and tables is listed in Table 2.
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Fig. 1 Summary of deep learning pipeline. Human cervical tissue biopsies are collected and sub-
sequently imaged within 4 h post-excision. Collected biopsies are plated on glass bottom dishes
and imaged using a Leica SP8 commercial microscope. At a minimum, three ROIs are imaged per
sample. At each ROI, multiple OSs are imaged at distinct depths through the epithelium. Depth-
resolved, two-photon OSs are collected using two excitation wavelengths and several bandpass-
filtered detectors. Six images are captured for each excitation/emission wavelength and every OS
at a given depth, z. These six images are averaged together to generate the ground truth image
set. A random image from the six per depth z is selected as the input (RAW) image. The paired
image stacks are provided to the neural network for training and denoising. Four-leading denoising
networks are used in this study to denoise input images: a previously described CARE model, an
RCAN model, an SRGAN model, and a WU-Net.34–36,38 Denoised images and input images are
compared against 6× averaged images to determine 3D PSNR and SSIM along with metabolic
metrics. Scale bar ¼ 25 μm.

Table 1 Summary of all parameters explored during training and optimization of the final model
(highlighted in bold). Results shown below are focused on the optimized model, but all combina-
tions were trained and evaluated.

Model architecture CARE RCAN SRGAN — — —

Loss functions MAE L1 MSE L2 RR loss SSIM + L2 SSIM + FFL SSIM + R2

Signal pre-processing
method

Wavelet
transform

None — — — —

Training data format Healthy data
only

Healthy and
diseased (mix)

— — — —

Training data type NAD(P)H data FAD data — — — —
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Prior to denoising, standard image quality metrics were calculated for input (RAW 1X)
images by comparing the RAW 1X images to ground truth (GT 6X) images. PSNR and
SSIM values were calculated using the GT 6X image as a reference and RAW 1X or denoised
images as the distorted image.55 Across all images, FAD image PSNRwas greater than NAD(P)H
image PSNR (Table 3), even though FAD images featured lower cytoplasmic signal compared
with NAD(P)H images [Fig. 3(a)]. During PSNR calculation, the reduced signal intensity led to
smaller differences between RAW 1X and GT 6X images and yielded a greater observed PSNR
value. This observation was also consistent with the results from other studies.37 SSIM values
were consistent between NAD(P)H and FAD images (Table 3). Corruption of the GT 6X images
for both channels by noise was expected to have similar effects on structural similarity and
calculated SSIM values.

We used 777 and 109 RAW 1X NAD(P)H OSs for training and validation of the models,
respectively. Each 512 × 512 OS was patched into four-256 × 256 image patches (OSP) prior to
training and validation (3108 and 436 OSPs, respectively). All three models were trained before
being evaluated on an independent set of 2343 OSs (9372 OSPs). Metrics of image quality and
metabolic function were calculated as described in Supplementary Methods: Deep Learning
Metrics in the Supplementary Material and Sec. 2.4.

CARE-generated image stacks demonstrated higher PSNR for FAD images and higher
SSIM for both NAD(P)H and FAD images compared with restored-image stacks generated by
RCAN and SRGAN. Across all test set images, standard metrics of image quality (Table 3)
and visual inspection [Fig. 3(b)] suggested the RCAN- and CARE-denoised images had
similar image quality. Across the entire test set, we observed that SRGAN failed to restore
cellular features in the RAW 1X that are found within the GT 6X images [Fig. 3(b)]
and underperformed even relative to RAW 1X images in standard image quality metrics
(Table 3). Perceptual loss was believed to impact content restoration in the SRGAN
architecture.35 Inputs for perceptual loss calculations have been shown to impact significantly
the SRGAN performance and were likely the cause of SRGAN’s poor recovery of the image
quality.35

