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Abstract. Since optical systems have distinctive features as compared to electrical communication systems,
some formulation should be prepared for the optical image in order to use it in information theory of optical
systems. In this paper the following formula for the intensity distribution of the image by an optical system having
a given aperture constant α in the absence of both aberration and defect in focusing is obtained by considering
the nature of illumination, namely coherent, partially coherent, and incoherent:

EQ-TARGET;temp:intralink-;;63;559IðyÞ ¼
X
n

X
m

anmunðyÞu�
mðyÞ;

where unðyÞ ¼ sin 2πα
λ ðy − nλ

2αÞ∕ 2πα
λ ðy − nλ

2αÞ and anm ¼ ð2αλ Þ2
RR

Γ12ðx1 − x2ÞEðx1ÞE �ðx2ÞjAðx1ÞjjA�ðx2Þj
unðx1Þumðx2Þdx1 dx2. IðyÞ is the intensity of the image at a point of coordinate y , Γ12 the phase coherence
factor introduced by H. H. Hopkins et al., EðxÞ the complex transmission coefficient of the object and AðxÞ
the complex amplitude of the incident waves at the object, and the integration is taken over the object plane.
The above expression has some interesting features, namely the “intensity matrix” composed of the element anm
mentioned above is a positive-definite Hermitian matrix, and the diagonal elements are given by the intensities
sampled at every point of the image plane separated by a distance λ∕2α, and the trace of the matrix or the sum of
diagonal elements is equal to the total intensity integrated over the image plane. Since a Hermitian matrix can be
reduced to diagonal form by a unitary transformation, the intensity distribution of the image can be expressed as

EQ-TARGET;temp:intralink-;;63;421IðyÞ ¼ λ1

���XSi1ui

���2 þ λ2

���XSi2ui

���2þ · · · þλn

���XSinui

���2þ · · · ;

where λ1; λ2; : : : ; λn; : : : are non-negative eigenvalues of the intensity matrix. In case of coherent illumination,
only the first term of the above equation remains and all the other terms are zero, because the rank of the coher-
ent intensity matrix is one, and its only non-vanishing eigenvalue is equal to the total intensity of the image.
On the other hand, the rank of the incoherent intensity matrix is larger than the rank of any other coherent or
partially coherent cases. The term of the largest eigenvalue in the above formulation may be especially impor-
tant, because it will correspond to the coherent part of the image in case of partially coherent illumination. From
the intensity matrix of the image obtained by uniform illumination of the object having uniform transmission
coefficient, we may derive an interesting quantity, namely

EQ-TARGET;temp:intralink-;;63;298d ¼ −
X
n

ðλn∕I0Þ logðλn∕I0Þ;

where λn is the n-th eigenvalue of the intensity matrix and I0 is the trace of the matrix. d is zero for the coherent
illumination and becomes log N for the incoherent illumination, where N is the “degree of freedom” of the image
of the area S, namelyN ¼ 4α2S∕λ2. The value of d for partially coherent illumination is a positive quantity smaller
than log N . A quantity δ ¼ ðd0 − dÞ∕d0 may be regarded as a measure of the “degree of coherence” of the
illumination, where d0 ¼ log N and δ is unity for the coherent case and zero for the perfectly incoherent case.
The sampling theorem for the intensity distribution is derived, and the relation between elements of intensity
matrix and intensities sampled at every point separated by the distance λ∕4α is shown. © 1956, The Japan Society
of Applied Physics. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JMM.18.2.021101]

1 Introduction
Discussion of the relationship between the object and the
image of an optical system using information theory is
a recent topic. Some basic studies such as describing the
optical system using the response function have been done.
However, entropy or noise is not discussed enough, though
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it is important in information theory. Information theory
has been successfully applied to electrical communication,
but the way it is applied is not directly applicable to an opti-
cal system. Hence, we need to formulate the information
theory taking specific properties of the optical system into
account.

The properties specific to the optical system are the
following ones. (1) Observable quantity is not the amplitude
of the wave but its intensity represented by the square of
the amplitude; the intensity must be positive. (2) When we
regard the optical system as a spatial filter, the phase and
amplitude of the response function defined in the optical
system are independent physical quantities; in the electric
circuit, they are restricted by causality because they change
over time. (3) Information contained in the image depends
on the coherence of the illumination; for example, it is pos-
sible to obtain the information of amplitude and phase of
coherent illumination; however, the phase information can-
not be obtained when the illumination is incoherent. (4) If we
regard the optical system as a communication channel, noise
is an important quantity in deriving its capacity; in the optical
system, noise can be stray light, disturbed observation due to
random movement of the medium, graininess of a film, per-
ception, and so on; these factors will add additional intensity
to the nominal intensity or may partially reduce the nominal
intensity; the resultant intensity will, however, not be nega-
tive. (5) Optical system behaves like a multi-dimensional
spatial filter; in most cases, it is sufficiently described by
a two-dimensional spatial filter.

These properties should be considered when we formulate
information theory for the optical imaging system. If we do
not take them into account, we cannot finalize the formu-
lation of the information theory for the optical imaging
system and may only get an insight that might help us under-
stand the optical system.

In what follows, the author examines an aberration-free
optical imaging system taking into account the first and sec-
ond properties described above. In particular, the author will
discuss how information contained in the image changes
with respect to the third property, i.e., the coherence of illu-
mination, using the sampling theorem that is often used in
communication theory. Distribution of the image intensity
will be described by a positive-definite Hermitian matrix,
termed “intensity matrix,” and the physical meaning of
the image will be revealed from the properties of the matrix.
For this analysis, “phase coherence factor” introduced by H.
H. Hopkins et al. will be used.

2 Sampling Theorem
“The sampling theorem” used hereafter is briefly reviewed.
We assume an optical imaging system in Fig. 1 consisting of
a light source, an object, lens, and an image.

Let Aðx − zÞ be an incident wave from a point P on the
source to a point Q on the object plane. When the complex
transmission of the object is EðxÞ, the complex amplitude of
the wave after object is EðxÞAðx − zÞ. As shown in Fig. 1,
if we define θ as the maximum half-angle of a light cone to
be captured by the lens and λ to be the wavelength, then
2 sin θ∕λ corresponds to the role of bandwidth of the elec-
trical communication system. If we Fourier transform the
wave EðxÞAðx − zÞ, we obtain

EQ-TARGET;temp:intralink-;e001;326;547fðX; zÞ ¼
Z

−∞

−∞
EðxÞAðx − zÞe−2πiXxdx: ð1Þ

In Eq. (1), X ¼ sin θ∕λ represents the directional cosine
of the plane wave; thus, fðXÞ is the amplitude of the plane
wave that propagates with the angle of sin θ ¼ Xλ. Here,
fðXÞ that forms the image is band-limited due to the aperture
of the optical system. Since 2 sin θ∕λ behaves like the band-
width of the optical system, as briefly noted above,

EQ-TARGET;temp:intralink-;e002;326;447−α∕λ ≤ X ≤ α∕λ; ð2Þ

where α ¼ sin θ. Since the bandwidth of fðXÞ is limited to
2α∕λ, it can be expanded in a Fourier series as

EQ-TARGET;temp:intralink-;e003;326;394fðX; zÞ ¼
Xþ∞

n¼−∞
anðzÞe−2πinðλ∕2αÞX ð3Þ

EQ-TARGET;temp:intralink-;e003a;326;334anðzÞ ¼
λ

2α

Z α
λ

−α
λ

fðX; zÞe2πinðλ∕2αÞXdX ð30Þ

The amplitude of the wave on the image plane FðyÞ is
given by the inverse Fourier transform of fðXÞ, which has
the bandwidth of 2α∕λ. Thus, from Eq. (3)

EQ-TARGET;temp:intralink-;e004;326;277Fðy; zÞ ¼
Z þα

λ

−α
λ

fðX; zÞeþ2πiXydX ð4Þ

EQ-TARGET;temp:intralink-;e004a;326;220¼
X∞
n¼−∞

anðzÞ
sin 2πα

λ

�
y − nλ

2α

�
π
�
y − nλ

2α

� ð40Þ

On comparing Eq. (3′) and Eq. (4), we notice that anðzÞ is
obtained by multiplying λ∕2α to Fðnλ∕2αÞwhich is the
image amplitude at y ¼ nλ∕2α. Thus,

