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Abstract. Land use/land cover (LULC) change and climate change are thought to be closely
related and mutually influential, especially in contexts where land is converted for urban expan-
sion or agriculture. We represent a first attempt to specify the relationship between LULC change
and dryness in a region of Vietnam that is profoundly affected by climate change. Using the
temperature–vegetation dryness index (TVDI), we specified the relationships and changes
underway in Vietnam’s Ba river basin, one of the largest river systems in the South Central
Coast. Using Google Earth Engine, we extracted land use data from Landsat images and calcu-
lated TVDI values from Moderate Resolution Imaging Spectroradiometer (MODIS) data for
2000 to 2019. We found, first, that agricultural area and deforestation rose by 7.2% and 2.4%
annually, respectively. These changes were driven by economic development, rising crop prices,
illegal logging, wildfires, and emergence of new agricultural areas. Second, areas classified in
the driest TVDI intervals (dry and very dry) occupied 57% of the basin in 2019, 70% of which
was agricultural lands and 20% other (mainly urban and bare lands). These driest land categories
expanded at an average rate of 0.08% to 0.1% per year. Moreover, 90% of areas classified as
“very wet” and “wet” were forest. We observed a strong relationship between LULC change and
TVDI. Climate change and LULC change thus appear to be propelling the basin’s climate toward
increasing dryness, suggesting the need for policies to reduce the agricultural area and expand
forests while developing more adaptive and sustainable livelihoods. © The Authors. Published by
SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work
in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1
.JRS.15.024503]
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1 Introduction

Land use and land cover (LULC) change describes modifications of the Earth’s terrestrial surface
caused by human activities. Analyses of LULC change can indicate causal factors and their
influences on the Earth. Satellite imagery data are commonly used to detect and classify
LULC change and determine spatial and temporal variations therein.1,2 Data from Landsat,
Sentinel, and Moderate Resolution Imaging Spectroradiometer (MODIS)3,4 cover large areas
and are freely available.5 These can be used with many algorithms to investigate LULC change.
Such algorithms include, but are not limited to, maximum likelihood classification,6 minimum
distance classification,7 random forest (RF),8 classification and regression trees (CART),9 and
support vector machines (SVM).10,11 CART is widely used in remote sensing applications and
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has advantages for both training and actual data classification.11 Organizing a large number of
satellite images into a time series can be done using Google Earth Engine (GEE),12,13 with an
accuracy greater than 80%.13–19

Studies, such as Hao et al., employ GEE to identify land use changes in river basins, for
example, the Yangtze basin. They show that LULC changes, such as changes in vegetative cover,
affect land surface temperatures (LST) and ultimately the climate. For example, increases in
vegetative cover related to reforestation activities have been associated with decreasing LST
trends in forest areas.14,15 In urban areas, part of the inflation of LST has been attributed to
conversion of agricultural lands and forests into built-up surfaces. In fact, LULC changes linked
to urbanization have been identified as a key driver of LST increase16,17 and of changes in LST
spatial distribution.18,19

Using Landsat time series imagery, Fu and Weng analyzed the impact of LULC change on
LST in the Atlanta metropolitan area.20 They concluded that the mean LST values and yearly
amplitude were highest for dense urban space. These authors also reported that the conversion of
evergreen forest to medium-density urban land resulted in the largest changes in LST over time
and the largest trend difference. Furthermore, urbanization-related LULC change brings mod-
ifications of not only LST but also surface moisture. Jiang at al.17 found that the conversion of
forest to commercial land altered LST and moisture more profoundly that conversion of culti-
vated lands to residential areas.

The rapid expansion of urban areas is mainly a product of economic growth and rising pop-
ulations, especially in megacities.21 The substantial growth of built-up areas has brought a
decrease in the area under water bodies, cultivated land, vegetation, and wetlands. Mohan et al.22

found major impacts of the rapid expansion of the Delhi metropolitan area from 1997 to 2008.
Here, incorporation of rural areas into the urban conglomerate was associated with a 53% drop in
agricultural land, wasteland, scrubland, sandy areas, and especially water bodies. In Bangladesh
and Southwest China, rapid urban expansion has been accomplished by infilling low-lying areas
and clearing vegetation, which has unleashed a range of environmental impacts such as reduced
habitat quality.23,24

Throughout much of the world, LULC changes associated with rapid urbanization, particu-
larly conversion of vegetative cover to residential areas, caused abrupt increases in LST.25–28 Ha
and Hu8 used GEE to classify LULC in Central Asia in the period 2001 to 2017. Their results,
with an accuracy greater than 90%, indicate a correlation between both rainfall and dryness and
land cover change, particularly in relation to farming.8 LULC change is related to climate change
as well.29–31 Climate change interacts with land use planning, leading to changes in LULC, irri-
gation, the water environment, flood regimes, and river flow patterns.29,32–34 Some in-depth stud-
ies of LULC change combine geographical information system and analytic hierarchy process
methods to assess environmental risks35 and ecoenvironmental vulnerability.36