0   20 40   60 80 100 120
0

0.5

1

1.5

2

2.5

Raw 1X Restored GT 6X

Depth

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

R
R

0   20 40   60 80 100 120

0

0.05

0.1

0.15

0.2

0.25

0.3

0   20 40   60 80 100 120

DepthRedox Ratio

#
 o

f 
P

ix
e

ls
RR =

FAD

NAD(P)H + FAD

Depth

Mean RR

RR IQR

R
R

 I
Q

R
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dependent trends across the multiple cell layers of the cervical squamous epithelium are assessed
for input images (RAW 1X), denoised images (restored) and six-frame averaged, ground truth
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To assess the restoration of metabolic activity, depth-dependent optical RR and mitochon-
drial clustering (β) values were calculated for the restored images, input (RAW 1X) images, and
ground truth (GT 6X) images (Fig. 2). Perturbations in metric values are reflective of changes in
the metabolic functional state of the different cell layers in tissue.21,22,24,25,39,40 Pearson correlation
coefficient values were calculated between the metabolic function metrics from the GT 6X and
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Fig. 3 (a) A 290 × 290 μm2 field of view from an LSIL cervical tissue biopsy. NAD(P)H and FAD
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the three trained models (CARE, RCAN, and SRGAN). Scale bar ¼ 50 μm. (b) A 44.2 × 44.2 μm2

field of view (white square in a) of three cells. NAD(P)H and FAD images are shown for all models
and the input and ground truth images. Scale bar ¼ 10 μm. (c) Bar plots of the coefficient of deter-
mination of all downstream metrics for images denoised by all models and RAW 1X versus the GT
6X image. Fisher r to z transformation was used to measure significance. *p < 0.05 and **p < 0.01.
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either the RAW 1X or restored images. Statistical significance was derived from Fisher-r-to-z
transformation for all metrics of interest. Interestingly, analysis of the RAW 1X images led to
very high correlations with metrics of RR intra- and inter-field variability compared with GT 6X
images. We hypothesized that similar sources of noise in both FAD and NAD(P)H images led to
this outcome because RR metrics were calculated using a ratio of FAD and NAD(P)H intensity
measurements. It was for this reason that, in this initial comparison, we trained models on
NAD(P)H images and applied the weights to NAD(P)H and FAD images. RCAN-generated
images demonstrated a statistically significant recovery of β variability (σ2 (β)) [Fig. 3(c)].
However, recovery of mean RR variability by this model was poor [Fig. 3(c)]. CARE-denoised
images, overall, featured higher (albeit not statistically significant) correlations with RR metrics
compared with all other models [Fig. 3(c)]. Thus, the U-Net architecture of CARE was utilized
for all further optimization steps.

3.2 Multiscale Image Transformation Enhances Quantification of Mitochondrial
Clustering

Although denoising improved the restoration of σ2 (β), the mean β (β) values of the denoised
images were not well correlated with the values from the GT 6X images. We considered DWT to
enhance high spatial frequency restoration necessary for β metric calculations. A single level
DWT transformed each image into four sub-band images: a coarser scale approximation and
three detail images, one horizontal, one vertical, and one diagonal.56 To generate the three sub-
band images, a basis function, called a mother wavelet, was convolved along both dimensions of
the original image, and an associated scaling function was used to generate the coarser approxi-
mation. During standard wavelet-based denoising, thresholds are used to remove noise from
wavelet-transformed detail images, before implementing an inverse-transform to recover the
restored image.57,58 The DWT has been shown to be advantageous compared with traditional
low-pass filtering as the pixel-by-pixel convolution with the mother wavelet preserves correla-
tions of high frequency features. In this study, we used deep learning models trained on each of
the transformed images to adaptively learn the best threshold for denoising of low frequencies

Table 2 Summary of parameters used to generate Figs. 3–6 and Tables 3–6. Parameters are
bolded when all combinations from Table 1 are used.

Model
architecture Loss function

Preprocessing
method

Training data
format

Training data
type

Fig. 3/Table 3 All SSIM + L2 loss None Healthy only NAD(P)H

Fig. 4/Table 4 CARE SSIM + R2 All Healthy only NAD(P)H

Fig. 5/Table 5 CARE SSIM + R2 Wavelet transform All All

Fig. 6/Table 6 CARE SSIM + R2 MSE MAE All All All

Table 3 Summary of standard metrics of image quality for RAW 1X images and denoised images
generated from various model architectures. Values are reported for mean performance (± stan-
dard deviation) across all test set ROIs.

