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Abstract. Neuromorphic computing is becoming a popular approach for implementations of
brain-inspired machine learning tasks. As a paradigm for both hardware and algorithm design,
neuromorphic computing aims to emulate several aspects related to the structure and function
of the biological nervous system to achieve artificial intelligence with efficiencies that are orders
of magnitude better than those exhibited by general-purpose computing hardware. We provide
a holistic treatment of spike-based neuromorphic computing (i.e., based on spiking neural net-
works), detailing biological motivation, key aspects of neuromorphic algorithms, and a survey of
state-of-the-art neuromorphic hardware. In particular, we focus on these aspects within the con-
text of brain-inspired vision applications. Our aim is to serve as a complement to several of the
existing reviews on neuromorphic computing while also providing a unique perspective. © 2022
SPIE and IS&T [DOI: 10.1117/1.JEI.31.1.010901]
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1 Introduction

Nature has long served as a source of inspiration and creativity in humans’ technological
advancement. Indeed, evolution has created ingenious solutions to a number of engineering chal-
lenges from the flight of birds, to the search strategies used by ant colonies, to the photosynthesis
processes that fuel plants, and countless others. But, perhaps the most intriguing product of
nature is evolution’s solution to what we call intelligence: the human brain. Our brains are the
gold standard against which we compare the capabilities of artificial intelligence (AI) systems,
especially those based on machine learning (ML). Therefore, it should be no surprise that
some of the most advanced ML algorithms, neural networks, are inspired by the brain’s complex
network of ∼86 billion neurons. Neural networks have made significant achievements (e.g.,
Krizhevsky et al.’s landmark paper1 on ImageNet classification with convolutional neural net-
works) in the last decade due to a convergence of (1) an increased amount of data available for
training large neural network models, (2) increased compute power [i.e., better/faster graphics
processing units (GPUs), memory, etc.], and (3) key developments in the theory and design of
neural network structures and training algorithms [e.g., the dropout regularization scheme,2 use
of rectified linear unit (ReLU) activations3]. Together, these three factors have led to steady
improvement in the accuracy of neural network models for tasks such as object classification,4

voice recognition,5 machine translation,6 and more. However, these improvements come at the
cost of the models’ size and complexity. This is shown in Fig. 1, which shows the size of differ-
ent neural network models versus the accuracy that they achieve on the ImageNet object clas-
sification benchmark (data collected from Ref. 7). The blue, labeled datapoints represent the
Pareto frontier and indicate that small gains in accuracy come at the cost of exponentially larger
models. Moreover, implementing these state-of-the-art models on conventional CPU/GPU hard-
ware incurs large overheads that are incompatible with application domains that have strict size,
weight, and power constraints. These include, for example, AI on mobile devices, satellites,
sensors, and, in general, AI-at-the-edge. Enabling AI in these domains is being pursued through
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two fundamentally different approaches. In the first approach, modern deep neural networks
(DNNs) are being compressed through techniques such as quantization/pruning and sharing
techniques, low-rank factorization methods, transferred/compact weight methods, and knowl-
edge distillation.8 The second approach, which is the topic of this review, is to codesign hardware
and algorithms that more closely emulate the anatomical and physiological characteristics that
underlie the incredible efficiency of biological intelligence. This approach is called neuromor-
phic computing.

Pioneered in the late 1980s by Carver Mead, neuromorphic computing originated as an ana-
log/mixed signal design paradigm whereby neurophysiological functions could be efficiently
mimicked in integrated circuits (ICs) by leveraging the rich physics of transistors and other elec-
tronic devices. Today, the term neuromorphic computing is used more broadly to describe a set
of brain-inspired hardware and algorithms for neural networks with varying degrees of biological
plausibility. Dimensions of biological plausibility include characteristics such as information
representation, digital versus analog hardware, stochasticity, coupling of processing, and
memory. For example, today’s von Neumann computers represent information in 32 or 64 bit
binary format using digital, deterministic hardware, and have physically separated memory and
processing units. In contrast, our brains represent information in the patterns of neuron action
potentials, or “spikes,” using noisy mixed signal hardware, and have closely coupled memory
and processing units. The space of neuromorphic computing is expansive, and the term has been
used to describe designs lying anywhere between these two extremes for applications spanning
object/gesture recognition,9 image reconstruction,10 star tracking,11 simultaneous localization
and mapping,12 surveillance, and monitoring.13 In this paper, we review neuromorphic comput-
ing as it applies to brain-inspired vision. Specifically, we aim to inform readers about the com-
putational primitives that are supported by neuromorphic hardware and how vision-related
tasks such as classification can be implemented on the hardware using neuromorphic algorithms.
It is impossible to exhaustively cover all of the excellent works on neuromorphic computing.
Therefore, to keep the review concise, we focus on spike-based neuromorphic computing for
vision applications. Other reviews on neuromorphic computing, such as Refs. 14 to 19, differ
from ours in several ways, having either broader application focus, limited discussion on bio-
logical underpinnings of neuromorphic computing, or less attention to only spike-based designs.
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Fig. 1 Neural network model size versus accuracy on the ImageNet dataset. Each datapoint (gray
and blue dots) represents a neural network model that has been published and tested on the
ImageNet dataset, showing the number of model parameters and the Top-1 ImageNet accuracy
that it achieved. Blue dots represent the Pareto frontier and indicate that linear gains in accuracy
correspond to exponential growth in model size. Model names are indicated for points on the
Pareto frontier. Data used to produce the plot are available in Ref. 7.
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We believe that this paper provides a good complement to the existing literature. Note also that
we have opted to only give a limited historical perspective on neuromorphic computing, focusing
instead on state-of-the-art designs. Interested readers may wish to refer to reviews such as Ref. 20
for a more detailed account of earlier work related to neuromorphic computing, especially in the
early to mid twentieth century.

The rest of this review is organized as follows: Sec. 2 gives basic background on concepts
from biological vision which are critical for understanding and designing neuromorphic vision
systems. Section 3 discusses spiking neural networks (SNNs), which are the principal abstraction
of the nervous system that neuromorphic computing systems employ to emulate brain function.
In Sec. 4, we discuss some aspects of modeling the retina in neuromorphic hardware for efficient
encoding of visual information. Then, Sec. 5 provides an overview of neuromorphic processors
implemented in standard complementary metal oxide semiconductor (CMOS) technology. In
Sec. 6, we discuss advanced memory technologies for scalable and efficient neuromorphic com-
puting hardware. Section 7 concludes this review with an outlook and directions for future
research.

2 Biological Basis for Neuromorphic Computing

Neuromorphic is a portmanteau combining neuro (relating to the nervous system) and morphic
(having a specified form or shape). The goal of neuromorphic computing is to emulate the behav-
ior of the biological nervous system, often focusing on the brain, through a combination of
hardware and algorithm design. In the purest form of neuromorphic computing, the idea is
that the hardware should completely define the algorithm, eliminating the need for software.
However, hardware/software codesign generally adds more flexibility through different levels
of design abstraction. In any case, a critical first step in designing a neuromorphic computing
system is understanding the underlying neuroanatomical and neurophysiological aspects that are
to be emulated. In this section, we provide a minimal overview to give context to the algorithms
and hardware described in the rest of the review.

