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ABSTRACT. Significance: Early detection of melanoma is crucial for improving patient out-
comes, and dermoscopy is a critical tool for this purpose. However, hair presence
in dermoscopic images can obscure important features, complicating the diagnostic
process. Enhancing image clarity by removing hair without compromising lesion
integrity can significantly aid dermatologists in accurate melanoma detection.

Aim: We aim to develop a novel synthetic hair dermoscopic image dataset and a
deep learning model specifically designed for hair removal in melanoma dermo-
scopy images.

Approach: To address the challenge of hair in dermoscopic images, we created a
comprehensive synthetic hair dataset that simulates various hair types and dimen-
sions over melanoma lesions. We then designed a convolutional neural network
(CNN)-based model that focuses on effective hair removal while preserving the
integrity of the melanoma lesions.

Results: The CNN-based model demonstrated significant improvements in the
clarity and diagnostic utility of dermoscopic images. The enhanced images provided
by our model offer a valuable tool for the dermatological community, aiding in more
accurate and efficient melanoma detection.

Conclusions: The introduction of our synthetic hair dermoscopic image dataset and
CNN-based model represents a significant advancement in medical image analysis
for melanoma detection. By effectively removing hair from dermoscopic images
while preserving lesion details, our approach enhances diagnostic accuracy and
supports early melanoma detection efforts.
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1 Introduction
The early detection and diagnosis of melanoma, a skin cancer originating from melanocytes,
remains a pivotal challenge in dermatology.1 Melanoma is treatable in its early stages but meta-
stasizes to other parts of the body in later stages, making it one of the deadliest forms of skin
cancer.2 The incidence of melanoma has been rising steadily over the past decades, becoming a
significant public health concern globally.3 The gold standard for diagnosing melanoma is histo-
pathology which is performed on an excised sample of the lesion. Dermoscopy, a non-invasive
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skin examination technique, is the established imaging tool in the early detection of melanoma,
providing dermatologists with enhanced visualization of subsurface skin structures that are not
visible to the naked eye. This technique significantly increases the accuracy of melanoma diag-
noses by enabling the detailed observation of characteristic features of melanoma lesions.4

However, the presence of hair in dermoscopic images presents a considerable challenge, often
obscuring critical details of the skin lesions and potentially leading to misdiagnosis or decreasing
the confidence of dermatologists in their diagnosis.5

The intersection of medical imaging and computational technology, particularly through the
application of deep learning algorithms, offers an opportunity to address the challenges posed by
hair in dermoscopic images. Deep learning has shown exceptional progress in various tasks of
image analysis, including recognition, classification, and segmentation. In dermatology, deep
learning models have been developed for the automated analysis of dermoscopic images, aiming
to enhance the accuracy and efficiency of melanoma detection.6

In the following, we summarize the state of the art in hair removal techniques for dermo-
scopic images, highlighting significant contributions and their impact on the field. Several meth-
ods have been proposed and developed over the years to address this challenge. Lee et al.7

introduced Dullrazor, a pioneering software approach that employs morphological operations
and median filtering to remove hair artifacts from images. This method has been widely used
due to its effectiveness at the time in preserving important image features. Xie et al.8 proposed a
partial differential equation (PDE)-based method for repairing hair-occluded information in der-
moscopy images, focusing on mathematical modeling to reconstruct occluded areas and improve
image quality. Abbas et al.9 conducted a comparative study of different hair removal methods,
evaluating their performance and providing insights into the strengths and weaknesses of each
technique. This study highlighted the importance of selecting appropriate methods for different
types of dermoscopy images. Huang et al.10 developed a robust hair segmentation and removal
approach using edge detection and region-growing techniques, which proved effective in clinical
settings. Bibiloni et al.11 presented a novel method utilizing soft color morphology for hair
removal in dermoscopic images. Deep learning techniques have become state-of-the-art for vari-
ous computer vision tasks, including image restoration. These methods learn network parameters
to reconstruct images from training data comprising clean and corrupted image pairs. Xie et al.12

combined sparse coding with pre-trained deep networks for image denoising and blind inpaint-
ing, achieving notable results. Vincent et al.13 introduced a stack of denoising autoencoders for
image denoising, applied recursively to intermediate representations to initialize deep networks.
Overall, the development of these methods underscores the evolving landscape of hair removal
techniques in dermoscopic image processing. The diversity in skin tones and hair colors can
present different challenges in the hair removal process, and it is important to ensure that the
model performs consistently across these variations. Dark hair on light skin typically has high
contrast, making it easier for any model and classical image processing techniques to detect and
remove. However, lighter hair (blonde, gray) or hair on light and darker skin presents a challenge
due to lower contrast, which can complicate segmentation and removal.