NAD(P)H images FAD images

Model name PSNR (dB) ↑ SSIM ↑ PSNR (dB) ↑ SSIM ↑

RAW 1X 19.2 ± 2.8 0.48 ± 0.09 23.1 ± 5.5 0.49 ± 0.13

CARE 22.7 ± 2.9 0.63 ± 0.08 26.8 ± 3.1 0.60 ± 0.07

RCAN 23.1 ± 1.7 0.62 ± 0.08 24.3 ± 2.0 0.51 ± 0.12

SRGAN 19.6 ± 1.1 0.31 ± 0.08 20.2 ± 1.5 0.25 ± 0.07

Note: bold values indicate the greatest metric performance.
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Fig. 4 (a) A 290 × 290 μm2 field of view from an LSIL cervical tissue biopsy. NAD(P)H and FAD
images for the same region are shown along with the corresponding denoised image from
each signal pre-processing method utilized (single frame image and wavelet transformation).
Scale bar ¼ 50 μm. (b) A 44.2 × 44.2 μm2 field of view (white square in a) of three cells.
NAD(P)H and FAD images are shown for all models based on the corresponding signal pre-process-
ing method used during training and the input and ground truth images. Scale bar ¼ 10 μm. (c) Bar
plots of the coefficient of determination of all downstream metrics for images denoised by all models
trained based on the corresponding signal pre-processing method used during training and RAW 1X
versus the GT 6X image. Fisher r to z transformation was used to measure significance. *p < 0.05
and **p < 0.01.
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(approximation) and high frequencies (details) rather than relying on arbitrary thresholding for
denoising (see Discussion S2 in the Supplementary Material).59 As with any DWT-denoising
model, the selection of the correct mother wavelet played a significant role in model perfor-
mance. For all models, mother wavelets from the biorthogonal, coiflets, and Daubechies families
were evaluated. These mother wavelet families were selected due to their frequent use in denois-
ing tasks.60 Multiple models were trained and evaluated, with biorthogonal 1.1 yielding the
highest recovery of metabolic metrics (data not shown). As such, biorthogonal 1.1 was used
for all subsequent model optimization.

The application of DWT before training four CARE models and iDWT after evaluation
yielded images with improved FAD and NAD(P)H PSNR with slight decreases in SSIM
[Fig. 4(a)]. Across the entire test set, NAD(P)H PSNR improved using WU-Net, whereas
FAD PSNR and SSIM both decreased compared with CARE (Table 4). All loss functions were
evaluated for WU-Net with SSIM + R2 loss (results shown in Fig. 4) and SSIM + FFL loss (see
Table S4 in the Supplementary Material) yielding the best overall performance. WU-Net
denoised NAD(P)H images extracted similar cellular structures as the CARE derived images
but featured a lower background signal and small fluctuations in cytoplasmic signal, leading
to the observed higher PSNR values [Fig. 4(b)]. WU-Net led to statistically significant improve-
ments in the correlation of extracted σ2 (β) with GT 6X images relative to the analysis of the
RAW 1X images. Extracted β values were also better correlated to GT 6X images, albeit
improvements were not significant.

Comparing WU-Net with an identical CARE model, we observed that WU-net achieved an
improved performance on β metrics while maintaining the recovery of RR metrics [Fig. 4(c)]. The
overall improved β restoration suggested that WU-Net was better able to capture true signals from
noise in the high spatial frequencies found in NAD(P)H images. WU-Net further preserved the
relationship between NAD(P)H and FAD channel images, enabling high correlations for RR
metrics. Due to the observed performance of WU-Net for β metric recovery, we explored further
optimization of WU-Net, which could be achieved by varying the training datasets.

3.3 Selection of Training Data
Initial model development focused on a limited training set of cervical tissues of known benign
status (healthy). Benign tissue samples comprise cell layers with consistent changes in differ-
entiation as a function of depth among image stacks. Training on such images was expected to
enable the model to learn characteristics of noise without having to account for feature hetero-
geneity found in pre-cancerous cervical tissue samples. We further sought to assess whether
training on a data set that was expanded to include image stacks from tissues with both benign
and pre-cancerous lesions (Mix) impacted performance. In this new training set, 1657 and 554
RAW 1X NAD(P)H OSs (6628 and 2216 OSPs) were used for training and validation of the
models, respectively. An independent test set of 1018 OSs (4072 OSPs) was used to evaluate
the model performance after training.

