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Abstract. High-dimensional imaging features extracted from diagnostic imaging, called radiomics, are increas-
ingly reported for diagnosis, prognosis, and response to therapy. Establishing the sensitivity of radiomic features
to variation in scan protocols is necessary because acquisition and reconstruction parameters can vary widely
across and within institutions. Our objective was to assess the reproducibility of radiomic features derived from
computed tomography (CT) images by varying tube current (mA), noise index, and reconstruction [adaptive
statistical iterative reconstruction (ASiR)], parameters increasingly varied by institutions seeking to reduce radi-
ation dose in their patients. We extracted radiomic features from CT images of a uniform water phantom,
anthropomorphic phantom, and a human scan. Scans were acquired from the phantoms with six tube currents
(50, 100, 200, 300, 400, and 500 mA) and five noise index levels (12, 14, 16, 18, and 20), respectively. Scans of
the phantoms and patient were reconstructed from 0% ASiR (i.e., filtered back projection) to 100% ASiR in
increments of 10%. Two hundred and forty-eight well-known radiomic features were extracted from all
scans. The concordance correlation coefficient was used to assess agreement of features. Our analysis sug-
gests that image acquisition parameters (tube current, noise index) as well as the reconstruction technique
strongly influence radiomic feature reproducibility and demonstrate a subset of reproducible features potentially
usable in clinical practice. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.5.1.011020]
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1 Introduction
Improvements in the resolution of diagnostic imaging over a de-
cade ago have created an abundance of retrospectively available
images that contain information, which can be capitalized upon
to create predictive treatment algorithms. Radiomics, the high-
throughput extraction of imaging features from high-resolution
images, has opened up new possibilities for the diagnosis, stag-
ing, and treatment stratification of patients with malignant
pathologies.1–3 Extracting additional information from routine
imaging is an attractive opportunity for clinicians looking for
low-cost, objective, and noninvasive biomarkers for personal-
ized cancer treatment. With respect to the liver, for example,
publications have emerged linking quantitative imaging features
to clinicopathological and outcome variables in single institu-
tion retrospective series.4–12 While clinically promising, the suc-
cessful clinical implementation of radiomics as a trusted
biomarker requires reproducibility experiments studying the
effect of varying image acquisition and reconstruction parame-
ters on imaging features.

Establishing the repeatability and reproducibility of radiomic
features is necessary since computed tomography (CT) scan
acquisition and reconstruction parameters can not only vary
widely across institutions, but also within an institution, as pro-
tocol standardization is clinically challenging. Figure 1 shows
an example of a portal venous phase CT scan of the liver
acquired of the same patient at two institutions, 10 days
apart. Despite the fact that attenuation (brightness) differences

are observable in these images, little attention has been paid to
the effect that imaging protocol variation has on radiomic fea-
tures. In CT phantom studies, differences in slice thickness and
reconstruction algorithm (standard versus lung) significantly
influenced radiomic features.13 Recent work on reproducibility
of features extracted from lung CT has demonstrated a subset of
reproducible, informative, and nonredundant radiomic features
in the presence of scan protocol differences2,14–19 with similar
findings observed for bone CT applications.20 However, lung
cancers, contrary to liver cancers, are surrounded by air and
imaged without intravenous contrast. Thus, liver-specific studies
based on contrast-enhanced CT are needed to determine repro-
ducibility for clinical use. Motivated by a study demonstrating
the effect of slice thickness variation on radiomic feature perfor-
mance assessed across noncontrast, arterial, and portal venous
phases in liver CT,21 further study is warranted.

Adaptive statistical iterative reconstruction (ASiR™, GE
Healthcare, Waukesha, Wisconsin) is a noise reduction-based
reconstruction algorithm introduced for CT in 2008. ASiR iter-
atively refines each pixel value measured with filtered back pro-
jection (FBP) to an idealized estimate, predicted by noise
modeling.22 It is implemented in discrete levels by adjusting
the percentage of ASiR blended with the FBP reconstruction
of the image, which enables the user to control overall magni-
tude of noise in the image. Recent studies showed the degrada-
tion of spatial resolution due to ASiR,23 which affects
radiographic performance.24,25 In addition, the amount of radi-
ation dose has an effect on CT appearance; reduction of dose
increases noise, which affects observers’ performance in disease
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detection.26,27 Automated tube current modulation along the
z-axis optimizes the radiation dose to the patient while attempt-
ing to maintain a predetermined noise level throughout the scan
volume. The noise level within the scan volume is determined
by an operator preset noise index. The effect of ASiR on volu-
metric tumor measurements was recently assessed using a phan-
tom (with known dimensions) designed to mimic the tissue
properties of liver in imaging.28 Lower contrast of the lesion rel-
ative to the background parenchyma with increasing ASiR con-
tributed to variability in volumetric measurements; however, the
effect of ASiR on radiomic features is unknown. Figure 2 dem-
onstrates the increase in blurring effect due to gradual increase
in ASiR from 0% (pure FBP) to 100% ASiR in exemplar phan-
tom and human scans.