2.1 Human Vision

The evolution of biological vision is a long and fascinating journey from the development of
light-calibrated circadian clocks and phototaxis in early bacteria, to the origin of the eye and
advanced visual processing capabilities of humans and other animals.21 Here, we will review
some of the key steps in human vision as they relate neuromorphic computing. For more detailed
discussions of human vision, refer to Refs. 22 and 23.

Figure 2 shows a high-level overview of some of the key steps that take place in human
vision. Light enters the eyes, stimulating photoreceptors (rods and cones) on the retina (see

Fig. 2 High-level overview of key steps in human vision.
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top-left inset of Fig. 2). The photoreceptors encode light intensity as graded (continuous) mem-
brane polarization levels. Between rods and the different types of cones, our eyes can sense light
in the range of ∼400 to 700 nm (the visual light spectrum). The response of the photoreceptors
propagates through three additional types of retinal cells before reaching the retinal ganglion
cells. Note that because of the small size of the retina (a fraction of a millimeter thick), most
of the neurons communicate using graded potentials. The one exception is retinal ganglion cells,
which produce action potentials or “spikes,” [see Fig. 3(a)] which need to travel a long distance
down the optic nerve to the thalamus. It is likely that spiking neurons evolved because encoding
information as all-or-nothing spike patterns enables much better noise tolerance, especially when
communicating over long distances. The output of retinal ganglion cells leaves the eye via the
optic nerve. By this point, the retina has already performed a fair amount of preprocessing on the
raw visual data, encoding it to capture information about spatial and temporal contrast, improve
noise tolerance, and increasing invariance to overall light level. In essence, this is accomplished
by encoding relative changes in light (e.g., spatial and temporal contrast) rather than only com-
municating information about absolute light intensities. In fact, if we were able to keep our eyes
perfectly still, then a static scene would quickly fade from our perception. Luckily, constant eye
movements called saccades and fixational eye movements maintain movement of a scene on our
retinas.

After information leaves the eyes, it follows the optic nerves and eventually the optic tract to
the lateral geniculate nucleus of the thalamus. From there, information radiates through several
pathways in the temporal and parietal lobes collectively called Meyer’s loop, eventually reaching
the V1 and other visual cortices in the occipital lobe. It is here that several low-level features are
extracted, such as edges and corners (see table in Fig. 2). The pathway from the retina to the V1
cortex is known as the retino-geniculo-striate pathway. From the occipital lobe, visual informa-
tion takes two distinct pathways to the parietal (dorsal stream) and temporal (ventral stream)
lobes. Processing in these locations allows us to locate objects in space/time and identify/classify
objects. The features that are extracted along the ventral stream become increasingly complex,
and neurons in the higher-level areas such as the inferotemporal (IT) cortex respond to specific
classes of objects. It takes ∼100 ms for light to travel from our retinas to the IT cortex.24 Other
cortical areas such as the prefrontal cortex help us associate images with meaning.

2.2 Spiking Neurons

The generation of action potentials in neurons is a relatively complicated process, involving
several steps. Here, we give a high level overview. As shown in the top-right inset of Fig. 2,
a prototypical spiking neuron (Here, we will describe a typical spiking neuron. However, note
that there are several tens to hundreds of types of neurons or even more, depending on the granu-
larity of classification, each with different morphologies and behaviors.) such as a retinal gan-
glion cell or a cortical pyramidal cell has four main parts: dendrites, soma, axon, and synapses.
Dendrites, together with the soma act as a leaky integrator of ionic currents that flow into or out
of the neuron. These currents result from the opening and closing of channels in the cell mem-
brane and through ion diffusion or active ion pumps. For example, when a presynaptic neuron
creates an action potential, neurotransmitters are released and cause the opening of ligand-gated
ion channels at the postsynaptic neuron’s dendrites. This causes ions to flow resulting in an
increase (in the case of an excitatory presynaptic neuron) or a decrease (in the case of an inhibi-
tory presynaptic neuron) in the potential of the postsynaptic neuron’s cell membrane.
Interestingly, a number of complex computations such as boolean logic functions can take place
in the dendritic arbor before information reaches the cell body.25 If the membrane potential rises
(also called depolarization) from its resting value of around −70 mV to a threshold value (typ-
ically around −55 mV), then an action potential about 1 ms wide and þ40 mV at its peak [see
Fig. 3(a)] is generated, which travels down the neuron’s axon, ending at the synaptic terminals
where neurotransmitter is released to the next set of neurons. After a neuron spikes, there is
typically a refractory period of several milliseconds during which it cannot produce another
spike. During this time, the neuron’s membrane is hyperpolarized below its resting potential.
The efficacy of neurotransmitters’ modification of postsynaptic neurons’ ion conductances is
what is abstractly captured as a “weight” in neural networks. Much of our ability to learn has
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been attributed to mechanisms that facilitate the strengthening and weakening of these efficacies,
as well as the creation or removal of synaptic connections.

An ongoing debate and one of the biggest challenges in the area of neuromorphic computing
is determining how much detail of the physiological processes needs to be modeled to faithfully
capture the underlying computational principles. In the case of neurons, there is a wide range of
models with different levels of complexity. On one end of the spectrum, multicompartment mod-
els such as the multicompartment Hodgkin–Huxley model,26 FitzHugh–Nagumo model,27,28 or
Morris–Lecar model,29 capture detailed behavior of ion conductances and can reproduce several
complex behaviors of spiking neurons. However, these types of models are computationally
intensive and usually reserved for research in neuroscience. On the other end of the spectrum,
simple threshold models such as the McCulloch–Pitts model30 capture only simple neuron
behavior, such as whether the neuron is spiking above or below a particular rate. Other simple
models such as sigmoid and ReLUs convey information about the spike rate of a neuron only and
do not relay detailed temporal information. Due to their simplicity, they are very computationally
efficient, and they are employed in most modern DNNs. Finally, a third set of spiking neuron
models lies in the middle of the spectrum, with enough complexity to capture important temporal
information of spike statistics, but enough abstraction to be computationally efficient. These
models also lend themselves to relatively simple hardware implementations. More details on
these models are given in Sec. 3.

2.3 Synapses

Communication between neurons takes place at synapses. There are two types of synapses in the
nervous system: electrical and chemical synapses. Here, we focus on chemical synapses, which
play a major role in both communication and learning in the central nervous system. Figure 3(b)
shows some of the key components of a chemical synapse. When an action potential is generated
in a presynaptic neuron, there is an influx of calcium ions that initiates a process in which syn-
aptic vesicles, filled with neurotransmitters, dock at the cell membrane and undergo exocytosis:
the release of the transmitter into the synaptic cleft. There are several types of neurotransmitters
that have different effects on postsynpaptic neurons and can be found in different parts of the
nervous system. Two particularly important neurotransmitters are glutamate and γ-aminobutyric
acid (GABA), which have an excitatory and inhibitory effect on the postsynaptic membrane
potential, respectively. After diffusing across the synaptic cleft to the postsynaptic neuron, neuro-
transmitters bind with two main types of receptors: ionotropic and metabotropic receptors, each
of which allows the flow of ions such as sodium, potassium, or chloride across the cell mem-
brane, changing its potential. Another class of cells called neuroglial cells also play important
roles in a number of brain functions such as synaptic transmission. In particular, astrocytes help
regulate the release and reuptake of neurotransmitters. Clearly, the efficacy with which a pre-
synaptic action potential causes a change in the postsynaptic membrane potential depends on

(a) (b)

Fig. 3 (a) Transient characteristics of neuron action potential. (b) Overview of a chemical synapse.
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several factors. Moreover, this efficacy is modified through numerous means based on factors
such as the relative pre- and postsynaptic neuron activity, which can result in long-term strength-
ening (long-term potentiation or LTP) or weakening (long-term depression or LTD) of synaptic
connections.