Vietnam is considered one of the five countries most affected by climate change, with the
consequences felt particularly in flood severity, drought, and sea level rise. In addition, industrial
development has been a major factor driving rising LST, prolonged droughts, and desiccation in
Vietnam.37 The country’s economic development accelerated LULC change particularly through
the conversion of forest areas for agriculture. Despite this, the current literature provides few
studies on interactions between LULC change and climate change in Vietnam. This paper rep-
resents, to the best of our knowledge, the first attempt to specify the relationship between LULC
change and climate change and dryness in Vietnam. Specifically, we used the temperature–
vegetation dryness index (TVDI) to investigate these relationships in the Ba river basin using
the cloud-based GEE platform.

The Ba basin has one of the largest river systems in central Vietnam. Moreover, this region
has been severely affected by flood and drought, especially in years with El Niño phenomena. To
plan for sustainable livelihoods here, it is vital to understand how interactions between LULC
change and climate change could play out. Thus, our study has three main objectives:

• to use Landsat data to assess LULC changes in the Ba river basin from 2000 to 2019;
• to apply MODIS data to trace TVDI trends in the study region from 2000 to 2019;
• to specify the relationship between TVDI and LULC change in the Ba river basin during

the study period.
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As the urban part of this basin is small, particularly compared to river basins elsewhere, we
focused our research on changes in the land area under agriculture, forest, and water bodies and
impacts of changes in these proportions on dryness, as indicated by TVDI values.

2 Materials and Methods

2.1 Study Site

The Ba river basin is one of the largest of the Vietnamese South Central Coast. It extends through
three provinces: Gia Lai, Dak Lak, and Phu Yen (Fig. 1).

The basin’s main river is named the Ba upstream and the Da Rang downstream. Originating
at the top of Ngoc Ro mountain (1549 m), this river is 13;900 km2 in area and 388 km in length.
It extends from 12°35′N to 14°38′N latitude and from 108°00′E to 109°55′E longitude
(see Fig. 1). The lower part of the river forms the Tuy Hoa delta and meets the sea at the
Da Rang estuary.38

To the north, east, and south, the basin is bounded by high mountains with altitudes
ranging from 500 to 2000 m. The basin consists mainly of gray soils on acid magma rock,
yellow, or reddish soils on basalt, and alluvial and sandy soils, making it a favorable region
for agriculture.38

Fig. 1 Location of Ba river basin in Vietnam with three meteorological stations: (a) An Khe station,
(b) Ayun Pa station, and (c) Son Hoa–Cung Son station.

Pham et al.: Specifying the relationship between land use/land cover change and dryness. . .

Journal of Applied Remote Sensing 024503-3 Apr–Jun 2021 • Vol. 15(2)



2.2 Data

2.2.1 Landsat data

For the research, we used Landsat satellite data provided by the US Geological Survey (USGS),
summarized in Table 1. The Ba river basin appears in three Landsat scenes (path/row 124/50,
124/51, and 123/51). Data were collected from 2000, 2005, 2010, 2017, and 2019, then cloud
filtered and extracted for LULC classification with GEE.

2.2.2 MODIS data

We used MODIS data to calculate LST and normalized difference vegetation index (NDVI) val-
ues in time series and then to predict TVDI trends. The MOD11A1 version 6 product provided
daily per pixel temperatures in bands 31 and 32 for the 2000 to 2019 period. The MOD09Q1
version 6 product5 provided estimations of surface spectral reflectance in bands 1 and 2
(Table 2). These were used to calculate NDVI.

2.2.3 Meteorological data

Meteorological data were provided by the Vietnam Meteorological and Hydrological
Administration. These included (i) mean air temperature, (ii) mean humidity, and (iii) precipi-
tation. These data were collected at three meteorological stations in the Ba river basin (see Fig. 1
and Table 3). Two of the stations, An Khe and Ayun Pa, were part of the Central Highlands

Table 1 Landsat image details.39,40

No. Year Satellite
Spatial

resolution (m) ID code Acquisition period Scenes

1 2000 Landsat 5 30 LANDSAT/LT5_L1T_TOA January July, 2000 25

2 2005 Landsat 5 30 LANDSAT/LT5_L1T_TOA January to May, 2005 20

3 2010 Landsat 5 30 LANDSAT/LT5_L1T_TOA January to July, 2010 19

4 2017 Landsat 8 30 LANDSAT/LC8_L1T_TOA January May, 2017 27

5 2019 Landsat 8 30 LANDSAT/LC8_L1T_TOA January to May, 2019 38

Table 2 MODIS image specifications.5

Band number Wavelength (μm) Band name Spatial resolution (m)

1 0.620 to 0.670 Red 250

2 0.841 to 0.876 NIR 250

31 10.78 to 11.28 TIR-1 1000

32 11.77 to 12.27 TIR-2 1000

Table 3 Climate type and coordinates of meteorological stations in the Ba river basin.41–43