Our work focuses on two main innovations: the creation of a diverse synthetic hair der-
moscopic image benchmark dataset and the development of a deep learning model specifically
designed for the removal of hair from dermoscopic images of melanoma lesions. The synthetic
hair dataset aims to simulate a wide range of hair types, colors, and densities overlaying mela-
noma lesions, providing a novel resource for training and evaluating hair removal algorithms.
The creation of a synthetic hair image benchmark dataset addresses the need for standardized
and diverse resources to facilitate the advancement of hair removal techniques. Furthermore,
the development of a deep learning model for hair removal directly confronts the challenge of
hair occlusion, aiming to improve the clarity and diagnostic utility of dermoscopic images,
thereby enhancing the accuracy of melanoma diagnoses. The dataset creation involved a com-
bination of algorithmic frameworks for hair mask generation and hair simulation, ensuring a
diverse and realistic representation of hair artifacts in dermoscopic images. The deep learning
model, leveraging convolutional neural networks (CNNs), was specifically tailored for hair
removal in dermoscopic images. The model’s architecture was designed to balance the need
for effective hair removal with the preservation of crucial lesion details, critical for accurate
melanoma diagnosis.
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The use of a synthetic dataset is driven by the constraint that there are currently no available
dermoscopic datasets of sufficient size that include images both with hair and with the hair physi-
cally removed (e.g., by shaving). Because our approach requires ground-truth images without
hair for accurate training and evaluation, a synthetic dataset is the most viable option. The syn-
thetic dataset allows for the generation of paired images (with and without hair) under controlled
conditions, which is essential for training the deep learning model effectively. Furthermore, this
approach allows for the simulation of a wide range of hair conditions and patterns, ensuring that
the model can generalize well to diverse clinical scenarios.

The synthetic dataset allows us to precisely control the characteristics of the hair (such as
length, thickness, and density), which would be difficult to standardize across real-world data-
sets. This control enables a more systematic evaluation of the model’s ability to remove hair
artifacts under varying conditions. Synthetic data enables us to simulate challenging clinical
conditions, such as unusual hair patterns or dense hair coverage, which may be less frequently
encountered in real-world datasets. This ensures that the model is robust across a wide range of
scenarios, including those that are less common but clinically relevant.

Thus, our paper addresses a significant challenge in the analysis of dermoscopic images and
aims to enhance the precision of melanoma diagnosis through the creation of a synthetic hair
image benchmark dataset and the development of a deep learning model for hair removal. The
tool is intended for use in specific cases in which hair poses a challenge to melanoma detection.
As only publically available datasets have been utilized, the patient privacy is maintained in this
approach.

2 Methods

2.1 Creation of Synthetic Hair Dataset
In the first step, we developed the synthetic hair image benchmark dataset, designed to simulate a
broad spectrum of hair types, colors, and densities overlaying melanoma lesions. The dataset’s
creation involved a structured algorithmic framework that combined image processing tech-
niques in MATLAB with advanced simulation methods in Python.

We utilized MATLAB’s extensive image processing capabilities to generate hair masks.14

An algorithm was developed to create detailed hair masks that accurately represent various hair
characteristics, including thickness, length, and number of hairs. A custom script generates these
masks by setting parameters such as the number of hair strands and their dimensions, using bézier
curves15 to simulate natural hair curvature. The script introduces variability and realism through
specific algorithms, including anti-aliasing techniques16 to smooth hair edges and Gaussian
blur17 to enhance the hair mask quality, mimicking real dermoscopic images.

These masks served as templates for the subsequent simulation of hair on dermoscopic
images of skin lesions. The flowchart in Fig. 1 illustrates the entire process of generating syn-
thetic hair, from the initial creation of hair masks in MATLAB to their application in simulating
realistic hair patterns on images of skin lesions.