EQ-TARGET;temp:intralink-;e005;326;160Fðy; zÞ ¼
X∞
n¼−∞

F
�nλ
2α

; z
� sin 2πα

λ

�
y − nλ

2α

�
2πα
λ

�
y − nλ

2α

� ð5Þ

Therefore, the image amplitude obtained through the opti-
cal system with the bandwidth of 2α∕λ due to its numerical
aperture can be determined if the image amplitude is sampled
at an interval of λ∕2α. The function set that appears in

Fig. 1 F ðyÞ: complex amplitude of the image; Aðx − zÞ: complex
amplitude of the incident wave from a point source at P; EðxÞ: com-
plex transmission coefficient.
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Eq. (5), i. e., fun ¼ sin½ð2πα∕λÞðy − nλ∕2αÞ�∕½ð2πα∕λÞ
ðy − nλ∕2αÞ�g forms a complete orthogonal system. Hence,
with any integer n and m,

EQ-TARGET;temp:intralink-;e005a;63;719

Z þ∞

−∞
unðyÞumðyÞdy ¼ λ

2α
δnm; ð50Þ

where δnm is the Kronecker delta which is 1 when n ¼ m and
0 otherwise (See Sec. 10). This result corresponds to the sam-
pling theorem applied to a band-limited electrical system, with
the only difference that the amplitude to be sampled is a com-
plex number. The reason of this complex amplitude originates
from the second property of the optical imaging system noted
in Sec. 1. Although this result is obtained with an aberration-
free one-dimensional imaging system, we can extend this
idea and apply it to a two-dimensional imaging system
with a square aperture. If we assign the basis function set
to be fsin½ð2πα∕λÞðξ − nλ∕2αÞ�∕½ð2πα∕λÞðξ − nλ∕2αÞ�g
fsin½ð2πα∕λÞðη − mλ∕2αÞ�∕½ð2πα∕λÞðη − mλ∕2αÞ�g, any
band-limited complex amplitude can be represented by a
series expansion. A rigorous treatment of the sampling for
a circular aperture is not straightforward, but the sampling
grid of a circular aperture is the same as that of the square
aperture. For example, given a circle, we can define a sam-
pling grid using circumscribed squares, and the amplitude
distribution can be determined by sampled values though
these sampled values are not fully independent of each other.

Above discussion holds when the illumination is a point
source; in other words, it only holds when the illumination is
coherent. Even when the illumination is coherent, its physi-
cal meaning is revealed only when we can measure the phase
and amplitude independently by some appropriate way, such
as taking the phase difference. This is due to the first property
noted in Sec. 1, which demands that the direct measurement
can be made to intensity only. In the following, a method to
analyze the physical meaning of the image intensity will be
introduced, which can be applied even when the illumination
is partially coherent or incoherent.

3 Intensity Matrix Related to the Phase Coherence
Factor

We are able to obtain the image intensity distribution by
Eq. (5) in Sec. 2. Letting IðyÞ be the image intensity at a
point R on the image plane with coordinate y,
EQ-TARGET;temp:intralink-;e006;63;268

IðyÞ ¼ Fðy; zÞF�ðy; zÞ

¼
X
n

X
m

F

�
nλ
2α

; z

�
F�

�mλ

2α
; z
�
unðyÞu�mðyÞ (6)

where

EQ-TARGET;temp:intralink-;sec3;63;193unðyÞ ¼ sin
2πα

λ

�
y −

nλ
2α

�
∕
2πα

λ
ðy − nλ

2α
Þ

We now consider the image intensity from a generalized
source of a finite extent with an arbitrary intensity at each
point. Letting JðzÞ be the point source intensity at a point
P with coordinate z, the image intensity at a point R is
given by

EQ-TARGET;temp:intralink-;e007;63;106IðyÞ ¼
X
n¼−∞

þ∞ X
m¼−∞

þ∞

anmunðyÞu�mðyÞ ð7Þ

EQ-TARGET;temp:intralink-;e007a;326;741anm ¼
Z

JðzÞF
�nλ
2α

; z
�
F�

�mλ

2α
; z
�
dz ð70Þ

Since point sources are mutually incoherent, the sum of
intensities formed by all point sources is the total intensity.
This fact can be explained from the statistical view point as
follows. Intensity is found by taking the time average of the
square of the amplitude of the light wave. Since each point
source has no correlation with all others, this time average of
the square of superimposed light waves is equal to the sum of
time average of the square of each light wave.

The main feature of this paper will be based on Eq. (7)
which has a quadratic form of variables un and um with coef-
ficients anm. Since the intensity cannot be negative, this is
a positive quadratic form. The matrix with elements anm
is termed “intensity matrix” in this paper. (Intensity matrix
has the similar property to the information matrix proposed
for general systems by D. M. MacKay.7 Although N.
Wiener8 proposed the coherency matrix by assuming time
varying light waves, it is not applied to an optical imaging
system.) Once this matrix is given, we can determine the
image intensity distribution. In this sense, the intensity
matrix contains all the information of the image intensity
distribution. In what follows, the physical property of the
intensity matrix will be examined.

The element of the intensity matrix anm is expressed using
the Hopkins’ phase coherence factor. The use of the phase
coherence factor is beneficial for our purpose because it
has been studied in detail. First, Eq. (7′) is changed to
(See Sec. 8.)
EQ-TARGET;temp:intralink-;e008;326;424

anm ¼
ZZZ

JðzÞEðx1ÞE�ðx2ÞAðx1 − zÞA�ðx2 − zÞ

× u
�
x1 −

nλ
2α

�
u�
�
x2 −

mλ

2α

�
dx1 dx2 dz; (8)

where uðx1 − nλ∕2αÞ or uðx2 −mλ∕2αÞ is the amplitude of
light arriving at a point x ¼ nλ∕2α or mλ∕2α on the image
plane through the optical system with bandwidth 2α∕λ
(α: numerical aperture) and having unit amplitude when
it is at point Q1 or Q2 on the object plane. As we assume
an aberration-free optical system, it is

EQ-TARGET;temp:intralink-;e008a;326;296u
�
x1 −

nλ
2α

�
¼ sin

2πα

λ

�
x1 −

nλ
2α

�
∕π

�
x1 −

nλ
2α

�
ð80Þ

Equation (8) shows the relationship of anm to the phase
coherence factor. Inside Eq. (8), we single out the integral
with respect to the source coordinate z, and set it as Iðx1; x2Þ.
Then

EQ-TARGET;temp:intralink-;e009;326;216Iðx1; x2Þ ¼
Z

JðzÞAðx1 − zÞA�ðx2 − zÞdz ð9Þ

This value can be regarded as a correlation between light
wave amplitudes at points x1 and x2 on the object plane.
If the amplitude at each point generated by a point source
at z are U1 and U2, we obtain

EQ-TARGET;temp:intralink-;e009a;326;135Iðx1; x2Þ ¼
Z

U1U�
2dz ð90Þ

When the intensity at x1 is I1 and at x2 is I2,

EQ-TARGET;temp:intralink-;e009b;326;87Iðx1; x2Þ ¼
ffiffiffiffiffiffiffiffi
I1I2

p
Γðx1 − x2Þ ð900Þ
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Here, Γðx1 − x2Þ is the phase coherence factor which is
by definition given by

EQ-TARGET;temp:intralink-;e010;63;730Γðx1 − x2Þ ¼
1ffiffiffiffiffiffiffiffi
I1I2

p
Z

U1U�
2dz ð10Þ

When the light source Σ illuminates the object, the inten-
sity Ii (i ¼ 1, 2) is the square of the absolute value of
complex amplitude of the incident light at xi, which is
represented as jAðxiÞj2. Therefore,
EQ-TARGET;temp:intralink-;e011;63;643

anm¼
Z Z

Γðx1−x2ÞEðx1ÞE�ðx2ÞjAðx1ÞjjA�ðx2Þju
�
x1−

nλ
2α

�

×u�
�
x2−

mλ

2α

�
dx1 dx2; (11)

where EðxÞ is the complex transmittance of the object,
AðxÞ is the complex amplitude of the incident light,
uðx1 − nλ∕2αÞ given by Eq. (8′) is the amplitude of wave
at nλ∕2α on the image plane which results from the propa-
gation of a light with unit amplitude at x1 on the object plane,
and Γðx1 − x2Þ is the phase coherence factor. According to
Hopkins, Γ is given by
EQ-TARGET;temp:intralink-;e012;63;497

ΓðX1 − X2; Y1 − Y2Þ

¼ 1ffiffiffiffiffiffiffiffi
I1I2

p
ZZ

Jðx; yÞei½xðX1−X2ÞþyðY1−Y2Þ�dx dy; (12)

where Jðx; yÞ is the intensity at ðx; yÞ on the source. An illu-
mination system with a condenser lens can also result in the
same equation as Eq. (12) when an appropriate light source
is given.