No. Station Latitude Longitude Climate type

1 An Khe 13°57′ 108°39′ Tropical highland monsoon

2 Ayun Pa 13°23′ 108°27′ Dry tropical highland monsoon

3 Son Hoa–Cung Son 13°03′ 108°59′ Tropical monsoon
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Hydrometeorological Center,41 and the third station, Son Hoa–Cung Son, was part of the South
Central Coast Hydrometeorological Center.42 The meteorological data were gathered on a
monthly basis from 2000 to 2019. Based on the climate zone map of the Central Highlands43

and the description of the climate at the meteorological stations,41,42 the three stations were
deemed representative of the three main climate types in the Ba river basin. A highland tropical
monsoon climate accounts for about half the basin area.

2.3 Methodology and Data Processing

Figure 2 shows the workflow of our study. The three main procedures were as follows: (i) assess-
ing LULC change, (ii) evaluating the TVDI and meteorological data trends, and (iii) specifying
the relationship between TVDI and LULC change. We used daily MODIS data from 2000 to
2019 to determine the spatial distribution and temporal variation in TVDI in the dry season.

2.3.1 Land use/land cover change from Landsat data

To assess LULC change over time with GEE, a total of 3413 training samples ranging from 507
to 776 for the years 2000, 2005, 2010, 2017, and 2019 were selected (Table 4). Figure 3 shows
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Fig. 2 Workflow of the study.

Table 4 Summary of samples in the Ba river basin.

No. Year Agricultural lands Forests Water bodies Other Total

1 2000 124 251 32 100 507

2 2005 250 249 80 174 753

3 2010 147 297 77 255 776

4 2017 160 328 90 172 750

5 2019 204 196 65 162 627

Total 885 1321 344 863 3413
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the distribution of training sample points of 2019 used in the LULC classification including four
main objects: agricultural lands (blue points), forests (red points), water bodies (yellow points),
and other (purple points). In the Ba basin, most agricultural lands were cultivated to pepper,
coffee, rubber, and cashew; forests included both old-growth and regrowth areas; water bodies
consisted of rivers, streams and lakes; and other was mainly urban areas and bare lands.

GEE allows LULC categorization by the CART method.44 This is a machine learning algo-
rithm suitable for nonlinear models. Table 4 presents the samples, which were collected by site
survey and from high-resolution images in Google Earth Pro. In GEE, the research algorithm
divides the data in the selected classification samples, with 60% used for image classification and
40% for verifying accuracy.

2.3.2 Land surface temperature from MODIS data

We evaluated LST in the Ba river basin in the 20 years from 2000 to 2019. The MODIS
data (MODIS/006/MOD11A1) were preprocessed to filter clouds and for atmospheric

Fig. 3 Distribution of 627 training sample points used in the LULC classification of the year 2019.
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correction. We then compiled 7233 daily image scenes into 233 monthly scenes using median
statistics.

LSTwas calculated in kelvins (°K) by multiplying the MOD11A1 product by the scale factor
using the following equation:45

EQ-TARGET;temp:intralink-;e001;116;687t ¼ a � pixel; (1)

where t is the LST value (°K), pixel is the digital number of the MODIS images, and a is a
technical indicator (0.02 for bands 31 and 32). Then, we converted the results to degrees
Celsius as follows: tð°CÞ ¼ tð°KÞ − 273.15.

2.3.3 Temperature–vegetation dryness index values from the MODIS data

TVDI values indicate the spatial correlation between NDVI and LST, thus allowing for assess-
ment of the dryness of a region. In this study, we determined TVDI values based on the MODIS
data.

The NDVI value was calculated from the near-infrared (NIR) and red bands as follows:

EQ-TARGET;temp:intralink-;e002;116;536NDVI ¼ NIR − red

NIRþ red
; (2)

where NIR is the reflectance of band 2 and red is the reflectance of band 1 of the MOD09Q1
product.

The TVDI value was calculated from LST and NDVI as follows:46,47

EQ-TARGET;temp:intralink-;e003;116;457TDVI ¼ LST − LSTmin

ðaþ b � NDVIÞ − LSTmin

; (3)

where LST is the observed LST at a given pixel, LSTmin is the minimum observed LST, NDVI is
the observed NDVI value, and a and b are parameters defining the dry edge modeled as a linear
fit to the data (LSTmax ¼ aþ b � NDVI), in which LSTmax is the maximum observed LST for
a given NDVI value.

TVDI values ranged from 0 to 1. In line with previous studies,48,49 we defined TVDI
in five levels with intervals of 0.2. Table 5 presents these intervals, which were labeled
“very wet” (0.0 < TVDI1 ≤ 0.2), “wet” (0.2 < TVDI2 ≤ 0.4), “normal” (0.4 < TVDI3 ≤ 0.6),
“dry” (0.6 < TVDI4 ≤ 0.8), and “very dry” (0.8 < TVDI5 ≤ 1.0).