An additional consideration that we explored was the impact of the source of image contrast,
i.e., NAD(P)H or FAD, used for training. NAD(P)H images featured greater structural informa-
tion compared with FAD images, and they were utilized in our analysis for the extraction of

Table 4 Summary of standard metrics of image quality for RAW 1X images and denoised images
generated after signal pre-processing. Values are reported for mean performance (± standard
deviation) across all test set ROIs.

NAD(P)H images FAD images

Model name PSNR (dB) ↑ SSIM ↑ PSNR (dB) ↑ SSIM ↑

RAW 1X 19.2 ± 2.8 0.48 ± 0.09 23.1 ± 5.5 0.49 ± 0.13

CARE 22.8 ± 3.0 0.63 ± 0.08 27.2 ± 3.7 0.62 ± 0.07

Wavelet 23.6 ± 2.3 0.63 ± 0.08 26.1 ± 2.3 0.57 ± 0.09

Note: bold values indicate the greatest metric performance.
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Fig. 5 (a) A 290 × 290 μm2 field of view from an LSIL cervical tissue biopsy. NAD(P)H and FAD
images for the same region are shown along with the corresponding denoised image from each
data type used as training data for the WU-Net model (NAD(P)H healthy only-, NAD(P)H mixed
diagnosis-, and FAD mixed diagnosis-wavelet transformed images). All models were equally
constructed with only the data type and diagnosis type varied. Scale bar ¼ 50 μm. (b) A 44.2 ×
44.2 μm2 field of view (white square in a) of three cells. NAD(P)H and FAD images are shown for all
data types used during training and the input and ground truth images. Scale bar ¼ 10 μm. (c) Bar
plots of the coefficient of determination of all downstream metrics for images denoised by models
trained using varying data types and diagnosis types and RAW 1X versus the GT 6X image. Fisher
r to z transformation was used to measure significance. *p < 0.05 and **p < 0.01.
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mitochondrial clustering-focused metabolic function metrics (Figs. 3–5). Thus, training was
focused on NAD(P)H images, and optimized model weights from NAD(P)H image training were
used to denoise FAD images for extraction of RR-based metrics. However, because similar noise
characteristics were assumed to be present in both RAW 1X NAD(P)H and FAD images, we
sought to confirm that training on NAD(P)H images was optimal. Thus, we used FAD images
to train WU-Net models using the same hyperparameters and settings as the ones used when
NAD(P)H images were used. Post-training, NAD(P)H images were denoised using the weights
of the FAD image trained model to extract RR and mitochondrial clustering-based metrics.

The use of training sets with mixed diagnosis images resulted in minimal differences in the
denoised images when compared with training just on healthy sample images [Fig. 5(a)]. PSNR
and SSIM values for images were observed to be nearly identical because of these insignificant
differences (Table 5). Both models led to denoised images with consistent cell boundary and
intracellular structures given the same RAW 1X images [Fig. 5(b)] and had similar levels of resto-
ration of downstream metrics, with the mixed diagnosis dataset leading to slightly improved
correlations in most cases [Fig. 5(c)]. The increase in correlation could be attributed to the large
training set available for a mixture of diagnoses compared with only training on healthy data.

An identical model was trained using the FAD image data from the mixed diagnosis dataset.
The denoised images from the FAD-trained model looked like those from the corresponding
NAD(P)H-trained model [Figs. 5(a) and 5(b)]; however, the standard metrics of image quality
were slightly lower. Images denoised by the FAD-trained model demonstrated a higher back-
ground signal compared with images denoised by NAD(P)H-trained models [Fig. 5(b)].
However, despite FAD images lacking much of the structural and morphological information
of their NAD(P)H counterparts, their use in training led to further improvements in β metric
recovery and mean RR restoration from the RAW 1X images [Fig. 5(c)]. We hypothesize that
high frequency information in the FAD images originated primarily from noise in comparison
with NAD(P)H images. As a result of the high frequency information containing primarily noise,
the model improved in its learning of noise characteristics in the images, enabling improved
denoising and recovery of metrics of metabolic activity [Fig. 5(c)].