Following the creation of hair masks, Python’s machine learning libraries, specifically
PyTorch, torchvision, and OpenCV, were employed to simulate hair on dermoscopic images
based on the previously generated masks. We utilized a pre-trained model by Attia et al.18

Our process unfolds in three primary steps: data preparation, hair synthesis, and hair merging.
In data preparation, 1.064 hair-free dermoscopic images are manually selected, with hair masks
applied to delineate areas for synthetic hair application, ensuring the integrity of underlying skin
details. During hair synthesis, the MATLAB-generated masks guide the Generative Adversarial
Network (GAN) in accurately placing synthetic hair on marked regions of the images. The hair
merging stage then seamlessly integrates synthetic hair into the original images, preserving the
diagnostic features of the skin lesions.18

The process for creating a synthetic hair dataset in dermoscopic images follows several
methodical steps within MATLAB. The process begins with creating an empty mask to act
as the canvas for drawing the synthetic hair strands. This mask is a matrix initialized to zeros,
which will be populated with the pixel values representing the hairs. Afterward, parameters such
as the number of hairs, their length, and thickness are predefined. These parameters control the
properties of the generated hairs, ensuring variability to mimic real hair in dermoscopic images.
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Anti-aliasing is applied to the hair strands as they are drawn to prevent jagged edges, which could
otherwise occur due to pixelation in the digital environment. This ensures that the strands look
smooth and realistic. A Bézier curve is used to create each hair strand. The Bézier curve is gen-
erated based on four control points, and a parameter that moves the point along the curve, giving
each strand a natural curve shape. Gaussian blur is applied to the hair strands to simulate the
softness of natural hairs, ensuring the edges are not overly sharp and mimic real-world optical
effects, especially in out-of-focus areas. After applying Gaussian blur and completing the

Fig. 1 Process flowchart for creating synthetic hair images based on Bézier curve hair masks and
a pre-trained cGAN. (a) blank hair mask, (b) ground-truth images, (c) focus areas of the model for
the hair generation, (d) hair mask, (e) hair mask on the ground-truth images, and (f) generated
synthetic hair image.
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drawing of all hair strands, the final hair mask is saved as a digital image. This mask can be
overlaid onto dermoscopic images for analysis or further processing.

This application of pre-trained models aims to mimic the appearance of real hair, including
its texture, color variation, and natural randomness, to achieve high realism in the synthetic
images, ensuring they closely resemble actual dermoscopic images with hair artifacts.

2.2 Development of Deep Learning Model for Hair Removal
The developed CNN architecture is tailored specifically for the task of hair removal in dermo-
scopic images. The model was structured in MATLAB to balance the two objectives of effec-
tively removing hair artifacts and preserving essential details of the melanoma lesions.

2.2.1 Model architecture and training

We have adopted a U-Net-like architecture, known for its effectiveness in image-to-image trans-
lation tasks, particularly suited for detailed feature manipulation while preserving the overall
structure of the image.19 This section outlines the layered structure of our model, emphasizing
the integration of skip connections for enhanced performance. The encoder path in our CNN
plays a crucial role in analyzing and downsampling the input images to capture essential features
at varying scales. It begins with convolutional layers with 3 × 3 filters, which identify low-level
features such as edges and textures. The decoder path inverses the encoder’s process by methodi-
cally enhancing the spatial dimensions of the feature maps to reinstate their original size through
transposed convolutional layers.20 Additional convolutional layers refine the upscaled features,
with skip connections from the encoder improving the decoder’s outputs by including detailed
features with broader semantic content. This blending is important for preserving lesion details in
the output images.

The skip connections are preserving spatial information by reintegrating bypassed informa-
tion into deeper layers of the network, preventing the loss of fine-grained details.21 The output
layer, a convolutional layer with 1 × 1 filters, translates the feature maps into the final image,
reflecting the targeted changes while maintaining the input dimensions. The architecture proc-
esses input images of size 256 × 256 pixels in the RGB color space, effectively handling high-
resolution images. The process is illustrated in Fig. 2.

2.2.2 Model training and optimization

The training of the model involved the dataset comprising synthetic hair dermoscopic images
alongside the corresponding actual dermoscopic images without hair artifacts. A custom training
loop was implemented, providing precise control over the model’s training iterations. The train-
ing was conducted using a dataset consisting of 852 paired images. This manual approach
allowed for the integration of custom operations during the forward and backward passes.
The forward pass computes the network’s outputs for given inputs, whereas the backward pass
involves backpropagation, in which gradients are calculated for each parameter, informing how
they should be updated to minimize loss.