Equation (11) is our first formulation. We discuss a few
examples of the intensity matrix jjanmjj in the next section.

4 Examples of the Intensity Matrix

4.1 Coherent Source

When the light source is coherent, the phase coherence factor
Γðx1 − x2Þ is 1 regardless of x1 or x2.

2 Therefore, by substi-
tuting Γðx1 − x2Þ ¼ 1 into Eq. (11), the integral can be sep-
arated into a product of two integrals to yield

EQ-TARGET;temp:intralink-;e013;63;282anm ¼ F
�nλ
2α

�
F�

�mλ

2α

�
ð13Þ

The matrix element is a product of the complex amplitude
on the image plane at nλ∕2α and mλ∕2α. This result simply
produces Eq. (6) of Sec. 3, but analyzing the meaning of the
above matrix will give us an important insight for the remain-
ing part of this paper. In this coherent source case, a remark-
able feature of the matrix is that its rank is 1 and its single
eigenvalue determines Σann. The rank of a matrix is said to
be rwhen the determinant of sub-matrix with the order lower
than or equal to r is non-zero but the determinant of all sub-
matrices with the order higher than r is 0. If the matrix
element is given by Eq. (13), we may notice that the deter-
minant of all sub-matrices with the order higher than 1 is 0.
The characteristic equation that gives the eigenvalue is

EQ-TARGET;temp:intralink-;sec4.1;63;97 det janm − λδnmj ¼ 0;

which is equivalent to xN − ðΣannÞxN−1 ¼ 0. The single non-
zero eigenvalue is equal to the trace of the matrix.

4.2 Incoherent Source

In this case, the phase coherence factor Γ is

EQ-TARGET;temp:intralink-;sec4.2;326;692Γðx1 − x2Þ ¼


0 x1 ≠ x2
1 x1 ¼ x2

When this Γ is substituted into Eq. (11), the element anm
of the intensity matrix for the incoherent source is given by
the single integral as

EQ-TARGET;temp:intralink-;e014;326;615anm ¼
Z þ∞

−∞
IðxÞu

�
x −

nλ
2α

�
u�
�
x −

mλ

2α

�
dx ð14Þ

where
EQ-TARGET;temp:intralink-;sec4.2;326;560

IðxÞ ¼ jEðxÞAðxÞj2

u
�
x −

nλ
2α

�
¼ sin

2πα

λ

�
x −

nλ
2α

�
∕π

�
x −

nλ
2α

�
Equation (14) is connected to the equation that gives the

image IðyÞ from an incoherent source with intensity IðxÞ,
which can be expressed as an integral by the incoherent im-
aging formula

EQ-TARGET;temp:intralink-;e014a;326;461IðyÞ ¼
Z þ∞

−∞
IðxÞjuðx − yÞj2dx ð140Þ

According to Eq. (14′), a single integral yields the image
whereas the expression by the intensity matrix seems to
involve more integrations which gives us an impression of
extra cost of calculation. This point is discussed at the end.

The simplest example is an object with uniform bright-
ness. If we set IðxÞ ¼ A where A is a constant
EQ-TARGET;temp:intralink-;e015;326;352

anm ¼ A
Z þ∞

−∞
u
�
x −

nλ
2α

�
u�
�
x −

mλ

2α

�
dx

¼ 2α

λ
Aδnm ðδnm ¼ 1; n ¼ m; δnm ¼ 0; n ≠ mÞ (15)

[The intensities I(y) in Eq. (14′) and I(y) from Eq. (15)
must be the same (See Sec. 9).] Our next example is simple
and basic, in which the object has a sinusoidal amplitude
over the object plane. The brightness on the object plane is

EQ-TARGET;temp:intralink-;sec4.2;326;239IðxÞ ¼ A cos2 ωx ¼ 1

2
Að1þ cos 2ωxÞ

In this case, the element of the intensity matrix is repre-
sented by the following integral
EQ-TARGET;temp:intralink-;e016;326;176

anm ¼ 1

2
A
Z þ∞

−∞
ð1

þ cos 2ωxÞ sin
2πα
λ ðx − nλ

2αÞ sin 2πα
λ ðx − mλ

2αÞ
πðx − nλ

2αÞπðx − mλ
2αÞ

dx (16)

We now change the valuables. Letting ξ ¼ 2παx∕λ and
p ¼ λω∕2πα,
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EQ-TARGET;temp:intralink-;sec4.2;63;752anm ¼ A
α

πλ

Z þ∞

−∞
ð1þ cos 2pξÞ sinðξ − nπÞ sinðξ −mπÞ

ðξ − nπÞðξ −mπÞ dξ

This type of definite integral will appear in the following
but since the result may not be found in standard integral
tables, the principal result together with its derivation is listed
in Sec. 10. According to Sec. 10, when 0 < p < 1, i.e.,
0 < ω < 2πα∕λ,

EQ-TARGET;temp:intralink-;e016a;63;657anm ¼ A
α

λ

sinðn −mÞπð1 − pÞ
ðn −mÞπ cos ðnþmÞpπ n ≠ m

ð160Þ

EQ-TARGET;temp:intralink-;e016b;63;586anm ¼ A
2
½1þ ð1 − pÞ cos 2npπ� n ¼ m ð1600Þ

When p > 1 or equivalently ω > 2πα∕λ, anm is 0. Based
on this result in which anm is 0 above a certain spatial fre-
quency threshold, the response function for the image inten-
sity in Eq. (14) is of triangular shape1 with 0 value over the
bandwidth of 4πα∕λ.

We now consider the rank and eigenvalues of the intensity
matrix. First, when the object brightness is uniform, the
intensity matrix in Eq. (15) is a diagonal matrix with non-
zero diagonal elements. Next, when the object brightness
changes sinusoidally, especially when p ¼ 1∕2 or equiva-
lently ω ¼ α∕λ, the intensity matrix is also a diagonal matrix
with the diagonal element of ð1∕2ÞAðλ∕2αÞð1þ 1∕2ð−1ÞnÞ.
These examples show that incoherent illumination gives the
greatest matrix rank in contrast to coherent illumination
which gives the minimum matrix rank of 1. (When the object
size is finite, the object intensity or complex transmittance
can be represented by a Fourier series; hence we may be
able to apply the results of Secs. 4.2 and 4.3 to each
Fourier term.)

4.3 Partially Coherent Source

We consider the one-dimensional case, under which the
phase coherence factor is defined in Eq. (12) as

EQ-TARGET;temp:intralink-;e017;63;308Γðx1 − x2Þ ¼
sin 2πα

λ Sðx1 − x2Þ
2πα
λ Sðx1 − x2Þ

; ð17Þ

where S is a parameter that represents the extent of the
source. Clearly, in the limit of S → 0, Γ ¼ 1. If, in Eq. (17),
α is equal to the numerical aperture of the imaging system, a
condition of S ¼ 1 suggests that the numerical aperture of
the imaging system is equal to the sine of the angle of
view from the object to the source. Therefore, it is important
to distinguish S > 1 and S < 1.