3.4 Summary of Final Model Performance
Across all models, image quality improved after denoising based on PSNR and SSIM (Table 6).
Based on standard image quality metrics of all models discussed in this study, it could be
assumed that models trained using NAD(P)H images and the CARE architecture with standard
loss functions of MAE and MSE would perform best at the restoration of downstream metrics
[Fig. 6(a)]. CARE models trained with MAE and MSE loss functions both demonstrated sta-
tistically significant improvement in denoised FAD and NAD(P)H image PSNR and SSIM
(p < 0.001). Comparatively, wavelet-transformed-FAD images denoised using WU-Net with
SSIM + R2 loss had poorer standard metric performance (Table 6). Images restored with this
model did not achieve statistically significant improvement of FAD image PSNR and SSIM
[Fig. 6(a)]. As PSNR and SSIM are commonly used as indicators of model performance, it was

Table 5 Summary of standard metrics of image quality for RAW 1X images and denoised images
generated after training models on various data types. Values are reported for mean performance
(± standard deviation) across all test set ROIs.

NAD(P)H images FAD images

Model name PSNR (dB) ↑ SSIM ↑ PSNR (dB) ↑ SSIM ↑

RAW 1X 19.2 ± 2.8 0.48 ± 0.09 23.1 ± 5.5 0.49 ± 0.13

Healthy 23.6 ± 2.3 0.63 ± 0.08 26.1 ± 2.3 0.57 ± 0.09

Mixed NAD(P)H 23.4 ± 2.5 0.63 ± 0.08 26.3 ± 3.1 0.57 ± 0.08

Mixed FAD 23.5 ± 2.6 0.62 ± 0.09 24.8 ± 3.7 0.52 ± 0.08

Note: bold values indicate the greatest metric performance.
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expected that improvements in these metrics would correspond to better recovery of downstream
metabolic metrics. However, the WU-net model trained on mixed diagnosis, FAD images led to
denoised images with extracted metabolic metrics that were consistently correlated with the met-
rics extracted from GT 6X images [Fig. 6(b)]. The final correlations of the models shown in
Fig. 6 are reported in Table 7.
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Fig. 6 (a) Box and whisker plots of PSNR and SSIM of 40 test set ROIs. Denoised images dem-
onstrated an improvement in standard metrics of image quality. (b) Bar plots of the coefficient of
determination of all downstreammetrics for images denoised by models trained using various data
types, loss functions, and diagnosis types versus the GT 6X image. A one-way ANOVA with Tukey
Kramer post-hoc test was used to measure significance of PSNR and SSIM. Fisher r to z trans-
formation was used to measure significance of improvement in metabolic metric correlations
*p < 0.05, **p < 0.01, and ***p < 0.001.

Table 6 Summary of standard metrics of image quality (PSNR and SSIM) for RAW 1X images,
standard implementation of CARE, and the best performing model from this study. Values are
reported for mean performance (± standard deviation).

NAD(P)H images FAD images

Model name PSNR (dB) ↑ SSIM ↑ PSNR (dB) ↑ SSIM ↑

RAW 1X 19.2 ± 2.8 0.48 ± 0.09 23.1 ± 5.5 0.49 ± 0.13

Healthy NAD(P)H CARE MAE 23.6 ± 2.3 0.63 ± 0.08 26.9 ± 2.7 0.59 ± 0.08

Healthy NAD(P)H CARE MSE 23.7 ± 2.6 0.64 ± 0.08 26.8 ± 2.7 0.59 ± 0.08

Mixed FAD CARE SSIM + R2 wavelet transform 23.5 ± 2.6 0.62 ± 0.09 24.8 ± 3.7 0.52 ± 0.08

Note: bold values indicate the greatest metric performance.
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4 Discussion
Tissue morphological and functional metrics extracted from label-free, two-photon microscopy
(2PM) images could provide significant clinical utility for disease diagnosis.25 Neural networks
will likely play a critical role in enabling the accurate extraction of such metrics from images that
are likely to be acquired in an in vivo imaging setting. Previous studies by multiple groups have
demonstrated that deep learning-based denoising models can be used to improve the PSNR and
SSIM of fluorescence images acquired using 2PM.34,36,37 Here, we demonstrated that PSNR and
SSIM, although relevant in the assessment of image quality, were not representative of functional
metric recovery needed for clinical utility (Fig. 6).