2.3.4 Relationship between LULC change and TVDI

The 2019 data were chosen for detailed assessment and used as a basis for specifying the rela-
tionship between LULC change and TVDI. We investigated this relationship by looking at (i) the
distribution of TVDI intervals over the LULC classes and (ii) the distribution of LULC classes
over the TVDI intervals. The purpose of this procedure was to obtain a more specified under-
standing of the relationship between LULC and TVDI by associating changes in each.

Table 5 Intervals in TVDI.

TVDI_1 TVDI_2 TVDI_3 TVDI_4 TVDI_5

Value range 0 to 0.2 0.2 to 0.4 0.4 to 0.6 0.6 to 0.8 0.8 to 1.0

Label Very wet Wet Normal Dry Very dry
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3 Results

3.1 Land Use and Land Cover Change in the Ba River Basin

To detect LULC change in the Ba river basin, we applied a supervised machine-learning clas-
sification approach in GEE using the Landsat data acquired in 2000, 2005, 2010, 2017, and
2019. Assessment of the classification results of 2017 and 2019 data using field data50 indicated
an overall accuracy of 89% with a kappa coefficient of 0.77 and 0.71, respectively.

The two classes with the largest areas were agriculture and forest (Fig. 4). In the 20 years
under study, the most significant LULC changes were observed in the western, southwestern,
and eastern areas of the Ba basin.

We see from Table 6 and Fig. 5 that agricultural lands increased from 290,630 ha to
686,526 ha (þ136.2%) in the 2000 to 2019 period. This translates to an annual increase of
7.17%. In 2019, agricultural lands accounted for 51.5% of total basin area. The greatest rise
in agricultural lands was registered in the 2005 to 2017 period, during which the agricultural
area almost doubled (a 96.6% increase or rise of 5.7% per year). Growth was slower in the rest of
the study period, ranging from 2.7% to 3.0% per year.

Change was most significant in Gia Lai Province [Fig. 6(a)] (Mang Yang, Kong Chro, Chu
Se, Phu Thien, and Dak Po districts), Dak Lak Province [Figs. 6(a) and 6(c)] (Ea H’Leo, Krong
Nang, M’Dak, and Krong Pa districts), and Phu Yen Province [Fig. 6(b)] (Song Hinh, Son Hoa,
and Phu Hoa districts).

In contrast to the area under agriculture, forest area diminished by 404,410 ha or 44.6%, from
2000 to 2019 (an average of −2.35% per year). In 2000, forests covered about 68% of the basin;
yet, this expanse had diminished to 37.6% in 2019. Forest area decreased by 17.9% from 2000 to
2005 (−3.58% per year). In the 2005 to 2010 period, this decline was briefly reversed, due in part
to government policies, especially decision no. 611/QD-TTg,51 which mandated reforestation of
5 million hectares and decision no. 304/2005/QD-TTg,52 which allocated forest areas for

Fig. 4 Land use/land cover maps for the Ba river basin in 2000, 2005, 2010, 2017, and 2019.
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protection by indigenous peoples. Thus, forest area grew slightly, by 1.5% or 0.3% per year,
during this period. However, from 2010 to 2019, forest areas continuously declined, decreasing
by 13.9% in total (−1.6% per year).

Most of the forest area in the Ba river basin was found in northern and eastern Gia Lai
Province [Fig. 7(c)] (K’Bang, Mang Yang, Dak Po, Kong Chro, Ia Pa, and Krong Pa districts),
in southwestern and southern Dak Lak Province [Figs. 7(a) and 7(b)] (Phu Thien, Ayun Pa, Ea
H’leo, Ea Kar, and M’Drak districts), and in Phu Yen Province [Fig. 7(b)] (Song Hinh, Son Hoa,
and Tuy Hoa districts). There was virtually no forest in the west and in the estuary zone of the Da
Rang river.

Moreover, from 2000 to 2019, the area under water bodies increased by 65.3% due to irri-
gation projects and construction of hydroelectric reservoirs53 [see Figs. 7(a)–7(c)] such as at
Song Ba Ha (220 MW, built 2004 to 2009), An Khe-Kanak (80 MW, built 2005 to 2011), and

Fig. 5 Land use/land cover change rate in the Ba river basin from 2000 to 2019.

Table 6 Land use/land cover area in the Ba river basin from 2000 to 2019.