Although CT-based imaging features have been shown to
be promising prognostic biomarkers for clinical use, the
robustness of these features on systems equipped with
iterative reconstruction algorithms and automated tube current

modulation is unknown. Understanding the variability of radio-
mic features is necessary to use radiomics in clinical practice.
Solomon et al.29 investigated the effect of radiation dose and
reconstruction algorithm on imaging features derived from
gray-level co-occurrence matrices (GLCM) and intensity histo-
grams. Therefore, the present study aimed to determine the sen-
sitivity of radiomic features to modulating tube currents,
variable noise index, and reconstruction algorithms with
many more imaging features commonly described in the quan-
titative imaging literature. We sought to perform a controlled
study with phantoms and a human scan to motivate future pro-
spective assessment. We chose to investigate the effect of tube
current, noise index, and ASiR on imaging features, parameters
increasingly varied by institutions looking to reduce radiation
dose to their patients.

2 Materials and Methods

2.1 Image Data Sources

A uniform water phantom (UWP, GE Healthcare, Waukesha,
Wisconsin) for CT image quality control and an adult-sized
anthropomorphic dosimetry verification phantom (ATOM phan-
toms, CIRS, Norfolk, Virginia) were employed for the study.
The UWP was attached to the end of the CT table and the
anthropomorphic phantom was positioned similar to clinical
scanning (Fig. 3). The UWP is made of acrylic and filled
with water, whereas the anthropomorphic phantom consists
of five simulated tissue types including the liver. The tissue
types are engineered to produce photon attenuation values
within 1% of those for real tissues for the bone and the soft tis-
sue substitutes, and 3% for the lung tissue substitute over the
range of 30 to 20,000 keV.30 Phantoms were employed so
that we could systemically vary tube current and noise index,
requiring multiple scans, which would be difficult to justify
in patients due to the added radiation dose. A single abdominal
CT scan of a patient was also included in the study so that we
could study the effect of reconstruction parameters in a clinical
setting.

2.2 CT Scan Acquisition and Reconstruction

All CT scans were acquired using a GE 64 slice multidetector
scanner (GE Healthcare, Waukesha, Wisconsin) using the
parameters listed in Table 1. The UWP scans were acquired

Fig. 1 Comparison of imaging protocol differences: portal venous phase CT acquired of the same patient
10 days apart.

Fig. 2 Changes in the appearance of image texture with increasing
ASiR.
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at six different fixed tube currents: 50, 100, 200, 300, 400, and
500 mA, respectively. The anthropomorphic phantom was
scanned at five noise index (NI) levels (12, 14, 16, 18, and
20). Modulating tube current values in the range [61 to 69],
[99 to 104], [70 to 79], [52 to 63], and [42 to 49] were recorded
from the DICOM header of the anthropomorphic phantom scans
for NI 12, 14, 16, 18, and 20, respectively. A second data acquis-
ition verified that the values increased at NI 14 indicating unex-
pected behavior not controlled in the experiment. A contrast-
enhanced patient CTobtained as part of routine clinical manage-
ment was also included. The CT image was acquired following
the administration of 150-mL iodinated contrast (Omnipaque
300, GE Healthcare, New Jersey) at 4.0 mL∕s with noise
index of 14. CT reconstruction was performed with FBP and
ASiR on all images. All images were reconstructed from
FBP (0% ASiR) to 100% ASiR in increments of 10%. FBP
is the most widely used reconstruction algorithm; hence, it
was considered the gold standard reference image set in this
study. The choice to vary mA, noise index, and ASiR was
made based on our clinical experience that these acquisition
and reconstruction parameters often vary across different insti-
tutions. At our cancer center, we tend to use lower noise indices
than at outpatient CT facilities, for example, and apply lower
ASiR levels. The wide variability in specific mA values inves-
tigated in this study may be greater than those used clinically
(most sites use 100 to 300 mA) but included here for

Fig. 3 Phantoms used in study: (a) uniform water phantom and (b) anthropomorphic phantom recon-
structed with FBP. Regions of interest included in analysis are outlined in green.

Table 1 CT acquisition and reconstruction parameters.

Parameter UWP
Anthropomorphic

phantom Human

GE model Discovery
750

Discovery 750 HD Discovery 750
HD

Detector rows 64 64 64

Scan mode Helical Helical Helical

kVp 120 120 120

Display field
of view (cm)

25 40 50

Filter type HEAD BODY BODY

Convolutional
Kernel

STANDARD STANDARD STANDARD

Axial pixel size
(mm)

0.48 0.78 0.87

Slice thickness
(mm)

5 5 5

Focal spot size (cm) 0.7 1.2 0.7
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completeness. However, the choice of NI reflects clinical con-
ditions at our institution.