3 Neuromorphic Algorithms: Spiking Neural Networks

As we have seen in the last section, the computations underlying biological intelligence depend
on networks of neurons communicating through spikes. State-of-the-art DNNs significantly
abstract the behavior of biological neuronal networks, with several simplifications such as reduc-
ing a neuron’s behavior to a simple spike rate. However, in spite of the recent rapid development
of DNNs in the field of ML, specifically for computer vision tasks, their performance is not
efficient enough compared with the biological brain in terms of power and speed.18,31 While
information in the biological brain is processed asynchronously and in parallel, information
in DNNs is computed in a sequential form (i.e., computations at each layer of the network have
to be completed on the input image before forwarding it to the following stage). Consequently, a
significant delay appears in the network.31 In 1996, Thorpe et al.32 showed that the biological
brain is able to recognize visual images with one spike propagating through all layers of the
visual cortex, and Rolls and Tovee33 measured the same visual processing speed in the macaque
monkey. Theses works highlight the incredible efficiency of the way our brains encode infor-
mation in spikes.31

The efficiency of spike-based computation motivated ML and neuroscience researchers to
begin exploring SNNs, the third generation of neural networks. Computation in SNNs is event-
driven as in the biological brain, so each neuron in the network generates its outputs only when
enough spikes indicating the existence of a specific feature or pattern have been detected.31 This
feature gives SNNs the capability to solve complex spatiotemporal tasks and to make use of
efficient event-driven sensors, such as event-based cameras.

Table 1 shows a comparison of the main aspects between some of the key properties of DNNs
and SNNs for vision. As stated in the previous section, synchronous computation in each layer of
DNNs can be time consuming. On the other hand, in SNNs, the computation is processed asyn-
chronously in spike form, allowing information to propagate to the next layer before all com-
putation in the current layer is complete. However, this asynchrony combined with the
nondifferentiable nature of spikes complicates the credit assignment problem and limits the use
of many popular training algorithms employed in DNNs. On the upside, though, the inherent
temporal dynamics of SNNs allows them to perform more complex tasks than DNNs.34 For
example, SNNs have neuron-level temporal memory, enabled by the leaky integration of infor-
mation at the neuron’s input. This means that even purely feedforward SNNs have an inherent
short-term memory. Contrast this with DNNs, which can have short-term memory enabled by
their network topology (e.g., with recurrent connections), but there is usually no built-in
temporal memory at the level of individual neurons. This extralayer of short-term memory
in SNNs makes them a good fit for temporal processing of data such as audio and video.

Table 1 Comparison between DNNs and SNNs for vision.

Aspects DNNs SNNs

Data processing Frame-based Event-based

Latency High Low

Differentiable Yes No

Activation Sigmoid, ReLU, etc. Spike

Model complexity Low High

Short-term memory Network level Neuron and network levels
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Below, we discuss three critical design aspects of SNNs: spiking neuron models, spike encoding,
and learning in SNNs.

3.1 Spiking Neuron Models

The spiking neuron models used in neuromorphic computing need to have enough complexity to
capture key dynamic properties of biological neurons without having significant computational
or hardware overhead. Figure 4 shows a comparison of different models presented in the liter-
ature versus their computational cost.35 The vertical axis shows the number of biological features
that the model exhibits, with positive error bars indicating the maximum number of features that
a model can exhibit if its parameters are carefully tuned. The horizontal axis indicates the com-
putational complexity of the model. In general, we see that adding more biological features leads
to exponential growth in the computational cost. Also, note that the simple rate-based neurons
(e.g., ReLU, sigmoid, etc.) that are used in the DNNs of Fig. 1 will have computational cost
and biological realism that is on the order of, or less than, the integrate-and-fire (IF) neuron
model. However, even with a reduced computational cost, measured in floating point operations
per second, the hardware overhead of implementing rate-based neurons (number of transistors,
power consumption, etc.) can be much larger than that of spiking neurons.

IF or leaky IF (LIF) is one of the most popular spiking neuron models used in neuromorphic
computing:

EQ-TARGET;temp:intralink-;e001;116;495τm
ds
dt

¼ srest − sðtÞ þ
X

j

wj

X

k

αðt − tjÞ þ RmIextðtÞ; (1)

where s is the membrane potential, srest is the resting membrane potential, τm is the membrane
time constant, Rm is the membrane resistance, wj is the synaptic weight connecting the neuron to
the j’th presynaptic neuron, tj is the last spike time of pre-synaptic neuron j, Iext is an external
current that is driving the neuron, and α describes the transient response of postsynaptic mem-
brane current as a result of a presynaptic spike. While this equation describes the membrane
dynamics, it also needs to be paired with a rule that says when the membrane voltage reaches
a threshold, the voltage will be reset, and the neuron will produce a spike. This model has low
computational cost and can easily be created in hardware with a relatively compact circuit.
However, it is not able to capture some of the more complex biological features of real spiking
neurons such as phasic spiking, tonic and phasic bursting, spike frequency adaptation, and
accommodation, to name a few. An excellent review of these features and the models shown
in Fig. 4 can be found in Ref. 35. Although, as noted in Sec. 2.2, and indicated in Fig. 4, more
detailed neuron models such as the Hodgkin–Huxley model,26 which requires numerical solution
of four nonlinear differential equations, have significant computational overhead, making it

Fig. 4 Comparison of different spiking neuron models, indicating the number of biological features
they are able to reproduce versus their computational cost.35
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difficult to employ them in low-power neuromorphic systems. Moreover, it is still unclear which
biological features are necessary for designing neuromorphic systems with a particular set of
desired behaviors. A number of other models have been proposed in the literature that have
medium complexity and are a good tradeoff between feature richness and computational cost.
These include models such as the adaptive IF model,36 the spike response model,37 and the
Izhikivich model,38 which are able to capture more complex dynamics than the LIF model such
as bursting and chattering. Still, other models capture additional behaviors that are important for
neural computation, such as stochasticity of spiking and synaptic transmission39 or energy-
dependence of neural activity.40,41

3.2 Spike Encoding

The dynamics and learning performance for SNNs depend on the type of spike encoding scheme
employed. There is evidence of multiple encoding schemes at play in the brain: rate coding,
temporal coding, and population coding.42 Each of these encoding schemes has pros and cons.
Rate codes represent information by the average number of spikes that a neuron produces in a
given time window. Rate encoding is robust to noise that may be superimposed with the input
spikes. However, achieving high precision with rate encoding requires counting spikes over long
time windows, which leads to high power consumption and latency when implementing this
scheme in hardware. In contrast, temporal encoding schemes use the exact timing of spikes
to represent information. This is usually more efficient in terms of energy and latency because
it relies on fewer spikes. For example, interspike interval codes represent information using the
time elapsed between a neuron’s spikes, and spike latency codes encode information as the
latency between a neuron’s spike and the onset of a stimulus.43 These codes are less noise-
tolerant because of their dependence on exact timing. Another encoding technique is to use
groups of neurons, rather than a single neuron, to represent information. This strategy, called
population coding, is an equitable approach compared with the other coding schemes, but more
neurons are required to represent a feature of the data.