Land class Area (ha) % Area Area (ha) % Area Area (ha) % Area

2000 2005 2010

Agricultural lands 290,630 21.8 329,713 24.7 472,084 35.4

Forests 906.138 68.0 667,614 50.1 687,526 51.6

Water bodies 10,927 0.8 8,476 0.6 15,823 1.2

Other 124,915 9.4 326,807 24.6 157,176 11.8

Total 1,332,610 100.0 1,332,610 100.0 1,332,610 100.0

2017 2019 2000 to 2019

Agricultural lands 648,305 48.7 686,526 51.5 395,896 þ136.2

Forests 602,351 45.2 501.728 37.6 −404;410 −44.6

Water bodies 19,598 1.4 18,061 1.4 7,134 +65.3

Other 62,356 4.7 126,295 9.5 1,381 +1.1

Total 1,332,610 100.0 1,332,610 100.0 — —
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Krong H’Nang (64 MW, built 2005 to 2012). Some fluctuations were observed in the “other”
land class, particularly related to the area of bare lands and reclaimed lands. Forest conversion
and reclamation of other lands for agriculture expanded vigorously in the 2000 to 2005 period,
from 124,915 to 326,807 ha (32.3% per year). However, this expansion slowed remarkably in
2017 to just 62,356 ha (4.7% per year) partly due to enactment of the settled agriculture policy
for indigenous people.54 From 2017 to 2019, some arable land was left uncultivated, as seen in
the dramatic increase in the “other” land class in this period, from 62,356 to 126,295 ha, or a
102.5% increase.

Looking at overall trends, 2000 to 2019 can be summarized as a period of expanding area
under agriculture (þ7.2% per year) and water bodies (þ3.4% per year), with the other land class

Fig. 7 Change in forest area in the Ba river basin from 2000 to 2019. Insets show areas with
pronounced losses of forest: (a) Daklak and Phu Yen, (b) Phu Yen, and (c) central Gia Lai. 1.
Ayun Pa lake, 2. Song Ba Ha hydroelectric reservoir, 3. Krong H’Nang hydroelectric reservoir,
4. Song Hinh lake, 5. An Khe-Kanak hydroelectric reservoir, and 6. An Khe lake.

Fig. 6 Change in agricultural land area in the Ba river basin from 2000 to 2019. Insets show areas
where agricultural land increases were particularly significant: (a) central Gia Lai, (b) Phu Yen, and
(c) Daklak and Gia Lai.
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also growing but to a lesser degree (þ0.06% per year) while forest area diminished (−2.35%
per year).

3.2 Trends in Temperature–Vegetation Dryness Index from MODIS Data

We calculated TVDI values for the Ba river basin using MODIS data acquired in the dry season
(January to April) from 2000 to 2019. As noted, these TVDI values ranged from 0 to 1 and were
divided into five main intervals: very wet (0 to 0.2), wet (0.2 to 0.4), normal (0.4 to 0.6), dry (0.6
to 0.8), and very dry (0.8 to 1), denoted as TVDI 1, TVDI 2, TVDI 3, TVDI 4, and TVDI 5,
respectively. We aggregated the TVDI analysis results according to the change of area in each
interval per year (Fig. 8 and Table 7).

From Fig. 8 and Table 7, we see that TVDI 1 area (very wet) accounted for the smallest
proportion of the basin and tended to decrease by about 0.005% per year, though this stabilized
in the more recent years. TVDI 3 area (normal) represents the second-largest expanse of the
basin, though land classified in this interval gradually decreased, from 33.4% in 2000 to

Fig. 8 Area of Ba river basin falling into each TVDI interval from 2000 to 2019. TVDI 1, TVDI 2,
TVDI 3, TVDI 4 and TVDI 5 represent the proportion of very wet, wet, normal, dry, and very dry
areas, respectively.

Table 7 Trend equations for TVDI intervals in the Ba river basin from 2000 to 2019.

Name Threshold values Dryness class

Area

Trend equation2000 2019

TVDI 1 0 to 0.2 Very wet 0.3% 0.9% Y ¼ −0.005% � X þ 10.925%

TVDI 2 0.2 to 0.4 Wet 8.6% 12.1% Y ¼ −0.03% � X þ 69.86%

TVDI 3 0.4 to 0.6 Normal 33.4% 29.5% Y ¼ −0.14% � X þ 315.28%

TVDI 4 0.6 to 0.8 Dry 46.8% 43,0% Y ¼ þ0.08% � X − 118.52%

TVDI 5 0.8 to 1 Very dry 10.9% 14.5% Y ¼ þ0.1% � X − 177.55%

Total — 100.0 100.0 —
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29.5% in 2019 (−0.14% per year). The basin areas classified as TVDI 4 (dry) and TVDI 5 (very
dry) increased by 0.08% to 0.1% per year.

We see from Table 7 that over 50% of the basin area was dry and very dry in 2019 and that
these types of lands tended to increase during the research period, especially the very dry areas
(TVDI 5). This points to an overall trend toward increasing dryness in this basin.

3.3 Trends from the TVDI Time Series Compared to the Meteorological Data

Meteorological data, specifically, monthly air temperature, humidity, and precipitation, were
collected from three ground-based monitoring stations: An Khe, Ayun Pa, and Son Hoa–
Cung Son. As noted above, these stations were deemed representative of the three major climate
zones found in the Ba basin (Fig. 9). We compared TVDI values for the pixels of the stations
with meteorological data collected from the stations in the dry seasons from 2000 to 2019.
Figures 10–12 and Table 8 present the results.