Different algorithms have been reported for denoising of fluorescence images; however,
only Shen et al. reported a network used for denoising of label-free autofluorescence
images.37 In this study, a modified enhanced SRGAN model was used to denoise ex-vivo,
multi-modal label-free images of human ovarian cancer tissue sections. 37 The trained GAN dem-
onstrated a 4.5 dB improvement in PSNR and a 79% improvement in SSIM after denoising.37 In
comparison, we demonstrated 4.3 and 2.7 dB improvements in PSNR and 30% and 6% improve-
ments in SSIM for NAD(P)H and FAD images, respectively [Fig. 6(a)]. Although improvement
in image PSNR and SSIM were lower, RAW 1X and denoised images in this study have higher
PSNR and SSIM for all images, suggesting that the differences in enhancement are due to limits
in image improvement and not a lack of network performance (Table 6).

We further observed that GAN models did not perform well on our dataset. GANs aim to
emulate characteristics of high SNR images in low SNR images through an adversarial training
process.35 To improve the image quality, GANs learn the manifold of high SNR data, which is
assumed to be composed of images that have similar image quality metrics.61 Thus, it is impor-
tant for image quality to be consistent across all high SNR images. High-SNR images from a
single depth in a thin OS, such as those used to train the enhanced SRGAN model in Shen et al.,
have similar image quality for all ground truth images, leading to improved GAN performance.37

In our study, bulk tissues were imaged at multiple depths, leading to inconsistent image quality in
our ground truth images as SNR is known to change as a function of depth. As such, we hypoth-
esize that the GAN model implemented in this study failed to learn the manifold of high SNR
images and improve our images, whereas the enhanced SRGAN model implemented by Shen
et al. succeeded.

Although multiple studies demonstrate models capable of improving PSNR and SSIM, the
assessment of morphofunctional metrics of metabolic activity after denoising has not been exam-
ined previously.34–38 Here, we calculate restored image PSNR and SSIM along with metabolic
metric recovery and observe that higher PSNR and SSIM values did not ensure the greatest
restoration of RR and β metrics (Fig. 6). Although PSNR and SSIM values between models
are observed to be within <5% of each other (Tables 3–5), many studies indicate a maximum
improvement of PSNR and SSIM values as indicators of model performance.34–38 In this study,
we observe that models with optimal PSNR and SSIM values did not yield the greatest recovery

Table 7 Correlation values of models in Fig. 6. Fisher r to z transformation was used to measure
significance.

Downstream metrics

Final model
Mean
RR ↑

σ2

(mean RR) ↑
Mean

RR IQR ↑
σ2 (mean
RR IQR) ↑

Mean
β ↑ σ2 (mean β) ↑

RAW 1X 0.71 0.84 0.87 0.57 0.40 0.33

Healthy NAD(P)H CARE MAE 0.82 0.89 0.85 0.70 0.57 0.78*

Healthy NAD(P)H CARE MSE 0.87 0.84 0.84 0.66 0.53 0.81*

Mixed FAD CARE SSIM +
R2 wavelet transform

0.96* 0.84 0.87 0.70 0.68 0.90*

Note: bold values indicate the greatest metric performance.
*p < 0.01.
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of metabolic metrics. Together, PSNR and SSIM are not well suited for the assessment of model
performance on label-free 2PM images, necessitating further validation using metrics of
metabolic activity.

The application of denoising algorithms on label-free 2PM datasets to date has been limited
by the lack of available large clinical datasets.37,62 Deep learning models have shown promise
with small datasets (Shen et al. used only 24 paired images) in image restoration; however, larger
datasets are needed for consistent reconstruction of high-SNR images.37,61 Here, we present a
denoising network trained on a larger training set of 1657 OSs (6628 OSPs) and evaluate on an
independent test set of 1018 OSs (4072 OSPs).