2.3 Image Segmentation

All images were subject to preprocessing prior to radiomic fea-
ture extraction. The central portion of the UWP and the
anthropomorphic phantom were manually segmented using
Scout Liver (Analogic Corporation, Peabody, Massachusetts)
(Fig. 3). The image mask was propagated to all other scans
such that all scans had the same segmentation applied. This
was possible because the position of the phantoms remained
fixed in the imaging unit for every scan. For the human scan,
the liver region was semiautomatically segmented from the
CT scan using Scout Liver (Fig. 4).

2.4 Extraction of Radiomic Features

For each of the segmented regions of interest, we extracted stan-
dard radiomic features that broadly describe variation in CT
enhancement patterns (i.e., heterogeneity), which are well
described in the image processing literature. Briefly, these

Fig. 4 Segmented liver region from human CT reconstructed with
FBP used in analysis.

Table 2 Image features set investigated in this study.

A. GLCM (19 features) . . . 2. A12 (Contrast)

1. G1 (Energy) 59. L59 (Frequency of 58th bin of ULBP) 3. A13 (Correlation)

2. G2 (Contrast) 60. L60 (Frequency of 0th bin of RI-LBP) 4. A14 (Sum of squares)

3. G3 (Correlation) 61. L61 (Frequency of 1st bin of RI-LBP) 5. A15 (Inverse difference moment)

4. G4 (Sum of squares) . . . 6. A16 (Sum average)

5. G5 (Inverse difference moment) 69. L69 (Frequency of 9th bin of RI-LBP) 7. A17 (Sum variance)

6. G6 (Sum average) 70. L70 (Standard deviation (SD) of ULBP) 8. A18 (Entropy)

7. G7 (Sum variance) 71. L71 (Skewness of ULBP) 9. A19 (Difference variance)

8. G8 (Entropy) 72. L72 (Kurtosis of ULBP) 10. A110 (Sum entropy)

9. G9 (Difference variance) 73. L73 (Entropy of RI-ULBP) 11. A111 (Difference entropy)

10. G10 (Sum entropy) 74. L74 (SD of RI-ULBP) 12. A112 (Information-theoretic

11. G11 (Difference entropy) 75. L75 (Skewness of RI-ULBP) measures of correlation 1)

12. G12 (Information-theoretic measures of
correlation 1)

76. L76 (Kurtosis of RI-ULBP) 13. A113 (Information-theoretic measures
of correlation 2)

13. G13 (Information-theoretic measures of
correlation 2)

77. L77 (Entropy of RI-ULBP)

14. G14 (Maximum correlation coefficient) 78. L78 (SD of LBP) 14. A114 (Maximum correlation coefficient)

15. G15 (Inertia) 79. L79 (Skewness of LBP) 15. A115 (Inertia)

16. G16 (Cluster shade) 80. L80 (Kurtosis of LBP) 16. A116 (Cluster shade)

17. G17 (Cluster prominence) 81. L81 (Entropy of LBP) 17. A117 (Cluster prominence)

18. G18 (Renyi entropy) 82. L82 (SD of RI-LBP) 18. A118 (Renyi entropy)

19. G19 (Tsallis entropy) 83. L83 (Skewness of RI-LBP) 19. A119 (Tsallis entropy)
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Table 3 Total number (percentage) of reproducible features out of 248 radiomic features for UWP with FBP reconstruction.

50 versus
100 mA

200 versus
300 mA

400 versus
500 mA

100 versus
400 mA

100 versus
500 mA

200 versus
500 mA

CCC ≥ 0.95 13 (5) 26 (10) 27 (11) 7 (3) 7 (3) 11 (4)

CCC ≥ 0.90 20 (8) 44 (18) 63 (25) 18 (7) 10 (4) 17 (7)

CCC ≥ 0.85 25 (10) 58 (23) 74 (30) 24 (10) 12 (5) 18 (7)

Table 2 (Continued).