The model employs the Adam optimizer with a learning rate of 0.0001, optimizing the com-
bined loss to enhance the coherence of the hairless output images. A combination of loss func-
tions was employed to optimize the model’s performance. This multi-faceted approach to loss
calculation ensured that the model not only effectively removed hair but also maintained the
integrity of lesion details critical for accurate diagnosis. To optimize performance, a composite
loss function was used, including

EQ-TARGET;temp:intralink-;e001;117;151Ltotal ¼ λ1Lhair þ λ2Lnon−hair þ λ3Lnormalized þ λ4LSSIM þ λ5Ltotal variation (1)

where λ1, λ2, λ3, λ4, and λ5 are weights assigned to each loss component, respectively. The fol-
lowing losses have been implemented:

• Hair pixel loss (Lhair): Targets hair pixels specifically, ensuring they are effectively replaced
by inpainting. This uses mean squared error (MSE)22 to quantify the difference between the
predicted inpainted areas and the actual image data in the hair regions.
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• Non-hair pixel loss (Lnon−hair) focuses on non-hair areas, ensuring that inpainting maintains
natural appearances and textures.

• Normalized hair pixel loss (Lnormalized): This loss function focuses on minimizing errors in
hair regions relative to the entire image, ensuring a balance between the fidelity of hair
texture reconstruction and overall image quality.

• Structural similarity index (SSIM) loss (LSSIM) ensures that the inpainted regions maintain
structural and textural consistency with the rest of the image.23

Fig. 2 Process flowchart for digital hair removal deep learning model in dermoscopic images and
the model training process. (a) Generated synthetic hair dermoscopic image, (b) ground-truth
image, (c) model prediction for loss evaluation, and (d) final model output dermoscopic image after
digital hair removal.
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• Total variation loss (Ltotal variation) encourages smooth transitions in the inpainted areas,
reducing noise and preserving edges.24

This robust training approach aims to ensure that the network efficiently learns to perform
high-quality hair removal while preserving critical details necessary for accurate dermatological
diagnosis.

2.3 Evaluation of Model Performance
The model’s performance was evaluated against the synthetic hair image benchmark dataset
using a comprehensive set of metrics, including structural similarity index measure (SSIM),23

MSE,22 mean absolute error (MAE),22 and multi-scale structural similarity index measure
(MSSSIM).25 These metrics, widely recognized for their effectiveness in assessing image quality,
provided a detailed assessment of the model’s ability to remove hair without compromising the
diagnostic features of melanoma lesions. Values closer to 1 for SSIM and MSSSIM indicate
superior performance, highlighting the model’s capacity to maintain structural and textural accu-
racy in hair-removed images. The MSE and MAE should be as small as possible.

3 Results
This section shows the outcomes of the implementation of the synthetic hair dataset and the deep
learning model for hair removal, focusing on their performance, accuracy, and utility in enhanc-
ing the clarity of melanoma dermoscopic images.

3.1 Synthetic Hair Dataset Development
The creation of the synthetic hair dataset involved a combination of algorithmic frameworks and
simulation techniques, using Bezier curves to generate detailed hair masks. These masks,
designed to capture the characteristics of real hair more accurately than initial attempts or pub-
licly available real hair masks, were created in MATLAB with specific parameters: hair length
ranging from 100 to 900 pixels, number of hairs set from 1 to 40, and thickness varying from 1 to
4 pixels. This precise parameterization facilitated the production of 1064 diverse hair masks,
leading to a dataset of 1064 synthetic hair dermoscopic images that closely resemble real hair
in terms of texture, density, and natural variability. Eighty percent of the images were used for
training the model, and 20% were reserved exclusively for testing. These subsets were created in
such a way that no image in the testing set was used during the training process.

This dataset, overlaying simulated hair on a diverse collection of dermoscopic images of
melanoma lesions, represents a broad array of hair types, colors, and densities, set against varied
skin tones and lesion types. Such diversity is important for the robust training and evaluation of
hair removal algorithms, ensuring their effectiveness across different clinical situations. The high
degree of diversity and realism in the synthetic hair dataset enhances its utility as a resource for
developers of dermatological diagnostic tools. Figure 3 presents a comparative analysis of image
pairs showing the synthetic hair generation process and the model output.

The results demonstrate that the model robustly removes hair while preserving the clarity
and integrity of the underlying skin lesions. In summary, the development of this dataset resulted
in the integration of custom-generated Bezier hair masks with a pre-trained model for synthetic
hair generation. This approach has significantly simplified the creation process, allowing for
scalability and enhanced diversity in the dataset.