3.3 Learning in SNNs

Our brains are remarkably adept at taking in new information, combining it with stored knowl-
edge, generalizing it to create new knowledge, and applying it to solve both simple and complex
problems. Although we do not fully understand all of the details of how this learning process
works, it is generally accepted that modification of synaptic efficacy plays a major role.42

However, we also note that other forms of plasticity are critical in learning such as the formation
of new cells and new connections in the brain (e.g., neurogenesis and synaptogenesis).44 Here,
we focus primarily on modeling learning mechanisms that occur through modification of syn-
aptic efficacy. This type of learning has led to several powerful (nonspiking) DNN models that
are trained by incrementally modifying the network weights according to a loss function such as
classification accuracy. While it is tempting to apply the learning algorithms employed in DNNs
to SNNs, there are some challenges related to SNNs’ differentiability and temporal credit assign-
ment. Below, we review some of the popular methods for training SNNs. These can broadly
be categorized as supervised (where labeled targets are provided), unsupervised learning (where
no targets are provided), and reinforcement learning (where learning is based on rewards). Here,
we focus on supervised and unsupervised approaches.

3.3.1 Supervised learning

State-of-the-art supervised learning in SNNs can be categorized as either (1) DNN-to-SNN con-
version, (2) spike timing-dependent backpropagation (STDB), or (3) combined training. Here,
we discuss some of the main approaches within each category, but we point the interested reader
to Ref. 45 for a dedicated review on supervised training of SNNs.

Conversion from DNN to SNN. A straightforward way to train an SNN is to first train a
DNN with standard backpropagation training and then convert it to an SNN by either modifying
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the network topology or approximating the SNN’s discontinuous behavior using common DNN
functions. Among the first to explore this idea were Pérez-Carrasco et al.46 In that work, the
authors mapped continuous neural networks to SNNs to enable compatibility with event-based
image sensors, which are discussed in Sec. 4. Other works, such as Ref. 47, model the spike rate
of SNN neurons using ReLU functions and show good performance on simple datasets but have
limited scalability to large networks. In Ref. 48, a weight normalization-based method is used to
regulate firing rates of SNN neurons to more closely match the behavior of DNNs with ReLU
activations. Other techniques such as Refs. 4 and 49 aim to tackle the conversion of DNN to SNN
by reducing how much information is lost during the membrane potential reset after a spike
occurs. In Ref. 50, a threshold balancing technique is proposed to directly convert DNNs to
SNNs without modifying their weights. The choice of the SNN neurons’ firing threshold allows
one to adjust between accuracy and latency for rate coded designs. In Ref. 51, the authors pro-
posed a conversion technique based on time to first spike. This method succeeded to reduce
power at the expense of the accuracy. Although conversion from DNN to SNN has some lim-
itations in implementing operations, such as average pooling, bias, and batch operations, other
works have shown that some of these limitations can be overcome.4

Spike timing-dependent backpropagation. The discrete and nondifferentiable nature
of SNNs is inconsistent with the gradient descent-based algorithms that are commonly used for
DNNs, such as backpropagation. Consequently, several papers presented solutions to overcome
this challenge. One of the first proposed algorithms for applying gradient descent training to
SNNs is SpikeProp,52 which models each synapse as a set of parallel connections between a
single pre- and postsynaptic neuron pair, each with its own weight and delay value. Then, a
backpropagation-like algorithm is derived to minimize the error between the spike times of
a target output spike train and the actual SNN output spike times. One of the key ideas employed
is to approximate a linear relationship between the change in a neuron’s membrane potential and
its spike time. The authors show that their approach can be used to solve the classic XOR prob-
lem, but a limitation of their algorithm is that each neuron is only allowed to spike once per input.
Since then, several additional algorithms have been proposed, such as, Refs. 53 to 56. The main
idea of the proposed solution methods is to approximate the functionality of the spiking neurons
as a continuous differentiable function or a surrogate gradient (SG) estimate of the SNN’s real
gradients. Although, a drawback of these methods is that they often require a large number of
time steps per input when rate coding is used. This is because the precision of the rate code
increases as a function of the time window over which it is calculated. Another interesting tech-
nique, proposed in Ref. 57 is to use a random network of weights to propagate errors backwards
from the network’s output. In the regular implementation of backpropagation, errors need to be
propagated through the same weights in the backwards pass as in the forward pass. However, by
breaking the symmetry and using random weights in the backward pass, the authors are able to
achieve good performance with the potential to reduce the complexity of the algorithm’s hard-
ware implementation. Recently, various works presented the demonstration of STDB learning
rules for hardware implementations of SNNs. In Ref. 58, a simplified backpropagation learning
rule for SNNs is proposed that is mapped to a memristor-based neuromorphic processor. The
learning rule requires only two additional bits per neuron to store the neuron’s activity (spike or
no spike) in the previous time step, as well as the derivative of its activation value. In Refs. 59 and
60, the authors used a supervised learning algorithm based on temporal coding as an approach
for an energy efficient neuromorphic processor design. As discussed in Sec. 3.2, temporal codes
are generally more efficient than rate encoding. Furthermore, rate codes are quantized based on
the size of the window used to calculate them, making it more difficult to perform gradient
descent on them (since quantized functions are discontinuous). On the other hand, temporal
codes such as spike latency encoding have continuous values, enabling easier implementation
of algorithms such as backpropagation.

Combined learning. Another training approach, such as in Ref. 61 combines SNN-DNN
conversion followed by gradient descent training. By combining these two techniques, fewer
number of epochs and fewer time steps are required. A similar method was used in Ref. 56
where the authors proposed a quantization-aware spike timing-dependent backpropagation
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(Q-STDB) algorithm that maps DNNs to SNNs with quantized weights using the two-step
approach. Other hybrid methods such as Ref. 62 combine STDB learning rules with evolutionary
or other optimization algorithms.