B. RLM (11 features) 84. L84 (Kurtosis of RI-LBP) G. ACM2 (19 features)

1. R1 (Short run emphasis) 85. L85 (Entropy of RI-LBP) 1. A21 (Energy)

2. R2 (Long run emphasis) 86. L86 (SD of rotated LBP) 2. A22 (Contrast)

3. R3 (Gray-level nonuniformity) 87. L87 (Skewness of LBP) 3. A23 (Correlation)

4. R4 (Run length nonuniformity) 88. L88 (Kurtosis of LBP) 4. A24 (Sum of squares)

5. R5 (Run percentage) 89. L89 (Entropy of LBP) 5. A25 (Inverse difference moment)

6. R6 (Low gray-level run emphasis) 90. L90 (0th frequency coefficient of RI-
ULBP Fourier spectrum

6. A26 (Sum average)

7. R7 (High gray-level run emphasis) . . . 7. A27 (Sum variance)

8. R8 (Short run low gray-level emphasis) 127. L127 (37th frequency coefficient of RI-
ULBP Fourier Spectrum

8. A28 (Entropy)

9. R9 (Short run high gray-level emphasis) E. FD (48 features) 9. A29 (Difference variance)

10. R10 (Run low gray-level emphasis) 1. F1 (FD from 1st binary image from SFTA 10. A210 (Sum entropy)

11. R11 (Long run high gray-level
emphasis)

. . . 11. A211 (Difference entropy)

C. IH (5 features) 16. F16 (FD from 16th binary image from
SFTA

12. A212 (Information-theoretic measures
of correlation 1)

1. I1 (Mean) 17. F17 (Mean gray value from 1st binary
image from SFTA)

2. I2 (Standard deviation) . . . 13. A213 (Information-theoretic measures
of correlation 2)

3. I3 (Skewness) 32. F32 (Mean gray value from 16th binary
image from SFTA)

14. A214 (Maximum correlation coefficient)

4. I4 (Kurtosis) 33. F33 (Pixel count from 1st binary image
from SFTA)

15. A215 (Inertia)

5. Entropy . . . 16. A216 (Cluster shade)

D. LBP (127 features) 48. F48 (Pixel count from 16th binary
image from SFTA)

17. A217 (Cluster prominence)

1. L1 (Frequency of 0th bin of ULBP) F. ACM1 (19 features) 18. A218 (Renyi entropy)

2. L2 (Frequency of 1st bin of ULBP) 1. A11 (Energy) 19. A219 (Tsallis entropy)
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features can be categorized as first-order features based on the
intensity histogram and second-order texture-based features
based on spatial variation in pixel intensity. Intensity histogram
(IH) features included mean, standard deviation, skewness, kur-
tosis, and entropy. Texture features included GLCM, run-length
matrices (RLM), local binary patterns (LBP), fractal dimension
analysis (FD), and angle co-occurrence matrices (ACM).31–41

Radiomic features are listed in Table 2.
In total, 248 features were extracted using MATLAB

(MathWorks, Natick, Massachusetts). Averaging the feature val-
ues over all slices yielded one value for each feature for
each image.

2.5 Statistical Analysis

First the effect of tube current (or noise index) on radiomic fea-
tures was investigated by varying the tube current (or noise
index) for a specific reconstruction method. We then studied
the effect of reconstruction method on radiomic features by
keeping the acquisition parameters constant. When assessing
the agreement in radiomic features with reconstruction algo-
rithms (i.e., different ASiR levels), the FBP dataset was used
as the reference set.

Lin’s concordance correlation coefficient (CCC),42 a mea-
sure of concordance or agreement between two measurements,
was used to determine sensitivity of features to variations in

image noise, tube current, and reconstruction method. CCC
ranges from 0 to 1 (correlated), with perfect agreement at 1.
CCC is defined as

EQ-TARGET;temp:intralink-;e001;326;315CCC ¼
����1 −

D
ðx − yÞ

E
2

σ2x þ σ2y þ ðμx − μyÞ2
����; (1)

where hxi is a vector containing the value of a particular feature
for all cases in the first observation and hyi is a vector containing
the value of the same radiomic feature in the second observation;
σ2x and σ2y are the variances; and μx and μy are the means of each
vector. When assessing the agreement in radiomic features with
reconstruction algorithms, the FBP dataset was used as the refer-
ence set. We defined features with an absolute CCC ≥ 0.90 as
being reproducible.43 We also report the features with
CCC ≥ 0.85 and 0.95. Statistical analysis was performed
with MATLAB.

3 Results

3.1 Effect of Tube Current and Noise Index on
Radiomic Features

The number and percentage of reproducible radiomic features
(CCC ≥ 0.9) extracted from the UWP while varying the tube
currents (50 versus 100 mA, 200 versus 300 mA, 400 versus

Table 4 Total number (percentage) of reproducible features out of 248 radiomic features for anthropomorphic phantom with FBP reconstruction.