The dataset includes a broad range of skin tones, covering Fitzpatrick Types I (very light) to
VI (very dark), to ensure inclusivity across different skin types. The specific distribution is as
follows: types I–II, 6.39%; types III–IV, 89.76%; and types V–VI, 3.85%. Although the majority
of the images represent types III–IV, all skin types are represented, ensuring that the model is
exposed to a diverse spectrum of skin tones. This diversity is critical for training the model to
perform well across various clinical scenarios, especially because types III and IVare more com-
monly encountered in dermoscopic datasets, whereas the inclusion of very light and very dark
skin types ensures the model can generalize well to less common, but clinically significant cases.

The variety of hairs is simulated to reflect real-world conditions. The color of the hair is
automatically taken from the base image color. The model ensures contrast between the hair and
the skin tone. The hair density in our dataset ranges from 1 to 40 strands per image, with hair
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lengths spanning from 100 to 900 pixels, and thicknesses varying between 1 and 4 pixels. Each of
these metrics follows a uniform distribution, ensuring variability and randomness in the hair
patterns, which cover all real-world conditions. The hair patterns are designed to replicate the
natural randomness and variability found in real dermoscopic images. Low-density images (1 to
5 hairs) make up 12.5% of the dataset, medium-density images (6 to 20 hairs) account for 37.5%,

Fig. 3 Comparison of the synthetic hair-generated masks and images using Bézier curves and a
pretrained cGAN model, and the model output. The ground truth images stem from the ISIC
dataset.
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and high-density images (21 to 40 hairs) represent 50%. The lower percentage of images with a
small number of hairs (1 to 5 hairs) in the dataset is intentional. In clinical practice, dermatol-
ogists typically do not face significant challenges when dealing with images containing only a
few hairs, as these minimally obstruct the view of the lesion. The difficulties arise with images
that contain a higher density of hair (6 to 20 and especially 21 to 40 hairs), in which the hair
coverage can obscure important diagnostic features of the lesion, such as borders and pigmen-
tation patterns. As a result, the dataset is designed to reflect this practical reality, with a greater
emphasis on images containing more hair. This ensures that our model is better suited for sit-
uations where hair obstruction presents a real challenge to accurate melanoma detection. The
model’s performance is, therefore, optimized for scenarios where hair density is high, addressing
the needs of dermatologists in the most critical cases. By including this wide range of skin tones,
hair colors, densities, and lengths, we aimed to create a comprehensive dataset that reflects the
variability seen in real clinical settings. This diversity allows our model to generalize better
across different populations and conditions.

3.2 Deep Learning Model for Hair Removal
The deep learning model developed for hair removal was extensively tested against the synthetic
hair dataset. The model’s performance was evaluated based on its ability to remove hair artifacts
effectively while preserving the integrity of the underlying melanoma lesions.

3.2.1 Hair removal efficacy

In tests against the synthetic hair dataset, the model achieved a high precision rate in identify-
ing and removing hair artifacts, with minimal instances of mistakenly altering lesion areas. The
removal process did not introduce noticeable distortions or artifacts, preserving the essential
diagnostic features of the melanoma lesions. The model’s ability to maintain the integrity of
lesion details post-hair removal was confirmed through the SSIM and visual inspections, which
verified that lesion morphology, coloration, and border characteristics were successfully
preserved.

After adjusting the weights for each loss component, the model underwent retraining with
specifically allocated weights to optimize the balance between the loss components, thereby
enhancing the output. Hair pixel loss and non-hair pixel loss were prioritized with weights
of 2.5 and 3.5, respectively, while assigning lower weights to normalizing hair pixel loss
(0.3), SSIM loss (1), and total variation loss (0.5). This calibration process included iterative
testing, in which various weight configurations were tested, and the model was retrained multiple
times to determine the most effective combination. Each configuration’s performance was rig-
orously evaluated by analyzing outputs and examining the loss history graph.

This approach, drawing on insights from prior iterations, involved retraining the model using
a dataset of 852 dermoscopic images. The results, as depicted in Fig. 4, demonstrate an improve-
ment in the model’s learning process throughout training.

Figure 4 presents a graph representing the loss history, with each of the five loss components
plotted over the training iterations. The total loss ensures a comprehensive approach to the hair
removal process. The model not only effectively removed hair but also more accurately preserved
the integrity of the skin details.

Figure 5 presents a comparative analysis of different hair removal methods applied to der-
moscopic images. The original image, containing synthetic hair, is shown in subfigure (a). The
subsequent subfigures, (b) through (g), display the results from models with the same architec-
ture using different loss functions, each employing a distinct loss function aimed at enhancing the
hair removal process.