3.3.2 Unsupervised learning

Unsupervised learning in SNNs is largely based on the postulate put forward by Donald Hebb,
which is often paraphrased as: “neurons that fire together wire together.”63 For rate-based neu-
rons, this learning rule can be expressed as a weight update that is proportional to the product of
the presynaptic and postsynaptic firing rates. In this case, it can be shown that the vector of
weights impinging on a postsynaptic neuron will eventually align with the dominant eigenvector
of the covariance matrix of inputs64 or the principal component of the presynaptic neurons. A
number of variations of Hebb’s rule have been proposed over the years. For example, Oja’s rule65

modifies the basic Hebbian learning rule with a weight decay term that ensures weight vectors
will not grow without bound. Other modifications, such as the Bienenstock, Cooper, and Munro
rule,66 force competition between synaptic weights, which can also help with normalization.
Hebbian-like learning in SNNs is often realized through spike timing-dependent plasticity
(STDP).67 STDP strengthens synapses between neurons where one causes the firing of another
and weakens those where there is no evidence of the causation. The causal relationship or lack
thereof is inferred from the relative pre- and postsynaptic firing times. If the presyaptic neuron
fires shortly before the postsynaptic neuron, then the synapse is strengthened (LTP). If the pre-
synaptic neuron fires shortly after the postsynaptic neuron, then the synapse is weakened (LTD).
By reinforcing the causal relationships, the network learns correlations between different fea-
tures of the inputs. Combining STDP learning with other constructs such as lateral inhibition
(firing of one neuron causes reduced activity of its neighbors) can enable unsupervised extraction
of discriminative input features. However, as demonstrated in works such as Ref. 68, more
research needs to be done to get the performance of STDP feature learning to the level of more
conventional methods such as autoencoders. Recently, various works presented the demonstra-
tion of SNN hardware focused on the STDP learning rule.69–72 In addition, approaches that com-
bine unsupervised learning with supervised or reinforcement learning have also been explored
for SNNs.73

4 Neuromorphic Vision Sensors

Efficient implementation of the SNN models discussed in the last section for vision tasks starts
with a good strategy for encoding raw visual data. The human eye has the capability to perceive a
dynamic range of 160 dB overall,74 distinguishing details both in intense sunlight and dim star-
light. It has been reported that the intrascene dynamic range of the human retina exceeds 120 dB
even in relatively dim light environments. At the same time, the human eye can detect flashes as
short as a few milliseconds.74 Designing a camera that meets these specifications is a great
challenge.74 Broadly speaking, there are two types of cameras: conventional frame-based cam-
eras and event-based cameras. Frame-based cameras capture complete light intensity informa-
tion blindly at a fixed rate,75 even if the scene is static. The aim of event-based cameras is to
emulate the behavior of the biological eye by primarily capturing dynamic information such as
movement over time or spatial contrast.75 This significantly helps to alleviate downstream
processing latency, blurring during fast motion, data redundancy, and issues related to difficult
lighting conditions.76,77 The outputs of the event-based cameras are characterized by an address-
event representation with four different components: (x, y) interpreted as the two-dimensional
coordinates of the event, a timestamp (t), and a polarity (p) for the change.75 Because of the
event-driven nature of the camera’s output, it easily forms a front end for downstream processing
by SNNs. The difference between the two camera types is shown in Fig. 5. On the left, a frame-
based camera captures a poster of rocks. Even if both the scene and the camera are static, the
frame-based camera will continue to capture all of the pixel intensity information. In the center,
an event-based camera reports areas of high temporal contrast (red and blue) while ignoring areas
that have small changes in pixel intensities over time (gray). Here, the event camera is moving
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slowly across the poster. On the right, the event camera moves more quickly, which is reflected
by a higher level of activity in the camera’s output.

The first practical event-based sensor, the 64 × 64 pixel dynamic vision sensor (DVS), was
developed by iniVation with the collaboration of the Institute for Neuro-Informatics (INI) at the
Swiss Federal Institute of Technology in Zurich (ETH-Zurich).79 In 2006, they developed a
128 × 128 pixel array.80 Soon after, the performance metrics, such as minimum attainable event
threshold, threshold mismatch, pixel bandwidth, dynamic range, and latency, were proposed
as critical metrics for characterizing the performance of event-based cameras.81 Today, a number
of event-based cameras are commercially available,82 and below we review a few of the key
processing steps in their operation.

4.1 Principle of Operation

The history of neuromorphic event-based cameras dates back to the work of Mead’s logarithmic
pixel sensor83,84 used in the early Mahowald and Mead silicon retinas photoreceptor85 and in
their See Hear chip.86 Figure 6(a) shows a transistor-level design of a photoreceptor circuit.87

The principle idea is that a model of the background illumination is learned over time and com-
pared with the light intensity given as the output of a photodiode. The output of the circuit
conveys information about relative changes between the model and the intensity indicated
by the photodiode, allowing only temporal changes in illumination to be sent for downstream
processing.

The photodiode’s current is sourced from an NMOS transistor Qfb. The NMOS transistor’s
gate is connected to the output of an inverting amplifier (Qp, Qcas, Qn) whose input is connected
to the photodiode. This structure, known as transimpedance configuration, converts the loga-
rithmic photocurrent to a voltage, which also hold the photodiode clamped at a virtual ground.89

The model of intensity over large time scales is stored as a charge on capacitor C1. The transistor
Qfb works in subthreshold mode and its feedback supplies the model photocurrent Ibg.

87 The gate

Fig. 5 Differences between standard (frame-based) and event-based cameras. Event cameras
only capture dynamic information that comes from spatial and temporal changes in pixel
intensities.78

Fig. 6 (a) A photoreceptor in transistor form labeled with the elements of the conceptual model.87

(b) The basic structure of simple DVS pixel.88
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voltage Vf and the photocurrent Ibg þ i control the value of voltage Vp. As the transistor Qfb

works in subthreshold mode, the current is in exponential form, and the receptor (i.e., photo-
diode) becomes a logarithmic detector. The output voltage Vp is very small, thus an inverting
amplifier with high gain is needed. The memory behavior is achieved by feeding the output Vo to
Vf through an adaptive element that could be represented by a resistor and two capacitors C1 and
C2. For more details see Refs. 87 and 89.

In Fig. 6(b), the logarithmic voltage Vo is converted from analog to digital by a differencing
amplifier that amplifies the change in log intensity from the memorized value that was stored
on the capacitor.75 This voltage Vd is compared with the reference signal through two com-
parators to detect the increasing and decreasing of the brightness. Consequently, an ON or OFF
event is generated if the input exceeds a specific threshold. The location, time, and polarity are
communicated at the camera’s output with each generated event. In addition, whenever the
event or the spike is triggered, the reset switch drains the capacitor to reset the change level
to zero.88

5 Neuromorphic Processors

Neuromorphic vision sensors such as the ones described in Sec. 4 perform encoding and early
processing of visual data, similar to the function of the retina and early stages of vision in the
brain. Efficiently emulating further processing stages in the brain, such as those along the ventral
stream, requires additional hardware for SNNs that can learn visual tasks such as object recog-
nition. While conventional computer hardware such as CPUs and GPUs offer flexibility for a
number of tasks, their architectures are not well-suited for efficient implementations of SNNs. In
particular, SNNs often run asynchronously, have massive parallelism, sparse communication,
and computation in memory, which stands in stark contrast to the sequential operations and von
Neumann separation of memory from computation on CPUs and GPUs.31 Consequently, a large
body of research has been directed toward filling this gap, developing neuromorphic processors
which are specifically customized for efficient SNN acceleration, moving from von Neumann
architectures to distributed and compute-in-memory designs.18

Neuromorphic processors can have digital, analog, or mixed signal implementations. The
analog and mixed signal implementations replicate the biological brain better than digital
designs in terms of power and speed.90 In fact, the concept of neuromorphic computing was
originally proposed as a paradigm in which analog ICs mimicked the behavior of neural tissue
by leveraging the inherent properties of devices such as MOSFETs, resistors, capacitors, etc. For
example, Mead’s axon-hillock spiking neuron uses an RC circuit to emulate the behavior of a
leaky cell membrane and an amplifier with positive feedback to produce spikes once a voltage
threshold is reached.91 Since then, several analog designs with varying levels of complexity have
been proposed to efficiently mimick neuronal and synaptic behavior.92 However, scaling up ana-
log designs presents a significant challenge as they suffer from effects of noise and process,
voltage, and temperature variations, which can limit the precision/reliability of SNN computa-
tions compared to digital designs. In contrast, digital designs offer better flexibility, which helps
designers to quickly prototype different types of algorithms with low power consumption com-
pared to GPUs. Mixed signal chips combine the advantages of the analog chips (e.g., low power
consumption) and the digital ones (e.g., high precision). Below we highlight some of the key
design features and application spaces of state-of-the-art neuromorphic processors, with a sum-
mary comparison of large-scale designs given in Table 2.