Let us consider the intensity matrix element for an
image formed by uniform object transmittance. Substituting
Γðx1 − x2Þ in Eq. (17) into Eq. (11), and furthermore letting
EðxÞAðxÞ ¼ K,
EQ-TARGET;temp:intralink-;e018;63;140

anm ¼ K2

π2

Z þ∞

−∞

Z þ∞

−∞

×
sin Sðξ − ηÞ
Sðξ − ηÞ

sinðξ − nπÞ
ðξ − nπÞ

sinðη −mπÞ
ðη −mπÞ dξ dη; (18)

where ξ ¼ 2παx1∕λ and η ¼ 2παx2∕λ. This integration
yields (see Sec. 10)

EQ-TARGET;temp:intralink-;e018a;326;730S > 1 anm ¼ K2

S
δnm ð180Þ

EQ-TARGET;temp:intralink-;e018b;326;677S < 1 anm ¼ K2
sin Sðn −mÞπ
Sðn −mÞπ ð1800Þ

Next, we consider an object with a sinusoidal transmit-
tance. Substituting Γðx1 − x2Þ in Eq. (17) into Eq. (11),
and furthermore letting EðxÞAðxÞ ¼ K cos ωx,
EQ-TARGET;temp:intralink-;e019;326;620

anm ¼ K2

π2

Z þ∞

−∞

Z þ∞

−∞
cos pξ cos pη

sin Sðξ − ηÞ
Sðξ − ηÞ

×
sinðξ − nπÞ
ðξ − nπÞ

sinðη −mπÞ
ðη −mπÞ dξ dη; (19)

where ξ ¼ 2παx1∕λ, η ¼ 2παx2∕λ and p ¼ λω∕2πα. The
mathematical details is described in Sec. 10 and only the
results are shown here:

EQ-TARGET;temp:intralink-;e020a;326;513ðiÞ p > ð1þ SÞ and ðS > 1 or S < 1Þ; anm ¼ 0

ð20‐1Þ
EQ-TARGET;temp:intralink-;e020b;326;456ðiiÞ ð1þ SÞ < p < 1 and ðS > 1 or S < 1Þ;(
anm ¼ K2

2S
A

ðn−mÞπ ðn ≠ mÞ
ann ¼ K2

2S ð1þ S − pÞ
(20-2)

EQ-TARGET;temp:intralink-;e020c;326;395

1 > p > ðS − 1Þ or ð1 − SÞ and ðS > 1 or S < 1Þ;(
anm ¼ K2

2S
AþB

ðn−mÞπ ðn ≠ mÞ
ann ¼ K2

2S ½1þ S − pþ 2ð1 − pÞ cos 2npπ�
(20-3)

where A and B are
EQ-TARGET;temp:intralink-;sec4.3;326;335

A ¼ cos npπ sinðn −mÞðSþ 1 − pÞ π
2

cos½ðnþmÞp

þ ðS − 1Þðn −mÞ� π
2

− sin npπ sinðn −mÞðpþ 1 − SÞ π
2

sin½ðnþmÞp

þ ðSþ 1Þðn −mÞ� π
2

2B ¼ sinðn −mÞð1 − pÞπ cosðnþmÞpπ
− sinðn −mÞpπ cos½ðnþmÞpþ ðn −mÞπ�

EQ-TARGET;temp:intralink-;sec4.3;326;168ðiiiÞ S > 1 and ðS− 1Þ > p > 1;
anm ¼ 0 ðn ≠ mÞ
ann ¼ K2

2S

�

EQ-TARGET;temp:intralink-;e020d;326;128S > 1 and 1 > p > 0;

anm ¼ K2

4S
sinðn−mÞð1−pÞπ

ðn−mÞπ cosðnþmÞpπ ðn ≠ mÞ
ann ¼ K2

4S ½1þ ð1 − pÞ cos 2npπ�

�

ð20‐4Þ
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EQ-TARGET;temp:intralink-;e020e;63;752ðivÞ S < 1 and ð1 − SÞ > p > 0;

anm ¼ K2 cos2 pηπ sin Sðn−mÞπ
Sðn−mÞπ ðn ≠ mÞ

ann ¼ K2 cos2 pηπ

�
(20-5)

We may be aware of a few interesting points from the
above example of partially coherent illumination. First,
for incoherent illumination, anm ¼ 0 when p > 1 or
ω > 2πα∕λ, leading to no contribution to the image.
Whereas for partially coherent illumination, anm ¼ 0 when
p > ð1þ SÞ or ω > ð1þ SÞ2πα∕λ, meaning more non-zero
matrix elements than incoherent illumination. Second, if S >
1 and ðS − 1Þ > p > 1 as in case (iii), we will obtain the
same result as that of incoherent illumination. Lastly, if S <
1 and ð1 − SÞ > p > 0 as in case (iv), the result reduces to
the coherent case in the limit of S → 0. Deriving the rank of
the intensity matrix with the elements anm given above in
order to calculate its eigenvalue is an extremely difficult
problem, except in some special cases. This fact implies
that the image formation with the intensity matrix may be
limited in practice. However, since the intensity matrix itself
has interesting general properties, it can be useful in clarify-
ing and organizing the physical concept of optical image
formation.

Up to this point, we have considered an object of sinus-
oidal transmittance or brightness. If the object has an
arbitrary distribution of transmittance or brightness, its trans-
mittance or brightness can be expressed as a sum of periodic
terms using the Fourier integral. Since each term can be
treated as is explained above, we can obtain the elements of
the intensity matrix when the object has an arbitrary trans-
mittance or brightness distribution.

5 General Properties of the Intensity Matrix
The intensity matrix was derived by squaring the amplitude
obtained from the sampling theorem applied to a band-lim-
ited system. In electrical communication, since the square of
the amplitude corresponds to the electric power, we may be
able to derive an equation similar to the intensity matrix.
However, this idea is not as crucial as the intensity matrix
in an optical imaging system because the phase coherence
factor explained in Sec. 1 is a unique feature only for an opti-
cal imaging system.

For detailed discussion in the following, Eq. (7) is
repeated here. The intensity IðyÞ is

EQ-TARGET;temp:intralink-;e021;63;252IðyÞ ¼
X
n¼−∞

þ∞ X
m¼−∞

þ∞

anmunðyÞu�mðyÞ; ð7Þ

where unðyÞ ¼ sin 2πα
λ ðy − nλ

2αÞ∕ 2πα
λ ðy − nλ

2αÞ.
If u1; u2; : : : ; un; : : : are regarded as vectors in a multi-

dimensional space, the linear sum Σanm unm ¼ vn is another
vector. The intensity is then given by the inner product of
these two vectors

EQ-TARGET;temp:intralink-;e022;63;146IðyÞ ¼ ðϕ;AϕÞ; ð21Þ
where ϕ is a vector fu1; u2; : : : ; un; : : : g and A is a matrix
with elements anm.

Degrees of freedom for the image can be equated with the
dimension number N in the multi-dimensional space intro-
duced above. Degrees of freedom N is exactly the number of

the sampling points used to express the image under consid-
eration. If the area of the image is S, N ¼ 4α2S∕λ2. Toraldo
di Francia defined the degrees of freedom when the source is
coherent, which is N defined above. However, Toraldo di
Francia defined another definition when the source is inco-
herent. In comparison, it seems mathematically consistent,
regardless of the coherence of the source, to define the
degrees of freedom as the number of dimensions to be used
to determine the image. The source coherence is contained in
the intensity matrix. Therefore, one can separate the number
of the dimensions determined by the numerical aperture of
the imaging system from the source coherence.

Six important physical properties of the intensity matrix
will be discussed next. The first physical property is related
to the fact that the only observable quantity is the intensity,
which must be real and positive. This fundamental fact leads
to the following mathematical property:

i. The intensity matrix is a positive-definite Hermitian
matrix.

If a matrix is a Hermitian matrix, its elements have the
following property

EQ-TARGET;temp:intralink-;e023;326;504anm ¼ a�mn (22)

which can be verified by putting IðyÞ ¼ I�ðyÞ in Eq. (7). The
matrix is positive-definite because Eq. (7) is always positive
regardless of y. (To satisfy this condition, all the principal
sub-matrices of matrix jjanmjj need to have positive determi-
nants.) We can now utilize the mathematical knowledge on
positive-definite Hermitian matrices to investigate the inten-
sity matrix for the image.

Next, let us consider the direct relationship between the
elements of the intensity matrix and the observable physical
quantity. The first relationship is:

ii. Diagonal elements of the intensity matrix are equal to
the intensities sampled at the interval of λ∕2α, and
the trace of the intensity matrix is equal to the integrated
image intensity over the image plane.