This comparison highlights the strengths and limitations of each method, illustrating how
different loss functions influence the effectiveness of hair removal in dermoscopic images. Image
(b) illustrates the output from a model trained using a combination of losses, specifically
designed to balance multiple aspects of image quality while focusing on effective hair removal.
Image (c) demonstrates the results when the model is optimized primarily with hair pixel loss,
concentrating on accurately removing hair pixels. Image (d) shows the output where the focus is
on non-hair pixel loss, emphasizing the preservation of non-hair regions to maintain the integrity
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of the image. Image (e) presents the approach using normalizing hair pixel loss, aiming to nor-
malize the influence of hair pixels across the image to ensure consistency. Image (f) depicts the
model’s output using Structural Similarity Index (SSIM) loss, prioritizing maintaining structural
similarity between the original and processed images, ensuring that important textural details are
preserved. Finally, image (g) provides the result from a model trained without incorporating total
variation loss, highlighting the effects of excluding this regularization technique on the overall
image quality. This series not only showcases the technical capabilities of each model but also
serves as a vital reference for selecting the appropriate loss function based on specific hair
removal needs in dermoscopic image analysis.

The precision measures how accurately the model identifies hair without misclassifying
lesion details, whereas recall reflects the model’s ability to detect and remove hair artifacts.
The F1 score, the harmonic mean of precision and recall, provides a balanced measure of overall
model performance. Our model achieved a mean precision of 0.6916, focusing only on pixels

Fig. 5 Comparison of hair removal models with the same architecture using different loss functions
on synthetic hair. (a) Original dermoscopic image with synthetic hair. (b) Output result of a trained
model with combined losses. (c) Output result of a trained model with hair pixel loss. (d) Output
result of a trained model with non-hair pixel loss. (e) Output result of a trained model with normal-
izing hair pixel loss. (f) Output result of a trained model with SSIM loss. (g) Output result of a trained
model without total variation loss. (h) Ground-truth image without hair.

Fig. 4 Loss history graph for model training on hair-removed dermoscopic images. Evolution of the
different loss components (L1, L2, L3, SSIM, and TV) over 200 training iterations. The black line
represents the total loss, reflecting the overall learning process.
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near the hair masks to preserve lesion integrity, whereas other models may alter important
regions. The mean recall of 0.8678 indicates successful detection of most hair artifacts. The mean
F1 score of 0.7699 reflects the model’s overall accuracy in hair removal.

Figure 6 illustrates the visual differences between the traditional Dullrazor method and the
proposed method on synthetic hair images, highlighting the improved performance and image
quality achieved by the latter.

The method described in this paper demonstrates superior hair removal capabilities for der-
moscopic images with synthetic hair when compared with Dullrazor.

In the following, performance metrics are provided for a test set of 100 images when
comparing our method with Dullrazor. To achieve this, we prepared an additional dataset of
100 images. Specifically, we selected 10 images from the ISIC archive and generated 10
variants of each by applying different hair masks. Each hair mask contained at least 10

Fig. 6 Comparison of hair removal techniques between the presented method and Dullrazor for
synthetic hair. In comparison with Dullrazor, the presented method does not leave traces and
keeps the lesion integrity intact.
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individual hairs, ensuring a diverse representation of hair patterns across the dataset. For each
sample, Table 1 demonstrates that our model consistently produces high-quality images. The
quality of these images is assessed using the SSIM by comparing them to the original hair-
free images.

For the SSIM, our method outperforms Dullrazor in nine out of 10 cases. In the one instance
where Dullrazor achieves a higher SSIM, the difference in SSIM values is minimal. The average
SSIM for the presented method is 0.9676 (std: 0.0038). The average SSIM for Dullrazor is
0.9472 (std: 0.0155). The developed method also produces more consistent results across differ-
ent hair masks, as reflected by the lower standard deviation of the SSIM compared with
Dullrazor. The smaller standard deviation of the SSIM indicates that our model performs more
uniformly across different cases, whereas Dullrazor exhibits higher variability. These results
demonstrate that the presented method outperforms Dullrazor in terms of structural similarity
on synthetic hair. Although Dullrazor is effective in removing hair, it tends to blur lesion details
more than our CNN-based approach, resulting in lower SSIM values.

Our model demonstrates superior performance across multiple other metrics: it achieves
lower MSE in seven out of 10 image sets, lower MAE in nine out of 10 image sets, and higher
MS-SSIM in nine out of 10 image sets.

In Fig. 7, the effectiveness of our hair removal model on real hair is illustrated through a
series of images from the ISICData Archive.