NI 12 versus 14 NI 14 versus 16 NI 16 versus 18 NI 12 versus 18 NI 12 versus 20 NI 14 versus 20

CCC ≥ 0.95 34 (14) 56 (23) 30 (12) 29 (12) 31 (13) 35 (14)

CCC ≥ 0.90 49 (20) 62 (25) 47 (19) 43 (17) 40 (16) 53 (21)

CCC ≥ 0.85 57 (23) 69 (28) 53 (21) 54 (22) 53 (21) 61 (25)

(a) mA=50 (b) mA=200 (c) mA=400 (d) mA=500

(e) NI=12 (f) NI=16 (g) NI=18 (h) NI=20

Fig. 5 CT pixel pattern appearance variation with increasing (a)–(d) tube current and (e)–(h) noise index
in the UWP and anthropomorphic phantom, respectively. The circle in the anthropomorphic phantom is a
rod designed to hold dosimeter.
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(d) Anthropomorphic Phantom

Fig. 6 Change in radiomic feature values over different NI and mA.

Table 5 Total number (percentage) of reproducible features out of 248 features for UWP, anthropomorphic phantom, and human for different ASiR
levels. Feature values are averaged all over tube currents and noise indices for the UWP and anthropomorphic phantom, respectively.

ASiR

UWP Anthropomorphic phantom Human

CCC ≥ 0.85 CCC ≥ 0.90 CCC ≥ 0.95 CCC ≥ 0.85 CC ≥ 0.90 CCC ≥ 0.95 CCC ≥ 0.85 CCC ≥ 0.90 CCC ≥ 0.95

10 115 (46) 96 (39) 60 (24) 232 (94) 223 (90) 197 (79) 230 (93) 219 (88) 193 (78)

20 110 (44) 81 (33) 45 (18) 227 (92) 217 (88) 185 (75) 222 (90) 209 (84) 183 (74)

30 100 (40) 78 (31) 45 (18) 218 (88) 197 (79) 164 (66) 213 (86) 193 (78) 156 (63)

40 97 (39) 75 (30) 45 (18) 208 (84) 180 (73) 148 (60) 209 (84) 183 (74) 145 (58)

50 82 (33) 63 (25) 40 (16) 200 (81) 174 (70) 144 (58) 186 (75) 161 (65) 124 (50)

60 81 (33) 60 (24) 34 (14) 185 (75) 165 (67) 133 (54) 166 (67) 145 (58) 107 (43)

70 72 (29) 50 (20) 32 (13) 177 (71) 155 (63) 127 (51) 153 (62) 134 (54) 94 (38)

80 55 (22) 44 (18) 27(11) 162 (65) 144 (58) 122 (49) 141 (57) 117 (47) 73 (29)

90 51 (21) 32 (13) 26 (10) 158 (64) 140 (56) 107 (43) 131 (53) 110 (44) 58 (23)

100 47 (19) 29 (12) 26 (10) 152 (61) 128 (52) 102 (41) 119 (48) 95 (38) 47 (19)
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(a) FBP (b) ASiR=30% (c) ASiR=60% (d) ASiR=100%

(e) FBP (f) ASiR=30% (g) ASiR=60% (h) ASiR=100%

(i) FBP (j) ASiR=30% (k) ASiR=60% (l) ASiR=100%

Fig. 7 CT pixel pattern appearance variation with increasing ASiR levels in (a)–(d) UWP, (e)–
(h) anthropomorphic phantom, and (i)–(l) human scan, respectively.
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Fig. 8 Change in radiomic feature values over different ASiR levels.
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500 mA, 100 versus 400 mA, 100 versus 500 mA, and 200 ver-
sus 500 mA) are listed in Table 3. In general, variation in tube
current had substantial effect on CCC with only 20 (8%) and 44
(18%) reproducible radiomic features for 50 versus 100 mA and

200 versus 300 mA, respectively. This is likely because lower
tube current is associated with more random noise, which results
in increased pixel-by-pixel intensity variability. With increased
tube current (400 versus 500 mA), 63 (25%) of the radiomic

Fig. 9 Effect of tube current and ASiR level on radiomic features extracted from UWP. (a) The x -axis is
partitioned into the available tube currents and within each tube current; the CCC for each ASiR level
relative to FBP is calculated. (b) CCC is calculated for each mA with mA ¼ 200 and FBP reconstruction
as the reference standard.
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Fig. 10 Effect of tube current and ASiR level on radiomic features extracted from anthropomorphic phan-
tom. (a) The x -axis is partitioned into the available noise indices and within each noise index; the CCC for
each ASiR level relative to FBP is calculated. (b) CCC is calculated for each NI with NI ¼ 14 and FBP
reconstruction as the reference standard.
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features were reproducible suggesting that increased tube cur-
rent (and corresponding reduction in random noise) results in
an increase in the uniformly distributed pixels. The number
and percentage of reproducible radiomic features extracted
from the anthropomorphic phantom while varying the noise
indices (NI 12 versus 14, NI 14 versus 16, NI 16 versus 18,
NI 12 versus 18, NI 12 versus 20, and NI 14 versus 20) are listed
in Table 4. In general, change in noise indices, resulted in varia-
tion in the number of reproducible features: 49 (20%), 62 (25%),
and 47 (19%) of radiomics features were reproducible for NI 12
versus 14, NI 14 versus 16, and NI 16 versus 18, respectively.