5.1 Large Scale Analog/Mixed-Signal Neuromorphic Processors

Neurogrid93 and BrainScaleS94 are two of the most well-known neuromorphic processors that are
based on analog/mixed-signal designs. Neurogrid is a subthreshold mixed analog–digital system
designed by the Brains in Silicon group at Stanford university and fabricated in 180-nm CMOS
technology. This chip is designed to emulate biophysics of cortical models93 with million of
neurons and billion of synapses. The chip does not support on-chip learning. Recently, their
group implemented a Braindrop prototype chip that is fabricated on 28-nm FDSOI technology
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process and has 4096 neurons integrated into a single core. Their goal is to build multiple cores
of Braindrop to construct a large system called Brainstorm.

BrainScaleS is an above threshold mixed analog/digital system at wafer scale.95 This work is
based on the fast analog computing with emergent transient states project and is a collaborative
effort between the University of Heidelberg and Dresden University of Technology. Fabricated
at the 180-nm node, BrainScaleS contains around 180 k neurons and 40 M synapses. This
chip runs faster than the biological brain with acceleration factor ranging from 103 to 105 to
understand the biological functions of the brain with emphasis on long term learning. At the
2018 Neuro-Inspired Computational Elements (NICE) Workshop, the second generation of
BrainScaleS processor was released with 64 neurons and 2 k synapses. It includes a program-
mable plasticity processor as well as a multicompartment neuron model that enables a range of
behaviors such as dendritic computations and structural plasticity. For example, in Ref. 96, it is
demonstrated that a combination of structural plasticity, based on synaptic pruning and reassign-
ment, and Hebbian learning leads to high classification accuracy and optimized resource uti-
lization on BrainScales-2.

5.2 Large-Scale Digital Neuromorphic Processors

Three of the most prominent large-scale digital neuromorphic processors are SpiNNaker from
the University of Manchester, TrueNorth from IBM, and Loihi from Intel. SpiNNaker is a 130-
nm CMOS design with a distributed von Neumann architecture,97 employing 18 ARM processor
cores per chip. As part of the European Human Brain Project, it is used in studies directed at
understanding detailed brain behavior.15 SpiNNaker has been paired with event camera appli-
cations, such as stereo depth estimation,98 optic flow computation,99 object tracking,100 and
object recognition.101 A second generation of SpiNNaker is in progress. Their aim is to simulate
a large number of neurons per chip compared with the first generation and their prototype chip is
implemented in 22-nm FDSOI technology.

TrueNorth is a digital asynchronous chip with fixed hardware built by IBM under the
DARPA SYNAPSE program. This chip follows the full custom digital hardware implementa-
tion, which is characterized by high density. Each chip contains around 5.4 million transistors
fabricated in 28-nm CMOS technology. It achieves a very low average power consumption of
around 70 mW. This energy efficiency partially stems from close coupling of memory used to
store synaptic weights with processing logic for computing neuron activations. It also uses
very low precision computation (e.g., ternary synaptic weights), which saves power and area.

Table 2 Comparison of large-scale neuromorphic processors.

Platform Brain SpiNNaker Loihi TrueNorth Neurogrid BrainScaleS

Technology Biology Digital Digital Digital Analog Analog

Number of transistors — 100 M 2.07 B 5.4 B 23 M 15 M

Chip size 2 L 1 cm2 60 mm2 4.3 cm2 1.7 cm2 0.5 cm2

Neurons/chip 1011 16 k 131 k 1 M 65 k 512

Synapses/chip 1015 16 M 126 M 256 M 100 M 100 k

Chips/board — 48 — 16 16 352

Neurons/board — 768 k — 16 M 1 M 200 k

Synapses/board — 768 M — 4 B 4 B 40 M

Power/efficiency
metrics

20 W — 23.6 pJ/
synaptic Op.

26 pJ/
synaptic Op.

— —

On chip learning Yes Yes Yes No No Yes
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TrueNorth has been used in a number of vision applications, such as gesture recognition,9 stereo
reconstruction,102 and optical flow estimation.99 Its energy advantage has also been demonstrated
in works such as Ref. 103, where object detection using the you only look once algorithm was
shown to be 280× more energy efficient on TrueNorth versus a GPU. One big drawback of
TrueNorth is that it does not perform on-chip learning, which limits its use in applications where
real-time adaptation is needed.

In 2018, Intel released its Loihi SNN chip with a pure digital asynchronous design, fabricated
on 14-nm FinFET process technology.104 Loihi offers flexibility for tuning neuron and synaptic
dynamics, allowing it to achieve a larger range of biologically plausible behaviors and learning
dynamics compared to TrueNorth. A number of vision applications have been explored using
the Loihi chip, such as image retrieval and segmentation, object classification, and gesture
recognition.105 Intel’s Neuromorphic Research Community (INRC) encourages researchers to
use Loihi to find creative solutions for the current challenges that face neuromrophic computing
architectures for real-time applications.

5.3 Other Low Power SNN Accelerators

In addition to the large-scale design presented above, a number of other chips have been pro-
posed for low power acceleration of SNN algorithms. Two chips, ODIM and MORPHIC, were
released by Frenkel et al. in 2018106 and 2019,107 respectively. They have a digital full custom
design and have been used for vision applications such as image classification. ODIN was
fabricated in 28-nm FDSOI CMOS technology and supports online learning through spike-
driven synaptic plasticity. It also supports both LIF and Izhikevich models for flexible neuron
dynamics. MORPHIC is a quad core digital processor, fabricated with 65 nm technology. It uses
binary weights as an approach to reduce power and increase efficiency of the system along with
a stochastic spike-driven synaptic plasticity learning rule. Another chip, the reconfigurable
online learning spiking neuromorphic processor (ROLLS),108 employs a subthreshold analog
mixed signal design. ROLLS has 256 neurons, 128 k synapses, and support for online learning.
Recently, it has been scaled up to the dynamic neuromorphic asynchronous processor
(DYNAPs) with 1 k neurons and 64 k synapses.109

Often, it is critical to codesign both the hardware and software for neuromorphic processors.
For example, Ref. 110 uses hardware–software co-design to leverage the sparsity of spike trains
for a low-power event-triggered neuromorphic chip. It can be trained online with weight-depen-
dent STDP algorithms and efficiently decreases hardware complexity through an innovative
modification of the STDP learning rule. We believe that close coupling of hardware/algorithm/
software design is key for next-generation neuromorphic systems.