The first and fourth rows present the original test sample images with real hair, which display
various hair patterns before applying the hair removal algorithm. The second and fourth rows
show the hair removal results with Dullrazor. Figure 7 shows that Dullrazor does not reliably
detect and remove hair. In some cases, Dullrazor also removes parts of the lesion. The third and
sixth rows showcase the results post-processing by our model, highlighting the areas from which
hair has been successfully removed without removing any lesion parts. This clear before-and-
after comparison underscores the model’s precision and effectiveness in hair removal, essential
for aesthetic or clinical applications. The samples were selected to demonstrate the model’s effec-
tiveness in removing hair from dermoscopic images across a wide range of skin tones. This
highlights the importance of the diversity of the dataset and confirms that the model is capable
of successfully removing hair from different skin types.

Table 1 Comparison of MSE, MAE, SSIM, and MS-SSIM for Dullrazor and our method with the
ground truth (std: standard deviation). SSIM and MS-SSIM: Values closer to 1 indicate better sim-
ilarity. MSE and MAE: Values closer to 0 indicate better performance.

Image set

MSE MAE SSIM MS-SSIM

Dullrazor Model Dullrazor Model Dullrazor Model Dullrazor Model

1 0.0018 0.0174 0.0063 0.1269 0.952 0.947 0.9727 0.955

2 0.0084 0.004 0.0076 0.0019 0.9445 0.9834 0.9472 0.9911

3 0.0023 0.0015 0.0606 0.034 0.9493 0.9744 0.9612 0.9863

4 0.0025 0.0036 0.0609 0.0558 0.9503 0.978 0.9653 0.9851

5 0.0039 0.0030 0.0765 0.0533 0.9376 0.9517 0.9658 0.9735

6 0.0021 0.0019 0.0601 0.0393 0.9534 0.9675 0.9731 0.9826

7 0.0042 0.0036 0.061 0.0538 0.9516 0.9736 0.9703 0.9844

7 0.003 0.0015 0.0805 0.0355 0.9419 0.9687 0.9627 0.9834

8 0.0059 0.0054 0.0731 0.0683 0.9442 0.9584 0.9724 0.9809

10 0.0029 0.0008 0.0657 0.0253 0.9477 0.9736 0.9704 0.9874

Mean 0.0037 0.00399 0.05523 0.04941 0.94725 0.96763 0.96681 0.98097
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The performance metrics for hair removal model evaluation, as shown in Table 2, demon-
strate that the model with tuned weights significantly outperforms the baseline across all evalu-
ated parameters, particularly in SSIM and MSSSIM, indicating enhanced structural and textural
accuracy. This systematic evaluation allows for the assessment of each weight configuration’s
effectiveness based on the calculated metrics, pointing to the potential for further fine-tuning of

Fig. 7 Comparison of the model performance on ISIC data test samples with real hair against the
state-of-the-art digital hair removal method Dullrazor.

Table 2 Performance metrics for hair removal model evaluation (ideal value 1.0).

Metrics
Model with uniform
weights (λi ¼ 1)

Model with initial weights
(λ1;2 ¼ 0.5, λ3;4;5 ¼ 0.2)

Model with tuned weights (λ1 ¼ 2.5,
λ2 ¼ 3.5, λ3 ¼ 0.3, λ4 ¼ 1, λ5 ¼ 0.5)

MSE 0.978941 0.993771 0.994203

MAE 0.879822 0.923138 0.931803

SSIM 0.840377 0.895211 0.947309

MSSSIM 0.873124 0.879974 0.982331
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the loss weights. By continuously adjusting the loss weights based on quantitative feedback, the
model’s potential to preserve crucial diagnostic information in processed dermoscopic images
can be further enhanced, optimizing its utility in clinical settings.

In our experiments, we applied 20 masks to 10 sample images to assess the performance of
the hair removal model. Each mask incrementally added more hair, with the first mask having
one hair and the last mask having 20 hairs as displayed in Fig. 8.

Initially, synthetic images with less hair coverage had a higher SSIM compared with
the ground truth, which significantly improved after hair removal. Conversely, images with
more extensive hair coverage started with a lower SSIM, but still showed a substantial
increase after hair removal. The results demonstrate that the hair removal model effectively
enhances image similarity, though its performance varies with the amount of hair present.
Figure 9 shows the SSIM values for each of the 20 masks applied to a sample image, show-
casing the output of our trained model and its effectiveness from minimal to extensive hair
coverage.