The changes in appearance of image texture with varying mA
and NI are shown in Fig. 5. We also note that values of radiomic
features change approximately linearly with increased ASiR.

Select exemplar GLCM features for the UWP and anthropomor-
phic phantom are shown in Fig. 6.

3.2 Effect of Reconstruction Algorithm on Radiomic
Features

The number and percentage of reproducible radiomic features
extracted from the UWP, anthropomorphic phantom, and
human scan for increasing ASiR levels are listed in Table 5.
In all three datasets, the number of reproducible features
decreased with increasing ASiR with respect to FBP.
Figure 7 demonstrates the increase in blurring due to gradual
increase in ASiR from 0% (pure FBP) to 100% ASiR in all
three datasets. We also note that values of radiomic features
change approximately linearly with increased ASiR. Selected
GLCM features for all three datasets are shown in Fig. 8.

CCC calculated between FBP and increasing ASiR levels
from 10% to 100% for all radiomic features extracted from
UWP, anthropomorphic phantom, and human are provided in
Figs. 9–11, respectively, at different tube currents and NI, as
available. Specifically, in Fig. 9, the x-axis is partitioned into
the available tube currents and within each tube current; the
CCC for each ASiR level relative to FBP is shown.
Similarly, in Fig. 10, the x-axis is partitioned into the available
noise indices and within each noise index; the CCC for each
ASiR level relative to FBP is shown. In Fig. 11, CCC for
each ASiR level is shown since we did not vary the noise
index or tube current in the human scan.

3.3 Reproducible Radiomic Features

The specific radiomic features with CCC ≥ 0.90 for different
image acquisition and reconstruction parameters are listed in
Table 6. In general, reproducibility of radiomic features was
influenced by acquisition parameters (noise index and tube cur-
rent) more so than ASiR. Studying the effect of variation in
noise index and tube current requires multiple scans, which
would expose patients to additional radiation. Therefore, we
studied these variations in phantoms to motivate prospective
evaluation in a clinical trial with patient consent.

4 Discussion
We approached our reproducibility study with the intention of
varying NI, ASiR, and mA as it is increasingly common for
institutions to set goals for dose reduction, to prevent unneces-
sary radiation to their patients. Dose reduction may be achieved
by increasing the noise index or by applying different types of
tube current modulation, which subsequently affect mA. As the
noise levels increase with decreasing dose, it is also common for
institutions to apply ASiR or other reconstruction methods to
varying degrees to improve image quality. The concern with
dose reduction, combined with the observed variability in clini-
cal practice across institutions, motivated our approach to inves-
tigate these specific imaging parameters, within the constraints
of our clinical GE CT scanners.

Our data suggest that image acquisition parameters relating
to image noise [tube current, noise index, and reconstruction
(ASiR)] strongly influence radiomic feature reproducibility
(see Tables 3–5). Random noise in CT images affects the
pixel-by-pixel intensity variability, thereby influencing the
reproducibility of features that are based on the spatial distribu-
tion of pixel intensities. An increase in the tube current reduces
the image noise, resulting in more reproducible radiomic

Fig. 11 Effect of the ASiR level on radiomic features extracted from
the human scan such that the CCC for each ASiR level relative to FBP
is calculated.
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Table 6 Reproducible features (CCC ≥ 0.9).