An Khe station is located in the highland tropical monsoon climate zone (Fig. 9). The rel-
atively low dry season air temperatures here,41 measured from 21.6°C to 23.8°C, showed a gradu-
ally increasing trend, at an annual rate of 0.001°C (Fig. 10). As expected for a highland tropical
monsoon climate, humidity and precipitation in this area were greater than those at the other two
stations, which experienced more wind and rain. Dry season precipitation at An Khe station
ranged from 5.9 to 87.4 mm and exhibited an upward trend over the study period, increasing
by some 1.49 mm per year (Table 8). Humidity ranged from 80.1% to 84.4%, with a decreasing
tendency, diminishing at a rate of about −0.07% per year (Fig. 10). The area around An Khe
station was characterized by low vegetation density and bare lands, which absorbed heat.41

Fig. 9 Terrain model and meteorological stations in the Ba river basin.
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TVDI values for this location were thus in the dry interval (0.6 to 0.8). In general, An Khe station
and its surroundings fell into the TVDI 4 (dry) and TVDI 5 (very dry) intervals and temperatures
increased while humidity decreased over the research period.

Ayun Pa station is located in the highland dry tropical monsoon climate zone (Fig. 9). As the
mountainous terrain here blocks winds, air temperatures were high, ranging from 24.2°C to
26.7°C, and increased by 0.028°C per year (Fig. 11).41 Because of the dry climate, this area
had the lowest humidity values (67.2% to 78.9%) and precipitation values (0.2 to 40.4 mm) in
the dry season, compared to the other two meteorological station locations. We see from Fig. 11
that precipitation and humidity here rose at a rate of 0.62 mm and 0.14% per year, respectively.

Fig. 10 TVDI and meteorological data at An Khe meteorological station from 2000 to 2019.

Fig. 11 TVDI and meteorological data at Ayun Pa meteorological station from 2000 to 2019.
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The Ayun Pa station was surrounded by grass and plants with moderate vegetation density.
Thus, the mean TVDI value here was lower than that at An Khe, but it still fell into the dry
interval (TVDI 4). At the Ayun Pa station, a trend of gradually decreasing TVDI values was
observed, at a rate of −0.018 per year, though the TVDI 4 area in the surroundings increased.

Son Hoa–Cung Son station (Fig. 9) is in a hot and humid tropical monsoon climate zone,
with correspondingly high air temperatures and high humidity.42 Air temperatures in the dry
season here ranged from 23.2°C to 25.5°C and decreased at a rate of −0.006°C per year over
the study period (Fig. 12). Precipitation in the dry season ranged from 3.2 to 72.8 mm and also
showed a downward trend, of −0.18 mm per year. Humidity ranged from 76.5% to 86.6%. Due
to its location in the high temperature zone, with low vegetation density and greater urbanization,
TVDI values in this area were higher than those of other two meteorological stations, falling
within the dry (0.6 to 0.8) and very dry (0.8 to 1.0) intervals, though decreasing at a rate of
0.0034 per year.

In sum, the TDVI values and meteorological data for air temperatures, precipitation, and
humidity at the three stations differed during the study period. Yet, overall, in the highlands
(An Khe), the lowlands (Ayun Pa), and the plains (Son Hoa–Cung Son), TVDI values and mea-
sured air temperatures gradually increased while humidity decreased. This resulted in increased

Fig. 12 TVDI and meteorological data at Son Hoa–Cung Son meteorological station from 2000 to
2019.

Table 8 TVDI values andmeteorological data for three stations in dry seasons from 2000 to 2019.

Meteorological station An Khe Ayun Pa Son Hoa–Cung Son

No. Value Min Max Mean Min Max Mean Min Max Mean

1 TVDI 0.60 0.78 0.70 0.61 0.77 0.68 0.62 0.86 0.73

2 Humidity (%) 80.1 84.4 82.5 67.2 78.9 73.8 76.5 86.6 81.8

3 Precipitation (mm) 5.9 87.4 24.8 0.2 40.4 12.9 3.2 72.8 24.0

4 Temperature (°C) 21.6 23.8 22.7 24.2 26.7 25.5 23.2 25.5 24.7

Climate type Tropical highland
monsoon

Dry tropical highland
monsoon

Tropical monsoon
(hot and humid)
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dryness, expressed in higher TDVI values. It must be noted, however, that our study assessed
TVDI values only locally at the meteorological stations. The extent to which these results can be
generalized to the respective climate zones and regions is unknown and a worthwhile topic for
future research.