The first half of the statement can be understood from
Eq. (7) in which unðyÞ is 1 at the sampling point of
y ¼ nλ∕2α and zero at other sampling points. For the second
half of the statement, the integrated image is obtained by
taking the integral all over the image plane; therefore it is
proved by integrating Eq. (7) with reference to Eq. (5′),

EQ-TARGET;temp:intralink-;e024;326;235I0 ¼
Z

IðyÞdy ¼ λ

2α

� Xþ∞

n¼−∞
ann

�
; ð23Þ

The source coherence is contained in the property of the
intensity matrix, which will be more explicitly expressed
by matrix diagonalization with unitary transformation.
If intensity I is expressed as the inner product of vectors
as in Eq. (21), let ϕ be expressed by basis vectors
ϕ1;ϕ2;ϕ3; : : : . These vectors are orthogonal, for example,
ϕ1 ¼ ð1;0; 0; : : : Þ, ϕ2 ¼ ð0;1; 0; : : : Þ, and so on. With these
basic vectors, vector ϕ is given by
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EQ-TARGET;temp:intralink-;e025;63;752ϕ ¼ u1ϕ1þ · · · þurϕrþ · · · ð24Þ
Now, orthogonal transformation of the basis will change

Eq. (21) into the simplest form. The transformed vectors
must be eigenvectors of the intensity matrix. That is, the
eigenvectors ψ1;ψ2; : : :ψ i; : : : will satisfy the following
condition

EQ-TARGET;temp:intralink-;e026;63;677Aψ i ¼ λ1ψ i ð25Þ
where λi is a constant called an eigenvalue and it is proved
that a Hermitian matrix always has real eigenvalues. Let the
components of the eigenvector ψ be (S1;S2; S3; : : : ), the
equation that determines the eigenvalue and eigenvector,
Aψ ¼ λψ , is then written as

EQ-TARGET;temp:intralink-;e027;63;595

ða11 − λÞS1 þ a12S2 þ a13S3þ · · · þa1nSn ¼ 0

a21S1 þ ða22 − λÞS2 þ a23S3þ · · · þa2nSn ¼ 0

..

.

an1S1 þ an2S2 þ an3S3þ · · · þðann − λÞSn ¼ 0

9>>>=
>>>;

(26)

For Si to have non-trivial solutions, the determinant of the
matrix formed by the coefficients has to be zero. The result-
ing equation is called the characteristic equation whose
solutions are eigenvalues λ1; λ2; : : : . If each eigenvalue is
substituted into Eq. (26), we will have a set of simultaneous
equations whose solution is the corresponding eigenvector
to the inserted eigenvalue. By letting the components
of eigenvector ψ i corresponding to eigenvalue λi be
(S1i; S2i; S3i; : : : ; Sni), the square of jψ ij is given by
ðψ i;ψ iÞ ¼ S1iS�1i þ S2iS�2i þ : : : þ SniS�ni. Hereinafter, we
normalize the square of jψ ij to be 1. In addition, it is proved
that the eigenvectors are mutually orthogonal.5 Therefore,
the orthonormal condition can be written as

EQ-TARGET;temp:intralink-;e028;63;377ðψ i;ψ iÞ ¼ S�1iS1j þ S�2iS2jþ · · · þS�niSnj ¼ δij ð27Þ
Let us return to our original intention. Suppose that

the original basis vectors ϕ1;ϕ2; : : : ;ϕn are transformed
to eigenvectors ψ1;ψ2; : : :ψn. Then, vector ϕ ¼
ðu1; u2; : : : ; unÞ can be represented by a new vector
ψ ¼ ðξ1; ξ2; : : : ξnÞ, i.e.,
EQ-TARGET;temp:intralink-;e029;63;294ϕ ¼ ξ1ψ1 þ ξ2ψ2þ · · · þξnψn ð28Þ

If we denote it by the vector components

EQ-TARGET;temp:intralink-;e030;63;256ui ¼
X
k

Sikξk ð29Þ

we will obtain

EQ-TARGET;temp:intralink-;e031;63;202ϕ ¼ Sψ ð30Þ

where matrix S has Sik as its i-th row k-th column element.
The coefficients in Eq. (28), i.e., the vector components

obtained by transforming vector ϕ satisfy the following
condition due to the orthogonality in Eq. (27)

EQ-TARGET;temp:intralink-;e032;63;130ξi ¼ ðψ i;ϕÞ ð31Þ
If Eq. (31) is written explicitly,

EQ-TARGET;temp:intralink-;e032a;63;90ξi ¼
X

S�kiuk ð310Þ

where S�ki is the i-th row and k-th column element of the
inverse transformation matrix, which is given by transposing
matrix S in Eq. (29) followed by taking the complex conju-
gate of each component. Here, we denote the transpose of
a matrix by the single quotation mark ’ and write the trans-
forming matrix in Eq. (31) as S 0�. Therefore,

EQ-TARGET;temp:intralink-;e033;326;686ψ ¼ S 0�ϕ ð32Þ

The square of vector ϕ is

EQ-TARGET;temp:intralink-;e034;326;644ðϕ;ϕÞ ¼
X

jukj2 ð33Þ

As vector ui is expressed in Eq. (29),

EQ-TARGET;temp:intralink-;sec5;326;599ðϕ;ϕÞ ¼
�X

ξkψk;
X

ξrψ r

�
Because of the orthogonal property, we obtain ðϕ;ϕÞ ¼

Σjξkj2. Thus, the matrix transformation used here preserves
the square of the absolute value (norm) is not changed. This
is proved by Eq. (27) in conjunction with Eq. (29). The con-
stant norm property with Eq. (31′) proves

EQ-TARGET;temp:intralink-;e035;326;505

X
k

S�ikSjk ¼ δij ð34Þ

Equations (27) and (34) can be simplified with an identity
matrix E as

EQ-TARGET;temp:intralink-;e036;326;440S 0�S ¼ SS 0� ¼ E ð35Þ

In general, transformation that satisfies Eq. (35) is called
a unitary transformation and matrix S is called a unitary
matrix.

With the unitary transformation by matrix S, we can
examine how the image in Eqs. (7) or (21) is transformed.
As in Eq. (28), vector ϕ is written by the linear sum of trans-
formed basic vectors ψ i. Then,

EQ-TARGET;temp:intralink-;sec5;326;332I ¼ ðϕ;AϕÞ ¼
�X

ξiψ i;A
X

ξjψ j

�
If we use the property of eigenvalue and eigenvector in

Eq. (25) and the orthogonality in Eq. (27), we obtain

EQ-TARGET;temp:intralink-;e037;326;271I ¼
X

λijξij2 ð36Þ

Since Eqs. (31) or (31′) shows the explicit form of ξi,

EQ-TARGET;temp:intralink-;e038;326;230I ¼
X

λijðψ i;ϕÞj2 ¼
X
i

λi

���X
k
S�kiuk

���2 ð37Þ

If this result is written in the matrix form,

EQ-TARGET;temp:intralink-;sec5;326;174I ¼ ðϕ;AϕÞ ¼ ðSψ ;ASψÞ ¼ ðψ ; S 0�ASψÞ
From Eq. (37), S 0�AS results in a diagonal matrix in

which off-diagonal elements are zero. Letting the diagonal
matrix be D,

EQ-TARGET;temp:intralink-;e039;326;114S 0�AS ¼ D ð38Þ
Diagonal elements of the diagonal matrix are eigenval-

ues λ1; λ2; : : : ; λn.
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Next, because of Eqs. (35) and (38)

EQ-TARGET;temp:intralink-;e040;63;741A ¼ SDS 0� (39)

or if Eq. (39) is written using the matrix elements

EQ-TARGET;temp:intralink-;e041;63;699anm ¼
X

λiSniS�mi ð40Þ

Among the results shown above, Eqs. (37) and (40) are
useful in revealing the physical properties of the intensity
matrix. Thus, Eqs. (37) and (40) will be examined in more
detail.

iii. The image intensity is given by eigenvalues λi and
eigenfunctions ψ i (S1i; S2i; : : : ; Sni) of the intensity
matrix A as
EQ-TARGET;temp:intralink-;e042;63;579

IðyÞ ¼
X
i

λi

���X
k

S�kiukðyÞ
���2

ukðyÞ ¼ sin
2πα

λ
ðy − kλ

2α
Þ∕ 2πα

λ
ðy − kλ

2α
Þ (37)

When the light source is coherent, only one eigenvalue is
non-zero. Therefore

EQ-TARGET;temp:intralink-;e042a;63;485IðyÞ ¼ λ0

���X
k

S�kukðyÞ
���2 ð370Þ

where
ffiffiffiffiffiffiffiffiffi
λ0Sk

p
corresponds to Fðkλ∕2αÞ in Eq. (5). When the

light source is partially coherent, there are more than one
non-zero eigenvalues in Eq. (37), in which the eigenfunction
associated with the greatest eigenvalue contributes to the
image formation most significantly. When the light source
is incoherent, each eigenfunction contributes almost equally
to image formation. From Sec. 4.2, in special cases where the
object brightness is uniform or object transmittance changes
sinusoidally across the object plane, we can obtain Eq. (37)
without the unitary transformation. When the object bright-
ness is uniform, all eigenvalues have the same value.