6 Memory Technologies for Spike-Based Neuromorphic Computing

Our brains contain on the order of 100 trillion synaptic connections which are responsible for
learning and maintaining information that is related to our entire lifetime of experiences in a 20-
W power budget. To emulate the brain’s massive storage and learning capabilities, it is critical
for neuromorphic computing hardware to incorporate efficient memory technologies. For energy
efficiency, it is desirable to have synaptic weights and other parameters stored in nonvolatile
memory (NVM) devices, which do not require frequent refresh operations to maintain their state.
This is especially true if the SNNs implemented on the neuromorphic hardware have very sparse
synaptic operations. There are a number of emerging NVM technologies that are being explored
for neuromorphic computing applications, including two-terminal devices, which can generally
be classified as “memristors.” Memristors exhibit behavioral similarity to chemical synapses,
combining storage, adaptation, and physical connectivity in one device.18 Table 3 shows a com-
parison of different two-terminal NVM technologies across several key metrics. Each device
exploits different physics to achieve nonvolatile storage of information as a resistance state.
Then, Ohm’s law can be exploited to read the stored information by applying a voltage and
reading the resulting current. In phase change memory (PCRAM), a phase change material
is transformed between amorphous and crystalline phases to increase or decrease its resistance
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value, respectively. One challenge associated with PCRAM is the high current that is required to
melt the phase change material, leading to large write energies. Another drawback is the rela-
tively slow write latency which stems from the time required for the crystallization process.113

On the other hand, resistive RAM (ReRAM) and spin transfer torque RAM (STTRAM) both
have low write energies and latencies, making them better suited for neuromorphic accelerators
with on-chip learning. STTRAM is composed of a magnetic tunneling junction, where electron
tunneling probability is modulated by modifying the relative magnetic orientation of two ferro-
magnetic films. Two drawbacks of STTRAM are its small number of achievable resistance states
(2 bits) and low ON/OFF conductance ratio. In contrast, ReRAM, which operates by modulating
the distribution of defects such as oxygen vacancies in an insulating transition metal oxide film,
offers a high ON/OFF ratio and offers 4 to 6 bits of memory, which enables quantized neural
network inference with limited accuracy degradation.114

Three-terminal NVMs have also been explored for implementing synaptic functionality in
neuromorphic computing. For example, neuromorphic architectures based on flash memory
have been studied for the past several years.115 In Ref. 116, a three-layer neural network with
784 inputs, fabricated in 180 nm technology, uses flash memory cells to store synaptic weights.
The chip was programmed using a transfer learning approach with 6-bit analog precision and the
experimental results shows an accuracy of 94.7% for classification of MNIST handwritten digits.
Other three-terminal devices such as ferroelectric field effect transistors (FeFET) have also been
explored. In Ref. 117, the authors present a recent experiment for a three-layer SNN with 784
inputs to classify handwritten digits. This experiment was demonstrated on 28-nm high-K metal
gate FeFET technology. They use an SG learning algorithm to perform supervised learning on
the MNIST dataset. The main advantage of using FeFETs for implementing electronic synapses
is the reduction of the variability compared with the other emerging technologies such as two-
terminal memristor devices.

Both two-terminal and three-terminal NVMs can be integrated into high-density crossbar
circuits,118–122 as shown in Fig. 7, which offers a 4F2 cell size, where F is the wire half-pitch.
The NVM conductances implement the weight matrix between two densely connected layers of
neurons. Each spike produced in a presynaptic layer of neurons produces a current that flows
through each NVM in the corresponding row that is proportional to its stored conductance. The
currents from each row get summed on the columns and are the inputs to the postsynaptic neu-
rons. Therefore, loosely speaking, each row can be though of as a presyanaptic neuron’s axon,
while each column is the postsynaptic neuron’s set of dendrites. Crossbar sizes up to 128 × 128

have been demonstrated,123 and multiple crossbars can be combined to implement larger layers.
However, a key challenge, especially in large crossbars, is sneak path current, which is current
that flows in one of several unintended parallel current pathways, and is affected by several
factors, such as the NVM OFF conductance, the potential at the inputs of postsynaptic neurons,

Table 3 Comparison of NVM technologies for neuromorphic
computing.111,112

PCRAM ReRAM STTRAM

Cell size 4 to 20F 2 4 to 6F 2 12F 2

Write energy 6 nJ 2 nJ <1 nJ

Write latency 100 ns 10 ns 2 to 25 ns

Read latency 10 ns 1 to 10 ns 2 to 25 ns

MLC 4 bits 4 to 6 bits 2 bits

Endurance 106 to 109 106 to 109 1014

Retention 104 s 104 s —

ON/OFF ratio 103 103 10
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parasitic wire resistance, and more.124 Sneak currents not only cause memory read and write
errors but also increase the crossbar power consumption. Several mitigation strategies exist, such
as row/column grounding,125 algorithmic approaches (e.g., Ref. 126), and use of selector
devices.127 The use of MOSFET selectors is the most common approach to mitigating sneak
paths and allows for easy and controllable isolation of NVM cells to avoid interference between
cells on adjacent bit lines. Two-terminal NVMs such as ReRAM integrated with MOSFET selec-
tors are called 1T1R cells. Other NVMs, such as FeFETs128 and other gated synaptic devices,12

employ a three-terminal structure, so their selector is “built-in.”
Neuromorphic chips based on NVM crossbars have been demonstrated for vision tasks, such

as classification129–131 and several others.132 Training these chips can be performed on or off-
chip. For off-chip training, synaptic weights are found using software such as Tensorflow and
then transferred onto the chip by programming the NVM conductances.133–136 A number of
works have also proposed circuits for both supervised137–140 and unsupervised141,142 on-chip
training. NVM crossbar-based implementations often come with huge energy advantages over
conventional hardware. For example, in Ref. 143, the authors show that an NVM crossbar-based
neuromorphic chip can achieve over 100;000× improvement in energy efficiency for classifi-
cation tasks compared with a reduced instruction set computer processor. However, despite these
successes, there are some key remaining challenges in mapping neural networks to NVM cross-
bar architectures that need to be addressed. One challenge is related to the variability of NVM
devices, which can cause device-to-device differences in behavior (e.g., change in resistance
with a given write voltage) or differences in a single device each time it is read/written.
See, e.g., Refs. 144 and 145, for a review on NVM devices for neuromorphic computing.
These discrepancies between the expected and actual fabricated NVM device behaviors can lead
to significant degradation of a neural network’s performance when it is mapped to the
hardware.146–148 To mitigate the effect of device variations, it is important to either map the loca-
tion of faulty devices before or during the training process149,150 or perform training in-situ (on-
chip).146–148 On-chip training is especially attractive because it allows the device variations/faults
to be incorporated into the training process without the need to explicitly map them. However,
support for complete on-chip training requires additional circuitry to support the state-of-the-art
learning methods, which may have a large overhead. Hybrid training represents a good com-
promise, where a portion of the training is performed off-chip and some additional on-chip train-
ing, with reduced overhead, is used to mitigate the effects of device variations.147,148 But, even in
the ideal case of variation-free circuits, a key challenge remains in mapping neural networks to
NVM crossbar architectures. The difficulty stems from the fact that the number of weights
between two layers of neurons may be larger or smaller than the size of the crossbars available
on the hardware. Moreover, memristor crossbars can be utilized most efficiently for strictly