4 Discussion

4.1 Causes of Land Use/Land Cover Change

During the 20 years under study, agriculture was the land use class that expanded most in the Ba
river basin, increasing at a rate of 7.2% per year. The reasons for this growth are twofold:
socioeconomic development and the practices of indigenous people.54,55 Regarding socioeco-
nomic development, in the Central Highlands region, in which the Ba basin is located, agricul-
tural crops such as coffee, rubber, pepper, and cashew greatly expanded in importance over
the study period.55,56 The production price of these perennial industrial crops rose by 254%,
86%, 63%, and 56%, respectively, from 2000 to 2013, according to an OECD55 report.
Moreover, the export turnover of these commodities rose, from 20.1% in 2000 to 35.1% in
2013 (Fig. 13).55

Regarding the practices of indigenous people, there has been a trend away from the custom of
slash-and-burn shifting cultivation, as this form of agriculture can only be implemented in
sparsely populated areas with plentiful forests and abundant natural resources.54,57 As already
noted, the increase in agricultural land area in the Ba basin went hand in hand with a drop in the
area under forests. Agriculture is an important income source for local populations in this
region,57 and when life is hard indigenous people have tended to turn to agriculture to earn more.
As agricultural prices rose from 2000 to 2013, local populations gradually increased their
agricultural production instead of afforestation activities.

In addition to increased agricultural area, the decline in forested areas can be attributed to
population growth and infrastructure developments, particularly irrigation and hydropower proj-
ects, as well as exploitation and conversion of forests for other government-sanctioned
purposes.58,59 Besides, large forest areas were lost to fires, attributable largely to climate change,
illegal forest exploitation, and deforestation. Loss of forests has directly affected the environment
of the Ba river basin, and with it the quality of life and livelihood potential of residents here.

Furthermore, the issues of nomadism in the Central Highlands gained the attention of gov-
ernment during the years under study. Various programs were set up to assist the indigenous
population, resulting in 82% of nomad households being sedentarized and settled.60

By the end of the study period, forest cover in the Ba river basin had been reduced to 37.6%.
Further continuation of this decline would bring serious consequences. In particular, disasters
such as floods, landslides, and environmental degradation would become more likely.

Fig. 13 Export turnover and production price of perennial industrial crops from 2000 to 2013.
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4.2 Relationship Between Land Use and Land Cover Change and
Temperature–Vegetation Dryness Index

We investigated the relationship between LULC and TVDI by looking at (i) the distribution of
TVDI intervals over the LULC classes (Table 9) and (ii) the distribution of LULC classes over
the TVDI intervals (Table 10).

Regarding the distribution of TVDI intervals over the LULC classes (Table 9), we found
some 90% of the TVDI 1 and TVDI 2 areas (very wet and wet) were in the forest class.
These were typically mountain peaks and ridges with low surface temperatures and dense veg-
etation cover where high evapotranspiration resulted in a negligible impact of dryness.
Moreover, 52.14% and 12.61% of the TVDI 3 and TVDI 4 areas (normal and dry) were forest.
These encompassed dipterocarps and poor forest areas with low vegetation density, as here
the effects of mild and moderate dryness were felt. Some 70% of the TVDI 4 and TVDI 5 areas
(dry and very dry) were found in the agricultural class. These included lands under paddy rice,
pepper, corn, sugarcane, and cassava, where low to moderate vegetation density resulted in
high TVDI values. Farming activities, overall, were highly represented in these driest TVDI
intervals. This is because vegetative coverage on farmlands varies by season and by year, and
agricultural lands are often left bare after harvest, either for recultivation later when a new crop
season arrives or when farmers move on to new fields, in accordance with nomadic customs.
These practices lead to unsustainable land use and cause land degradation in the long term.
Finally, some 30% of lands in the TVDI 5 interval (very dry) were in the other land class (urban
and bare lands).

Regarding distribution of LULC classes over the TVDI intervals (Table 10), agricultural
lands represented the largest percentage of TVDI 4 (dry) areas at 56.69%. Most forest areas

Table 9 Distribution of TVDI intervals over the LULC classes in 2019.

LULC class

TVDI intervals

1. Very wet 2. Wet 3. Normal 4. Dry 5. Very dry

0 to 0.2 0.2 to 0.4 0.4 to 0.6 0.6 to 0.8 0.8 to 1.0

Agricultural land 0.94% 5.86% 42.04% 75.23% 70.28%

Forests 89.69% 90.72% 52.14% 12.61% 0.00%

Water bodies 9.37% 3.12% 1.72% 0.28% 0.00%

Other 0.00% 0.30% 4.09% 11.88% 29.72%

Total 100.00% 100.00% 100.00% 100.00% 100.00%

Table 10 Distribution of LULC classes over the TVDI intervals in 2019.