Using CARE, we observed improvements in image quality based on standard metrics
(Table 3). However, the pre-packaged, standard models showed poor recovery of β metrics.
Custom-loss functions improved metabolic metric recovery by penalizing models for both failing
to generate similar images and reducing pixel correlation (see Tables S2 and S3 in the
Supplementary Material). More interestingly, we observed that using DWT to separate the
frequency information in an image before training independent models (WU-Net) produced
images that had high metabolic metric correlations with GT 6X metrics [Fig. 4(c)]. By training
on independent frequency-band images, the models were forced to learn the noise characteristics
of different frequency bands without convolving the bands.59

A key advantage of WU-Net, in comparison with identically trained (non-wavelet) U-Nets,
was the denoising of higher frequencies at which noise was expected to be dominant. Denoising
of high frequency noise led to enhanced recovery of β metrics as WU-Net was more consistent in
reducing noise in these frequencies (see Discussion S3 and Fig. S2 in the Supplementary
Material). WU-Net led to a statistically significant decrease in high frequencies compared with
a comparable CARE model (see Fig. S2 in the Supplementary Material). Further, the incorpo-
ration of SSIM + R2 as a loss function promoted the restoration of similar frequencies from the
GT 6X image in the denoised image while minimizing the loss of correlation between pixels.
Further, we observed that models trained on FAD images outperform their NAD(P)H counter-
parts [Fig. 5(c)]. To explain this phenomenon, we examined the correlation of optical RR metrics
between RAW 1X images and GT 6X images. RR metrics from RAW 1X images correlated well
with RR metrics from GT 6X images, suggesting that the noise characteristics in FAD and
NAD(P)H images are similar. However, as the FAD images contain less signal compared with
their NAD(P)H paired images, high-frequency contributions are mostly noise in the RAW 1X
FAD images. Thus, training on FAD images likely improved the model’s learning of noise char-
acteristics. This led to an improvement in downstream metric recovery and the translation of
model weights to NAD(P)H images. Additional models were trained on both FAD and
NAD(P)H images to see if the performance could be improved. Despite the increase in training
data, the recovery of downstream metrics did not improve, and in most cases, the performance
was lower (data not shown). It is hypothesized that differences in signal contribution in FAD and
NAD(P)H images are responsible for the reduction in performance that we observe; however,
further hyperparameter optimization is needed to confirm this hypothesis.

WU-Net with a custom loss (SSIM + R2) function and training on FAD data demonstrates
improved restoration of most metrics of metabolic activity from label-free, 2PM images (Table 7);
however, further improvements in the restoration of β are desired. One potential method of
improving β restoration is a loss function that minimizes the differences in the PSDmaps of paired
images that are used for β calculation. A challenge of such a method is the computational time
required for generating these maps.22,24,25 Future studies may examine simpler predictors of
mitochondrial clustering using a modified GAN network, in which the discriminator network
estimates β from the input images and optimizes the generator to achieve accurate β metric recov-
ery. Further, the optimization of the RR loss function is still needed. In this study, the loss function
was set to calculate RR based on unmasked images due to the need for a differentiable loss func-
tion for back-propagation of model weights. The use of true RR images for loss calculation would
require the development of a non-differentiable optimization method, which was beyond the scope
of this study. Future work will explore the development of such a loss function for improved
performance.

In this study, we specifically focused on the restoration of morphological and functional
metrics from label-free, 2PM images of human cervical tissue, relying on a single denoising
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algorithm. Future studies will examine the application of the trained denoising model and model
architecture on datasets acquired from different microscope systems, objective lenses, and tissue
types. Validation of the model on these datasets will support the broad use of WU-Net for denois-
ing label-free 2PM images. The successful implementation of pre-trained models on other
datasets will reduce the need for large clinical datasets.37,62 As the model advances, improve-
ments in ground truth data collection are needed. Ground truth data used in this study contain
noise and therefore are not truly representative of mitochondrial signal. The averaging of six-
frames was the limit to what we could represent with our collected data, but future studies will
aim to assess what further enhancements can be achieved as it is important that we acquire
images as fast as possible in the clinic. Alternative techniques for image acquisition such as
a slower line scan speed could be utilized to improve the ground truth image quality.

In summary, we demonstrated that maximizing standard metrics of image quality (PSNR
and SSIM) did not necessarily lead to improved recovery of functional tissue metrics, especially
ones associated with mitochondrial organization (Table 7). Using WU-Net with a custom loss
function, we demonstrated improved recovery of functional metrics of metabolic activity, even
though PSNR and SSIM metrics were not optimal. Results from this study support the appli-
cation of deep learning algorithms for the restoration of RR and β metrics from low-SNR 2PM
images. As more data become available from varying microscope systems, objective lenses, and
tissue types, a more robust algorithm could be generated for rapid image collection and clas-
sification, eventually improving patient health during in vivo image collection.
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