As a result, analyzing how the eigenvalue distributes
reveals the degree of coherence of the light source, which
is involved in image formation. When eigenvalues are λi,
the sum of all eigenvalues I0 is equal to the trace of the inten-
sity matrix and also equal to the integrated image intensity on
the image plane. Let us consider the following quantity

EQ-TARGET;temp:intralink-;e043;63;253d ¼ −
X
i

ðλi∕I0Þ logðλi∕I0Þ ð41Þ

If the light source is coherent, we always obtain d ¼ 0
and if the light source is incoherent with uniform intensity,
d takes the maximum value d0

EQ-TARGET;temp:intralink-;sec5;63;178d0 ¼ log N;

where N is the degree of freedom of the image. For one-
dimensional images with a length of L, N ¼ 2αL∕λ and for
two-dimensional images with an area of S, N ¼ 4α2S∕λ2.
If the image area becomes infinitely large, N will also be
infinitely large. For this case, we may consider d∕d0 and
take the limit with an infinitely large N. Therefore we define
another quantity δ as

EQ-TARGET;temp:intralink-;sec5;326;752δ ¼ ðd0 − dÞ∕d0
The value of δ changes continuously from 1 to 0 as

the light source gradually changes its coherent state from
coherent to incoherent. The quantity δ is an interesting
quantity because we are able to measure coherence with
δ. Therefore, we define the degree of coherence using δ.
(The author noted in Ref. 9 that δ can be used for an object
with uniform transmittance or brightness. However, accord-
ing to Eq. (18′), δ from a light source with S > 1 is the same
as δ from incoherent source. We may need to investigate this
point more carefully.)

According to von Neumann,6 −
P

λn log λn is given with
the matrix A as

EQ-TARGET;temp:intralink-;e044;326;598−
X

λn log λn ¼ −TraceðA log AÞ; ð43Þ

where the function of the matrix, log A, is a matrix given by
substituting matrix A into the series expansion of the loga-
rithm function. Equation (43) is considered to provide us a
way to evaluate δ without the unitary transformation of A.

Next, let us summarize the result of Eq. (40).

iv. A positive definite Hermite matrix of order N, in our
case the element of intensity matrix anm, is given by
N positive real numbers λi together with N orthonormal
vectors ψ i (S1i; S2i; : : : ; Sni) as

EQ-TARGET;temp:intralink-;e045;326;456anm ¼
X

λiSniS�mi ð40Þ

The number of the variables to define the intensity matrix
is determined by the N eigenvalues and N eigenvectors. The
vector component Sij is in general complex, so that it can be
represented by Sij ¼ rij expðθijÞ. The number of the varia-
bles that determines the vector components is 2N2. As a
result, the number of the variables that determines the inten-
sity matrix of order N is ð2N þ 1ÞN. Here, Eq. (27) defines
the orthonormal condition, which is a set of

EQ-TARGET;temp:intralink-;sec5;326;325N þ 1

2
NðN − 1Þ ¼ 1

2
NðN þ 1Þ

equations. Hence,

v. The number of the independent variables, R, to define
an intensity matrix with order N is

EQ-TARGET;temp:intralink-;e046;326;241R ¼ Nð2N þ 1Þ − 1

2
NðN þ 1Þ ¼ 1

2
ð3N þ 1Þ ð44Þ

Note that the simplest case for the intensity matrix is
obtained when the light source is coherent because we may
set the eigenvalues 0 except the single eigenvalue λ0. In this
case, only one vector decides the matrix elements, so that the
number of independent variables is

EQ-TARGET;temp:intralink-;e047;326;125RðcoherentÞ ¼ 2N ð45Þ
The number of independent variables is a fundamental

quantity of the intensity matrix that depends on the coher-
ence of the light source. However, the number of
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independent variables is not always meaningful for image
intensity as is discussed next. Rather, the image intensity
is determined by 2N sampling points where N is the number
of sampling points for a coherent source. If the 2N sampled
values could be arbitrary, the situation would be simpler;
however, they need to be the sampled image intensity
expressed in Eq. (7), which is obtained by the intensity
matrix. Equation (7) introduces correlation among 2N
sampled values. Thus, the property of the intensity matrix
explained here is necessary to derive the amount of infor-
mation of the image intensity, which will be explained
elsewhere.

vi. Regardless of the coherence of the light source, image
intensity IðyÞ in Eq. (7) is determined by the sampled
values with a sampling step of λ∕4α, and the following
relationship between the sampled values and the inten-
sity matrix is derived

EQ-TARGET;temp:intralink-;e048;63;556IðyÞ ¼
X
k

I
�kλ
4α

� sin 4πα
λ ðy − kλ

4αÞ
4πα
λ ðy − kλ

4αÞ
ð46Þ

where

EQ-TARGET;temp:intralink-;sec5;63;497I
�kλ
4α

�
¼

X
n

X
m

anmuu
�kλ
4α

�
um

�kλ
4α

�

EQ-TARGET;temp:intralink-;sec5;63;443

k¼2p∶uuð2pλ∕4αÞ¼0; p≠n

uuð2pλ∕4αÞ¼1; p¼n

k¼2pþ1∶uuðð2pþ1Þλ∕4αÞ¼ð−1Þp−n∕f2ðp−nÞþ1g

The sampling step is derived by the Fourier transform of
the image IðyÞ in Eq. (7), in which the Fourier transform
of unðyÞumðyÞ has twice as wide as the bandwidth of the
Fourier transform of unðyÞ. Outside of the bandwidth, the
Fourier transform of IðyÞ is 0. The equation is explicitly
shown below by referring to the appendix

EQ-TARGET;temp:intralink-;e049;63;321InmðωÞ ¼
Z þ∞

−∞

sinðξ − nπÞ
ðξ − nπÞ

sinðξ −mπÞ
ðξ −mπÞ e−iωξdξ ð47Þ

If ω > 2 or ω < −2,

EQ-TARGET;temp:intralink-;sec5;63;265InmðωÞ ≡ 0

If 0 < ω < 2,

EQ-TARGET;temp:intralink-;sec5;63;223InmðωÞ ¼
1

2i
e−iπ½nω−ðn−mÞ� − e−iπ½mωþðn−mÞ�

ðn −mÞ

If 0 > ω > −2,

EQ-TARGET;temp:intralink-;sec5;63;166InmðωÞ ¼
1

2i
e−iπ½mω−ðn−mÞ� − e−iπ½nωþðn−mÞ�

ðn −mÞ

When n ¼ m, we will obtain the following.

If jωj > 2,

EQ-TARGET;temp:intralink-;sec5;326;741InnðωÞ ≡ 0

If 0 < ω < 2,

EQ-TARGET;temp:intralink-;sec5;326;699InnðωÞ ¼ πð1 − ω

2
Þe−iπωnα

If 0 > ω > −2,

EQ-TARGET;temp:intralink-;sec5;326;649InnðωÞ ¼ πð1þ ω

2
Þe−iπωnα

Since the bandwidth of IðωÞ is limited to 4α∕λ, the sam-
pling theorem in Sec. 2 leads to the series expansion of
Eq. (46).