Fig. 7 NVM crossbar circuit for implementing weight matrix between two fully connected neuron
layers in a neuromorphic DNN accelerator.
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layered neural networks, where each layer is fully connected to the next layer, and there are no
recurrent connections or feedforward connections that skip layers. Otherwise, neural network
topologies that contain sparse connections, skip connections, feedback, weight matrices that do
not match the size of the crossbars will lead to either (i) the need for multiple crossbars to re-
present the weight matrix between a set of pre- and postsynaptic neurons, (ii) a single crossbar
representing portions of multiple weight matrices, and/or (iii) underutilization of the crossbars.
In these cases, it is important to optimize the mapping of weights to the different crossbars in the
neuromorphic system to optimize multiple objectives, such as speed, energy, and number of
required crossbars. Several mapping algorithms have been proposed to satisfy these objectives.
For example, in Ref. 151, the authors propose an algorithm to optimize mapping of neural net-
works to neuromorphic hardware under different constraints such as limited neuron fan-in and
fan-out, which, in the context of NVM crossbar architectures leads to the optimum number of
crossbars needed to implement a particular topology. In Ref. 152, a different mapping algorithm
is proposed that instead focuses on improving the speed and energy consumption of neuromor-
phic SNN implementations based on NVM crossbars by optimizing neuron and synapse place-
ment using graph partitioning algorithms. In a follow-up paper, the same authors focus on
optimizing their algorithm to increase its speed for fast run-time mapping of SNNs to neuro-
morphic hardware.153

7 Future Directions and Conclusions

In this paper, we have provided a perspective on spike-based neuromorphic computing for brain-
inspired vision. Research in neuromorphic computing continues to grow rapidly, with over 5000
articles related to or at least mentioning the topic in 2021 alone and over 53,000 total. (These
numbers come from the number of search results for “neuromorphic” on Google Scholar.) The
growing complexity of DNN models and associated energy requirements makes the alternative
approach of neuromorphic computing particularly attractive for achieving AI on resource-
constrained edge devices, such as mobile phones, sensors, satellites, etc. Neuromorphic com-
puting’s sustained growth is also supported by several conferences and workshops devoted to the
topic such as the Telluride Neuromorphic Cognition Engineering Workshop, the Neuro-Inspired
Computational Elements (NICE) conference, the International Conference on Neuromorphic
Systems (ICONS), and the CapoCaccia Workshops, to name a few. The amount of activity
in the neuromorphic community is not only encouraging but also highlights that neuromorphic
computing, despite being several decades old, still offers a lot to be explored. We conclude this
review with a discussion of some exciting future directions.

7.1 Binarized Spike-Based Neuromorphic Hardware

Recently, the concept of binary neural networks (BNNs) have been proposed, in which the
weights and activations of the network take on binary values,154 enabling extremely efficient
hardware implementation. So far, however, this idea has limited evaluation in spike-based neuro-
morphic systems, with a few exceptions, such as Ref. 155, where the authors use binary SNNs
based on temporal coding as an approach to increase speed and reduce computations. The poten-
tial of BNNs for spike-based hardware is that they significantly reduce the design complexity of
neuron and synapse circuits. In particular, synapse circuits based on NVM technologies would
be able to leverage NVM devices that have been optimized for memory designs with 1-bit res-
olution cells. Furthermore, expensive neuron circuits could be replaced with simplified threshold
activations or even single-spike codes. However, training neural networks (spiking or nonspik-
ing) with binary weights or activations becomes challenging on-chip because it requires a high-
precision copy of neural network weights to be stored along with their binarized versions. This
means that any efficiency gained by reducing the weight precision is lost after considering the
memory requirements for training. While some stochastic techniques such as Ref. 156 eliminate
the need for storing high-precision data during training, they have degraded performance.
Therefore, the design of efficient on-chip training methods for BNNs and their extension to
spiking BNNs is an open problem.
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7.2 Incorporation of Non-Neuronal Cells

Neuroglial (glial) cells are just as numerous as neurons in the brain, yet they are typically not
modeled in neuromorphic systems. Historically, glial cells such as astrocytes were thought to
only perform support and maintenance functions without explicitly influencing the brain’s
computations.23 Although, it has been shown that astrocytes play key roles in neural computation
such as influence of synaptic activity and plasticity, as well as modulation of neuron activity.157

However, the ways in which astrocyte behavior manifests to enable specific computational prim-
itives is largely unknown. Even so, it is easy to imagine that the modulatory function of astro-
cytes could play a role in abilities such as continual learning without catastrophic forgetting,
which is a key challenge in implementing lifelong learning systems.158 For humans, lifelong
learning is effortless. For example, we can easily learn new categories of objects without for-
getting those that we learned previously. Replicating this behavior in neuromorphic hardware
would have huge implications for the design of autonomous systems. Some limited work on
integrating astrocyte models with neurons on neuromorphic hardware have been proposed.
For example, in Ref. 159, it is shown that neuron–astrocyte interaction enhances the information
processing capabilities of a neuromorphic system and in Ref. 160, the authors are able to model
astrocytes’ calcium ion dynamics in a VLSI circuit. However, to the authors’ knowledge, there
has not yet been any demonstration of a fundamentally new capability in neuromorphic hardware
enabled by astrocytes. One potential avenue is to explore the astrocytes’ regulation of energy in
the brain as a source of inspiration for energy-efficient neuromorphic chip design.40

7.3 Adversarial Robustness of Spike-Based Neuromorphic Systems

Since 2013,161 a growing group of researchers has been studying the brittleness of DNNs when
applied to tasks such as visual object classification. Backpropagation learning in DNNs creates
classification decision regions in the input space of the network which tend to have boundaries
that lie close to the training and test data. As a result, small perturbations of an image (often
imperceptible to a human observer) can cause the DNNs to misclassify the input with high con-
fidence. These so-called adversarial examples represent a significant safety and security vulner-
ability for DNNs. Several theoretical analyses and defenses have been proposed in the
literature,162 but these are almost entirely from the algorithm perspective, without consideration
of the underlying hardware. As neuromorphic computing becomes more mainstream, we will
entrust more of our safety and security-critical applications to neuromorphic implementations of
AI algorithms. As such, it is imperative that we understand the implications of hardware-specific
behaviors on the robustness of these systems to adversarial examples. For example, device vari-
ability due to process variations or transient faults that occur in synapse and neuron circuits will
have an effect on adversarial robustness. Some limited work in has been done in this area, such
as,163–167 but it is still an open question if and how spike-based neuromorphic hardware will
exacerbate the already-brittle nature of neural network algorithms for vision.

In closing, we strongly believe that a key factor for the advancement of neuromorphic tech-
nologies (in general and for the future directions listed above) is the collaboration among
researchers from a diverse set of disciplines, such as device physics, electrical and computer
engineering, computer science, neuroscience, and psychology. New discoveries and innovations
in all of these fields are required for us to improve our understanding of how the brain works,
efficiently emulate its behaviors, and leverage that behavior to make transformational advances
in AI and neuromorphic systems for the betterment of our society.
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