Fig. 8 Performance of hair removal model on images with increasing synthetic hair coverage.
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4 Conclusion
This study represents an advancement in the field of dermatological imaging, particularly in the
early detection and diagnosis of melanoma through dermoscopy. The research set out to address
the considerable challenge posed by hair artifacts in dermoscopic images, which can obscure
critical details of melanoma lesions and potentially lead to misdiagnoses. By creating a com-
prehensive synthetic hair dermoscopic image dataset and developing a specialized deep learning
model for hair removal, this study has introduced innovative solutions that enhance the clarity
and diagnostic utility of dermoscopic images.

The synthetic hair dataset provides the simulation of a wide array of hair types, colors, and
densities and can be a resource for the development and evaluation of hair removal algorithms.
This dataset not only provides a novel tool for the dermatological community but also sets a new
benchmarking standard for research in dermoscopic image analysis. It enables robust training
and testing of algorithms, ensuring their effectiveness across the diverse scenarios encountered in
clinical practice.

The deep learning model developed for hair removal, leveraging advanced CNN architec-
ture, demonstrated great performance in removing hair artifacts while preserving essential lesion
details. This balance is important for maintaining the diagnostic integrity of dermoscopic images.
The model’s efficacy was validated through extensive testing against both the synthetic hair data-
set and dermoscopic images with real hair, showcasing its ability to significantly enhance image
clarity. The comparative analysis with existing hair removal methods further highlighted the
superiority of the developed model in terms of hair removal completeness and lesion detail
preservation.

Despite the results achieved, this research has also indicated areas for further investigation
and improvement. The generalization capabilities of the deep learning model across a broader
spectrum of real-world images, the optimization of processing times, and the reduction of com-
putational requirements are among the challenges that future work will aim to address. In addi-
tion, the integration of the model into clinical workflows, ensuring it complements and enhances
dermatological practice without introducing significant burdens, remains a critical objective. The
development of non-contact dermoscopy technologies offers potential solutions to these chal-
lenges. For instance, the use of an ultra-bright light source and a liquid lens-based autofocus
function in non-contact devices enhances feature resolution and color reproducibility, crucial
for the differential diagnosis of skin conditions beyond cancer.26 Furthermore, the implementa-
tion of focus stacking techniques in non-contact dermoscopy ensures all-in-focus imaging, which
is essential for capturing accurate topographical details of skin lesions.27 These advancements
demonstrate significant improvements in the clarity and diagnostic utility of dermoscopic
images, irrespective of patient skin type or the presence of superficial obstructions such as hair.28

Fig. 9 Comparison of mean SSIM values with increasing number of synthetic hairs. The error bars
show the standard deviation of 10 samples.
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Although there are other synthetic hair datasets, they are limited in size, which is not suffi-
cient for machine learning. Comprising over 1000 image pairs, our dataset is adequate for
machine learning approaches. Our model can simulate a wide variety of hair types, densities,
and skin colors with real melanoma lesions, offering a more realistic and comprehensive resource
for training hair removal models. Furthermore, with the presented approach it is possible to gen-
erate training datasets for specific needs, for example, only images with low hair density or only
images with thick hairs could be generated with the developed hair generator.

We plan to collaborate with dermatologists to conduct clinical case studies, in which our hair
removal model will be applied to real dermoscopic images in a clinical setting. These case studies
will assess how the hair removal process enhances diagnostic clarity and whether it improves the
dermatologist’s ability to detect melanoma, particularly in challenging cases where hair coverage
obscures critical features. In addition, we will include feedback from dermatologists using the
model in clinical practice to gather qualitative data on its effectiveness in improving diagnostic
confidence, further validating its impact in clinical settings. The dermatologists’ feedback could
be used to further refine the model, ensuring that it meets the practical needs of clinicians.
Adjustments could include tuning the model to handle specific clinical conditions.

In conclusion, this paper contributes to the advancement of early melanoma detection and
diagnosis in dermatology. Addressing the challenge of hair artifacts in dermoscopic images, not
only enhances the clarity and utility of these images but also paves the way for more accurate and
reliable melanoma diagnoses. It is important to discuss its limitations with concrete examples.
The hair removal model effectively enhances image similarity to the ground truth. Images with
less hair significantly improve, whereas those with more hair also see a notable increase.
Although the model consistently improves similarity, its performance varies with the amount
of hair coverage. The synthetic hair image benchmark dataset and the deep learning solution
for hair removal developed in this research hold promise for improving patient outcomes through
the early detection and treatment of melanoma.
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