In Eq. (46), rewriting the k-th sampled value as Bk,
EQ-TARGET;temp:intralink-;e050;326;566

B2p ¼ app;

B2pþ1 ¼
X
k

X
r

4

π2
akrð−1Þkþr∕f2ðp − kÞ

þ 1gf2ðp − rÞ þ 1g (48)

Also, the integrated intensity I0 is rewritten using Eq. (23)
as

EQ-TARGET;temp:intralink-;e051;326;464

2α

λ
I0 ¼

X
p

B2p ¼
X
p

B2pþ1 ¼
X
k

akk ð49Þ

6 Closing Remarks
The results presented in this paper are an expanded version
of the presentation given at a symposium on “Application of
the information theory to optics” organized by The Japan
Society of Applied Physics on April 6, 1956. This paper
explains the physical meaning of the intensity matrix intro-
duced here. This work is just the beginning; we may need to
work more on, for example, the application of the intensity
matrix to calculating the amount of information, extension of
the intensity matrix to two-dimensional imaging, evaluation
of the change of the intensity matrix by phase difference,
examination of the intensity matrix with aberration, and
so on. For these cases, the author wishes to present at another
opportunity.

In this paper, the discussion is limited to finite dimen-
sions; however, for completeness of the study, it should be
discussed with infinite dimensions. Therefore, we need to
utilize the concept of Hilbert space, but the author was not
able to reach this point in this short paper.

The author thanks Professor Hidetoshi Takahashi of the
Department of Physics of the University of Tokyo and
Associate Professor Kazuo Miyake of Tokyo University of
Education for helpful discussions and Professor Hiroshi
Kubota of the Institute of Industrial Science of the University
of Tokyo, who encouraged the author to apply the informa-
tion theory to optics and provided the related references.

7 Addendum
Since the submission of the manuscript, the author has
noticed that D. Gabor of the United Kingdom independently
proposed how to generally express the image by a Hermitian
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matrix. [Information Theory, Third London Symposium,
edited by Colin Cherry (1956, Butterworths Scientific
Publications) 4. Optical Transmission by D. Gabor, pp.
26-33.]

Although the concrete derivation differs from the one
introduced in this paper, the author appreciates that he
reached fundamentally the same conclusion. Those inter-
ested may read his paper together with this paper. The author
mentioned in this paper that the intensity matrix for a gen-
eralized case would be a very difficult problem. However,
since then, the author was able to conclude that the intensity
matrix can be generalized by matrix transformation of the
object or can be defined with the existence of aberration
in the imaging optics, and report these findings in a physics
seminar at the University of Tokyo. The details will be pub-
lished elsewhere. These are not exactly pointed out by Gabor.
However, our concepts are in agreement.

8 Appendix 1
Proof of Eq. (8).

Let the object complex transmittance be EðxÞ and com-
plex amplitude of the incident light be Aðx − zÞ, the Fourier
transform of the light amplitude at the object plane
EðxÞAðx − zÞ is given by Eq. (1),

EQ-TARGET;temp:intralink-;e052;63;487fðX; zÞ ¼
Z

−∞

−∞
EðxÞAðx − zÞe−2πiXxdx ð1Þ

On the other hand, the light amplitude in the image plane
FðyÞ is given by Eq. (4)

EQ-TARGET;temp:intralink-;e053;63;422Fðy; zÞ ¼
Z þα

λ

−α
λ

fðX; zÞeþ2πiXydX ð4Þ

Substituting Eq. (1) into Eq. (4) followed by changing
the order of integration gives

EQ-TARGET;temp:intralink-;e054;63;355Fðy; zÞ ¼
Z þ∞

−∞
EðxÞAðx − zÞ sin

2πα
λ ðy − xÞ

πðy − xÞ dx ð3Þ

Letting uðy − xÞ ¼ sin 2πα
λ ðy − xÞ∕πðy − xÞ, we get

EQ-TARGET;temp:intralink-;sec8;63;298Fðy; zÞ ¼
Z þ∞

−∞
EðxÞAðx − zÞuðy − xÞdx

We obtain Fðnλ
2α ; zÞ and Fðmλ

2α ; zÞ by substituting y ¼ nλ
2α,

mλ
2α

into above equation, and insert them into Eq. (7′) to
obtain Eq. (8).

9 Appendix 2

9.1 Incoherent Illumination

Substituting the intensity matrix of Eq. (15) into Eq. (7) gives

EQ-TARGET;temp:intralink-;sec9.1;63;165IðyÞ ¼ 2α

λ

Xþ∞

n¼−∞



sin 2πα

λ ðy − nλ
2αÞ

2πα
λ ðy − nλ

2αÞ
�2

and changing Eq. (14′) yields

EQ-TARGET;temp:intralink-;sec9.1;326;752

IðyÞ ¼ A
Z þ∞

−∞



sin 2πα

λ ðy − xÞ
πðy − xÞ

�
2

dx

¼ 2α

λ
A
1

π

Z þ∞

−∞

sin2ðξ − ηÞ
ðξ − ηÞ2 dξ ¼ 2α

λ
A

This result leads to the requirement of
Pþ∞

n¼−∞
sin2ðη−nπÞ
ðη−nπÞ2 ¼1.

This relationship can be obtained by the series expansion of
1∕sin2 η. [See, for example, Magnus, Overhettinger, Formeln
und Sätze für die speziellen Functionen der mathematischen
Physik (Springer 1948) p.215.] Similarly, if the object bright-
ness changes periodically, substituting Eq. (16) into Eq. (7)
yields
EQ-TARGET;temp:intralink-;sec9.1;326;602

IðξÞ ¼ Aα
λ

�
1þ ð1 − pÞ

Xþ∞

n¼−∞
cos 2npπ

sin2ðξ − nπÞ
ðξ − nπÞ2

þ 1

π

X
n

X
m

sinðn −mÞð1 − pÞπ
ðn −mÞ

× cosðnþmÞpπ sinðξ − nπÞ sinðξ −mπÞ
ðξ − nπÞðξ −mπÞ



On the other hand, if IðξÞ is derived by Eq. (14),

EQ-TARGET;temp:intralink-;sec9.1;326;486IðξÞ ¼ Aα
λ
½1þ ð1 − pÞ cos 2pξ�

Since the above two equations are identical, we obtain
the one we need.

9.2 Partially Coherent Illumination

If the object transmittance is uniform, the image intensity
is obtained by putting anm from Eqs. (18′) and (18″) into
Eq. (7)
EQ-TARGET;temp:intralink-;sec9.2;326;367

S> 1; I ¼K2

S


X
n

sin2ðη−nπÞ
ðη−nπÞ2

�
¼K2

S

S < 1; I ¼K2
X
n

X
m

sin Sðn−mÞπ
Sðn−mÞπ

sinðη−nπÞ
η−nπ

sinðη−mπÞ
η−mπ

If the illumination is incoherent, we have Eq. (14′) and
when the illumination is partially coherent, we have

EQ-TARGET;temp:intralink-;sec9.2;326;271IðyÞ ¼
ZZ

Γðx1 − x2ÞEðx1ÞE�ðx2ÞAðx1ÞA�ðx2Þuðx1
− yÞu�ðx2 − yÞdx1 dx2

If we set EðxÞAðxÞ ¼ K and substitute uðx − yÞ in
Eq. (8′) and Γðx1 − x2Þ in Eq. (17) into above equation,
we will obtain the following equation with a help of the
integration in Eq. (18)
EQ-TARGET;temp:intralink-;sec9.2;326;170

S > 1; I ¼ K2

S
S < 1; I ¼ K2

Therefore, we obtain

EQ-TARGET;temp:intralink-;sec9.2;326;103

X
n

X
m

sin Sðn −mÞπ
Sðn −mÞπ

sinðη − nπÞ
η − nπ

sinðη −mπÞ
η −mπ

¼ 1
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10 Appendix 3

10.1

EQ-TARGET;temp:intralink-;sec10.1;63;706

Z þ∞

−∞

sin 2πα
λ ðy − nλ

2αÞ
2πα
λ ðy − nλ

2αÞ
sin 2πα

λ ðy − mλ
2αÞ

2πα
λ ðy − mλ

2αÞ
dy ¼ λ

2α
δnm

If we set a variable 2πα
λ y ¼ ξ,

EQ-TARGET;temp:intralink-;sec10.1;63;662

λ

2πα

Z þ∞

−∞

sinðξ−nπÞ
ξ−nπ

sinðξ−mπÞ
ξ−mπ

dξ

¼ λ

2πα

Z þ∞

−∞

1

ð2iÞ2
½eiðξ−nπÞ−e−iðξ−nπÞ�½eiðξ−mπÞ−e−iðξ−mπÞ�

ðξ−nπÞðξ−mπÞ dξ

The integration can be decomposed into four terms each
of which has the following result