UWP Anthropomorphic phantom Human

All mA (FBP) All ASiR (500 mA) All NI (FBP) All ASiR (NI 12) All ASiR

1. G6 1. G6 1. G3 1. G1 51. LBP44 101. ACM12 1. G3 51. FD2

2. G16 2. G14 2. G6 2. G3 52. LBP45 102. ACM14 2. G4 52. FD3

3. G17 3. G16 3. G8 3. G4 53. LBP46 103. ACM15 3. G6 53. FD4

4. RLM1 4. G17 4. G12 4. G5 54. LBP47 104. ACM16 4. G7 54. FD5

5. RLM2 5. RLM1 5. G13 5. G6 55. LBP48 105. ACM17 5. G8 55. FD6

6. RLM8 6. RLM2 6. G14 6. G7 56. LBP49 106. ACM18 6. G13 56. FD8

7. RLM9 7. RLM8 7. G16 7. G8 57. LBP52 107. ACM19 7. G14 57. FD11

8. RLM10 8. RLM9 8. G17 8. G9 58. LBP54 108. ACM110 8. G16 58. FD17

9. IH1 9. RLM10 9. G18 9. G12 59. LBP55 109. ACM111 9. G17 59. FD20

10. LBP5 10. IH1 10. RLM1 10. G13 60. LBP56 110. ACM115 10. RLM1 60. FD23

11. IH3 11. RLM2 11. G14 61. LBP57 111. ACM116 11. RLM2 61. FD26

12. IH4 12. RLM7 12. G16 62. LBP78 112. ACM117 12. RLM3 62. FD29

13. LBP5 13. RLM8 13. G17 63. LBP84 113. ACM118 13. RLM4 63. FD37

14. LBP15 14. RLM10 14. G18 64. LBP86 114. ACM119 14. RLM5 64. FD38

15. LBP16 15. RLM11 15. G19 65. LBP87 115. ACM21 15. IH1 65. FD41

16. LBP26 16. IH1 16. RLM1 66. LBP88 116. ACM22 16. IH2 66. FD44

17. LBP33 17. IH3 17. RLM2 67. LBP89 117. ACM24 17. IH3 67. FD47

18. LBP40 18. FD2 18. RLM8 68. LBP92 118. ACM25 18. IH4 68. ACM11

19. LBP44 19. FD5 19. IH1 69. LBP93 119. ACM26 19. IH5 69. ACM12

20. LBP49 20. FD7 20. IH2 70. LBP94 120. ACM27 20. LBP1 70. ACM13

21. LBP97 21. FD8 21. IH3 71. LBP95 121. ACM28 21. LBP2 71. ACM14

22. LBP98 22. FD9 22. IH5 72. LBP96 122. ACM29 22. LBP11 72. ACM15

23. FD2 23. FD10 23. LBP 73. LBP97 123. ACM210 23. LBP12 73. ACM16

24. ACM12 24. FD11 24. LBP7 74. LBP98 124. ACM211 24. LBP16 74. ACM18

25. ACM14 25. FD12 25. LBP10 75. LBP100 125. ACM215 25. LBP20 75. ACM19

26. ACM15 26. FD14 26. LBP11 76. LBP101 126. ACM216 26. LBP39 76. ACM110

27. ACM16 27. FD16 27. LBP12 77. LBP112 127. ACM217 27. LBP44 77. ACM111

28. ACM17 28. FD17 28. LBP13 78. LBP113 128. ACM218 28. LBP47 78. ACM112

29. ACM18 29. FD18 29. LBP14 79. LBP117 129. ACM219 29. LBP48 79. ACM113

30. ACM110 30. FD21 30. LBP15 80. FD1 30. LBP57 80. ACM114

31. ACM111 31. FD26 31. LBP16 81. FD5 31. LBP58 81. ACM115

32. ACM115 32. FD28 32. LBP17 82. FD8 32. LBP59 82. ACM116
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features. For example, only 20 reproducible features (8% of all
features) were observed when features extracted at 50 mAwere
compared with the same features extracted at 100 mA, whereas
63 features (25%) were reproducible when the comparison was
performed between 400 and 500 mA. Increased ASiR led to
blurring, resulting in fewer reproducible features when com-
pared with FBP (the reference standard). 219 (88%), 161
(65%), and 95 (38%) features were reproducible at 10%,
50%, and 100% ASiR, respectively. ASiR initially uses infor-
mation obtained from the FBP algorithm to initiate image
reconstruction and focuses on noise reduction primarily through
statistical modeling of the system. The statistical model trans-
forms the measured value of each pixel to a new estimate of
the pixel value. The new estimate is then compared against
the ideal pixel value that the noise model predicts. The process
iterates until the final estimated and ideal pixel values
converge.22 This modification of the pixel-by-pixel values likely
explains the poor concordance observed between features
extracted from images with increasing ASiR application.
These results are supported by a recent study comparing
GLCM and IH features obtained from FBP, 50% ASiR, and
model-based iterative reconstruction images.29 Our institution
uses 20% ASiR in imaging protocols, but this value varies
widely across institutions;44 hence, care should be taken in

the extraction of radiomic features for prognostication in the
presence of variable scan protocols.

The UWP is filled with uniform material (i.e., water), but the
reconstructed CT images are not perfectly uniform in terms of
intensity values. The reconstructed CT images of the UWP have
random noise without any texture due to the absence of struc-
tures. It should also be noted that in Figs. 8(a)–8(c), GLCM
homogeneity-based features (e.g., correlation) have the lowest
values for UWP due to greater local random noise present in
the UWP images. However, with increasing ASiR, as images
became smoother, the homogeneity features values gradually
increased for (a), (b), and (c). The GLCM features shown in
Figs. 8(d)–8(f) represent heterogeneity (e.g., entropy), and dem-
onstrate higher values in more locally heterogeneous images.