TVDI interval (range)

LULC class (%)

Agricultural lands Forests Water bodies Other

1 Very wet (0 to 0.2) 0.03 4.06 12.11 0.00

2 Wet (0.2 to 0.4) 1.86 39.70 38.94 0.52

3 Normal (0.4 to 0.6) 25.18 43.11 40.59 13.34

4 Dry (0.6 to 0.8) 56.69 13.12 8.36 48.73

5 Very dry (0.8 to 1.0) 16.25 0.00 0.00 37.41

Total — 100.0 100.0 100.0 100.0
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were in either TVDI 2 (wet) or TVDI 3 (normal) with an area percentage of 39.70% and 43.11%,
respectively. Some forest edges were moderately affected by dryness, due to deforestation linked
to shifting cultivation as well as the effects of climate change. Forests were particularly dimin-
ished and converted to agricultural lands in the northern region of the basin (Fig. 7). A large
proportion of water bodies were found in the TVDI 2 (wet) and TVDI 3 (normal) intervals,
respectively, 38.94% and 40.59%. Finally, the largest proportions of other lands were found
in the TVDI 4 (dry) interval, at 48.73%, and in the TVDI 5 (very dry) interval, at 37.41%.
These were predominantly bare lands or urban areas, with correspondingly high temperatures
and low moisture.

In general, the area of agricultural and other lands exhibited a linear relationship with TVDI.
It is thus apparent that encroachment of agriculture into forest areas and the increase in urban and
bare lands has worsened the severity of dryness in this basin.

4.3 Limitations and Future Research

This study used the GEE platform to classify LULC. A limitation of this study is its broad land
classification categories, namely, agricultural lands, forests, water bodies, and other. It is rec-
ommended that future studies explore more detailed classes. For example, agricultural lands
could be divided by commodity, such as coffee, pepper, cashew, and rubber. Similarly, forest
could be disaggregated into natural forest, protected, and plantation forest. This would provide
greater clarification of the causes of climate fluctuations and help trace the impacts of objective
and subjective factors on each LULC, such as the effects of government policies and land use
planning in the basin.

Moreover, it would be interesting to examine population data in more detail. Relationships
might be drawn, for instance, between LULC change and practices of the ethnic Kinh and minor-
ity populations and dryness over the past 20 years. This could contribute to better understanding
of the impacts of human activities, leading to more accurate forecasts of developments in the next
10 to 30 years.

5 Conclusions

This study analyzed a large number of Landsat and MODIS satellite images for the study area,
the Ba river basin in Vietnam, using the GEE platform. Specifically, Landsat data were employed
to classify LULC by CART algorithm. We extracted dry season LST, NDVI, and TVDI values
from MODIS data. Our results suggest clear trends in TVDI values from 2000 to 2019.
Identification of these enabled us to specify the relationship between LULC change and dryness
in the Ba river basin.

The expanse of the Ba river basin was mapped into four classes: agricultural lands, forests,
water bodies, and other (mainly urban areas and bare lands). The predominant trends in land use
conversion in the Ba basin were the gradual increase in agricultural area and, to a lesser extent, an
increase in water bodies. Agricultural lands grew by 136.2% over the study period, and the area
under water bodies increased by 65.3%. This is equivalent to an increase of 7.17% and 3.44% per
year. These transformations can be attributed to economic and industrial development and
increased cultivation of particular agricultural crops. At the same time, forest area decreased
by 44.6%, or 2.35% per year, due to conversion of forests for agriculture, illegal forest clearing,
and forest fires. The decrease in forest area took place mainly in the western and southwestern
regions of the basin and along the Ba river. These locations are near roads, reservoirs, and water
supplies, making them particularly favorable for development of agriculture.

The TVDI index, representing the dryness of an area, was divided into five intervals: very
wet, wet, normal, dry, and very dry. Areas falling into the dry and very dry intervals increased at a
rate of 0.08% and 0.1% per year, respectively, according to our analysis, with these two intervals
also accounting for 57% of the entire basin in 2019. Correspondingly, the proportion of the wetter
TVDI intervals steadily fell. The meteorological data from the monitoring stations used to assess
the TVDI results also indicated an overall gradual increase in TVDI values and air temperatures,
from the highlands to the lowlands and the plains, and indicators of rainfall and humidity
decreased. These findings point to increasingly severe dryness across the Ba river basin.
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Regarding the relationship between LULC and TVDI in 2019 about 90% of very wet and wet
areas were found in the forests layer, where vegetation density and evapotranspiration were high.
About 70% of the dry and very dry areas were found in the agriculture layer and 20% of dry and
very dry areas were in the other land class (mainly urban areas and bare lands). Low to medium
plant density in these areas contributed to the high TVDI values.

In summary, the expansion of agricultural lands alongside an increasing proportion of dry
and very dry areas indicates a close relationship between these two factors, which caused the Ba
river basin to heat up, affecting the livelihood prospects and quality of life of local people.
Moreover, forest cover dropped over the study period, to 37.6% of basin area in 2019.
Continuation of this decrease in forest cover would likely result in serious consequences, such
as increasingly severe flooding, landslides, and land degradation. Appropriate land use planning
and policies could help to avert such outcomes. For example, measures could seek to reduce the
agricultural land area and expand the area under forests and develop more adaptive and sustain-
able lifestyles while building resilience in the face of climate change.
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