EQ-TARGET;temp:intralink-;sec10.1;63;555

Z þ∞

−∞

eiax

ðx − λ1Þðx − λ2Þ
dx ¼



πi e

iaλ1−e−iaλ2
λ1−λ2

ða > 0Þ
−πi eiaλ1−e−iaλ2λ1−λ2

ða < 0Þ

To arrive at the above result, we have to choose an
integration path such that expðiaxÞ is cancelled by a loop
with an infinite radius. In addition, this integral has
a pole on the real axis so that we have to take the
Cauchy’s principal value. Note that if the residue on the
real axis is R0, the result of the complex integral is affected
by 2πiðΣRþ 1∕2ΣR0Þ, where R is the residue inside the
integration path. [Whittaker, Modern Analysis p.117 (1935).]
With these procedures, we obtain the integration shown in
the beginning.

10.2

In Eq. (16), we need to calculate the following integral;

EQ-TARGET;temp:intralink-;sec10.2;63;353Inm ¼
Z þ∞

−∞
cos 2pξ

sinðξ − nπÞ
ðξ − nπÞ

sinðξ −mπÞ
ðξ −mπÞ dξ

This integral can be carried out in the similar way as the
one shown above, i.e., we have to evaluate complex integrals
with an exponential function. As a result,
EQ-TARGET;temp:intralink-;sec10.2;63;269

p>1 Inm¼0

0≤p≤1



n≠m Inm¼ sin πðn−mÞð1−pÞ

ðn−mÞ cos πðnþmÞp
n¼m Inn¼πð1−pÞcos 2πnp

10.3

In Eq. (18), the following integral results in
EQ-TARGET;temp:intralink-;sec10.3;63;163

I ¼
Z þ∞

−∞

sin Sðξ − ηÞ
Sðξ − ηÞ

sinðξ − nπÞ
ðξ − nπÞ dξ

S > 1 I ¼ π

S
sinðη − nπÞ
ðη − nπÞ

S < 1 I ¼ π

S
sinðη − nπÞ
ðη − nπÞ

10.4

Equation (18) has the following definite integral,

EQ-TARGET;temp:intralink-;sec10.4;326;726I ¼
Z þ∞

−∞
cos pξ

sin Sðξ − ηÞ
Sðξ − ηÞ

sinðξ − nπÞ
ðξ − nπÞ dξ

i. (S > 1 or S < 1) and p > ð1þ SÞ

EQ-TARGET;temp:intralink-;sec10.4;326;663I ≡ 0

ii. [S > 1 and ð1þ SÞ > p > ðS − 1Þ] or [S < 1 and
ð1þ SÞ > p > ð1 − SÞ]

EQ-TARGET;temp:intralink-;sec10.4;326;607I ¼ π

2S
sin½Sðη − nπÞ þ pnπ� þ sinðη − nπ − pηÞ

η − nπ

iii. S > 1 and ðS − 1Þ > p > 0

EQ-TARGET;temp:intralink-;sec10.4;326;549I ¼ π

S
sinðη − nπÞ
η − nπ

cos pη

iv. S < 1 and ð1 − SÞ > p > 0

EQ-TARGET;temp:intralink-;sec10.4;326;491I ¼ π

S
sin Sðη − nπÞ

η − nπ
cos pnπ

Above results reduces the integration of Eq. (19) to a
single integral to give the results as follows

i. S ≥ 1 and p > ð1þ SÞ

EQ-TARGET;temp:intralink-;sec10.4;326;403anm ≡ 0

ii. [S > 1 and ð1þ SÞ > p > ðS − 1Þ] or [S < 1 and
ð1þ SÞ > p > ð1 − SÞ]

EQ-TARGET;temp:intralink-;sec10.4;326;347anm¼
K2

2πS

Z þ∞

−∞
cospη

×
sin½Sðη−nπÞþpnπ�þsinðη−nπ−pηÞ

η−nπ
sinðη−mπÞ
η−mπ

dη

iii. S > 1 and ðS − 1Þ > p > 0

EQ-TARGET;temp:intralink-;sec10.4;326;254anm ¼ K2

πS

Z þ∞

−∞
cos2 pη

sinðη − nπÞ
η − nπ

sinðη −mπÞ
η −mπ

dη

iv. S < 1 and ð1 − SÞ > p > 0

EQ-TARGET;temp:intralink-;sec10.4;326;195anm¼
K2

πS
cospnπ

Z þ∞

−∞
cospη

sinSðη−nπÞ
η−nπ

sinðη−mπÞ
η−mπ

dη

Among the above four results, (iii) and (iv) would be able
to be calculated by the results of 10.2 and 10.4. For (ii),
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EQ-TARGET;temp:intralink-;sec10.4;63;748

2πS
K2

anm

¼ sin pnπ
Z þ∞

−∞
cos pη

cos Sðη− nπÞ
η− nπ

sinðη−mπÞ
η−mπ

dη ðaÞ

þ cos pnπ
Z þ∞

−∞
cos pη

sin Sðη− nπÞ
η− nπ

sinðη−mπÞ
η−mπ

dη ðbÞ

þ
Z þ∞

−∞
cos2pη

sinðη− nπÞ
η− nπ

sinðη−mπÞ
η−mπ

dη ðcÞ

−
Z þ∞

−∞
sin pη cos pη

cosðη− nπÞ
η− nπ

sinðη−mπÞ
η−mπ

dη ðdÞ

For (b) and (c), we can use the formula shown already.
However, we need some more calculation for (a) and (d).

In the end, the four integrals are

EQ-TARGET;temp:intralink-;sec10.4;63;567

Z þ∞

−∞
cospη

sin Sðη−nπÞ
η−nπ

sinðη−mπÞ
η−mπ

dη

¼



sinðn−mÞðSþ1−pÞπ
2

n−m cos½ðnþmÞpþðS−1Þðn−mÞ�π
2
n≠m

π
2
ðSþ1−pÞcos nπp n¼m

EQ-TARGET;temp:intralink-;sec10.4;63;467

Z þ∞

−∞
cospη

cosSðη−nπÞ
η−nπ

sinðη−mπÞ
η−mπ

dη

¼


ð−Þsinðn−mÞðpþ1−SÞπ

2

n−m sin½ðnþmÞpþðSþ1Þðn−mÞ�π
2
n≠m

ð−Þπ
2
ðpþ1−SÞsinnπp n¼m

EQ-TARGET;temp:intralink-;sec10.4;63;396

Z þ∞

−∞
sin 2pη

cosðη − nπÞ
η − nπ

sinðη −mπÞ
η −mπ

dη

ð1þ SÞ > p > 1

EQ-TARGET;temp:intralink-;sec10.4;63;362


¼ 0 n ≠ m
¼ π cos 2npπ n ¼ m

1 > p > ðS − 1Þ or 1 > p > ð1 − SÞ

EQ-TARGET;temp:intralink-;sec10.4;326;741



¼ sinðn−mÞpπ

n−m cos½ðnþmÞpþ ðn −mÞ�π n ≠ m
¼ πp cos 2npπ n ¼ m

EQ-TARGET;temp:intralink-;sec10.4;326;685

Z þ∞

−∞
cos 2pη

sinðη − nπÞ
η − nπ

sinðη −mπÞ
η −mπ

dη

ð1 − SÞ > p > 1

EQ-TARGET;temp:intralink-;sec10.4;326;651


¼ 0 n ≠ m
¼ 1 n ¼ m

1 > p > ðS − 1Þ or 1 > p > ð1 − SÞ

EQ-TARGET;temp:intralink-;sec10.4;326;595 ¼



sinðn−mÞð1−pÞπ
n−m cosðnþmÞpπ n ≠ m

πð1 − pÞ cos 2npπ n ¼ m
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