We evaluated the reproducibility of 248 radiomic features.
Many of the first-order intensity histogram-based features (fea-
tures I1 to I5 in Figs. 9–11) were reproducible as ASiR main-
tains the mean and standard deviation of the image histogram by
definition. GLCM (G1 to G19) and RLM features (R1 to R11)
were consistently reproducible with increasing ASiR; however,
concordance decreased with extreme ASiR application. RLM
features count consecutive pixels with the same intensity so
large variation in pixel intensity will have significant effect.
LBP and FD features (L1 to L127 and F1 to F48, respectively)

Table 6 (Continued).

UWP Anthropomorphic phantom Human

All mA (FBP) All ASiR (500 mA) All NI (FBP) All ASiR (NI 12) All ASiR

33. ACM22 33. FD29 33. LBP18 83. FD10 33. LBP60 83. ACM117

34. ACM24 34. FD31 34. LBP19 84. FD11 34. LBP64 84. ACM118

35. ACM25 35. FD32 35. LBP20 85. FD14 35. LBP67 85. ACM119

36. ACM26 36. FD35 36. LBP21 86. FD17 36. LBP68 86. ACM23

37. ACM27 37. FD38 37. LBP23 87. FD20 37. LBP69 87. ACM24

38. ACM28 38. FD41 38. LBP25 88. FD23 38. LBP76 88. ACM25

39. ACM210 39. FD44 39. LBP26 89. FD24 39. LBP78 89. ACM26

40. ACM211 40. FD45 40. LBP27 90. FD26 40. LBP79 90. ACM28

41. ACM215 41. LBP28 91. FD29 41. LBP80 91. ACM212

42. ACM218 42. LBP33 92. FD31 42. LBP82 92. ACM213

43. LBP34 93. FD32 43. LBP83 93. ACM214

44. LBP36 94. FD35 44. LBP84 94. ACM216

45. LBP37 95. FD38 45. LBP85 95. ACM217

46. LBP38 96. FD41 46. LBP86

47. LBP39 97. FD44 47. LBP92

48. LBP40 98. FD47 48. LBP93

49. LBP42 99. FD48 49. LBP94

50. LBP43 100. ACM11 50. FD1
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encode structural texture information; increased blurring with
increased ASiR will affect spatial distribution of pixel intensities
so LBP and FD features were less reproducible than GLCM fea-
tures. ACM-based features (A11 to A119 and A21 to A219)
were robust to variation in ASiR. ACM features are likely
less sensitive to image noise because these features are com-
puted using gradient magnitude and orientation information
instead of spatial distribution of pixel intensities. With respect
to modulations in tube current, few features showed robustness
to large changes in mA (Fig. 9); however, for smaller modula-
tions, FD, GLCM, and RLM-based features were robust
(Fig. 10) suggesting that care should be taken when comparing
features derived from CT scans with vastly different tube cur-
rents. Figures 9 and 10 show CCC variation with different image
acquisition and reconstruction parameters. Noise index (tube
current) affects reproducibility of features more so than ASiR
variation. Figure 6 shows feature values over different acquis-
ition conditions for a single patient. Therefore, it is difficult
to relate Figs. 9 and 10 to Fig. 6.

There are several limitations to this study. First, studies
evaluating the effects of modulation of tube current and noise
index on radiomic features require additional scans; hence,
phantoms were employed. However, the UWP is circular, filled
with liquid water and not representative of patient anatomy. To
address this issue, we used an anthropomorphic phantom, but
when compared with actual patient anatomy, the phantom
images are uniform in content, without organs and without arti-
facts observed during patient image acquisition procedures.
Both phantoms lack texture in imaging (see Fig. 12), underscor-
ing the need for phantoms that mimic the tissue properties of
contrast-enhanced abdominal CT. Although we included one
human scan reconstructed with increasing ASiR, prospective
evaluation in patients with multiple tube currents or NI levels
is required. Second, radiomic features were analyzed on the
basis of one segmented region of interest. Different segmenta-
tion strategies employed by various studies can affect the quan-
tification of radiomic features and their reproducibility. Another
limitation of this study was that only GE scanners were used.
Hence, only variability with one manufacturer’s reconstruction
algorithms and automatic exposure control modes was studied.
Other acquisition parameters such as helical pitch and contrast
timing likely affect the reproducibility of features. Future work
includes prospective evaluation in liver cancer patients with
scans acquired at variable NI and with different reconstruction
algorithms and contrast timings. Reproducibility of individual

radiomic features as well as prediction model variability will
be studied. Despite these limitations, our findings underscore
the influence of noise on radiomic features and demonstrate
reproducible features potentially usable for clinical decision
making.

5 Conclusion
The present study demonstrates that image noise plays an impor-
tant role in the reproducibility of radiomic features. Specifically,
variation in image noise due to dose reduction algorithms, tube
current, and noise index significantly affects reproducibility of
radiomic features. Prospective evaluation across multiple cen-
ters, preferably with human subjects, is needed.
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