
Improved semantic segmentation method using edge
features for winter wheat spatial distribution extraction

from Gaofen-2 images

Hao Yin,a Chengming Zhang ,a,* Yingjuan Han,b Yonglan Qian,c Tao Xu,d

Ziyun Zhang,a and Ailing Konga
aShandong Agricultural University, College of Information Science and Engineering, Taian,

Shandong, China
bKey Laboratory for Meteorological Disaster Monitoring and Early Warning and Risk

Management of Characteristic Agriculture in Arid Regions, CMA, Yinchuan, Ningxia, China
cNational Meteorological Center/CMA, Beijing, China

dUniversity of Jinan, Jinan, Shandong, China

Abstract. In the final feature map obtained using a convolutional neural network for remote
sensing image segmentation, there are great differences between the feature values of the pixels
near the edge of the block and those inside the block; ensuring consistency between these feature
values is the key to improving the accuracy of segmentation results. The proposed model uses an
edge feature branch and a semantic feature branch called the edge assistant feature network
(EFNet). The EFNET model consists of one semantic branch, one edge branch, one shared
decoder, and one classifier. The semantic branch extracts semantic features from remote sensing
images, whereas the edge branch extracts edge features from remote sensing images and edge
images. In addition, the two branches extract five-level features through five sets of feature
extraction units. The shared decoder sets up five levels of shared decoding units, which are used
to further integrate edge features and deep semantic features. This strategy can reduce the feature
differences between the edge pixels and the inner pixels of the object, obtaining a per-pixel
feature vector with high inter-class differentiation and intra-class consistency. Softmax is used
as the classifier to generate the final segmentation result. We selected a representative winter
wheat region in China (Feicheng City) as the study area and established a dataset for experi-
ments. The comparison experiment included three original models and two models modified by
adding edge features: SegNet, UNet, and ERFNet, and edge-UNet and edge-ERFNet, respec-
tively. EFNet’s recall (91.01%), intersection over union (81.39%), and F1-Score (91.68%) were
superior to those of the other methods. The results clearly show that EFNET improves the accu-
racy of winter wheat extraction from remote sensing images. This is an important basis not only
for crop monitoring, yield estimation, and disaster assessment but also for calculating land
carrying capacity and analyzing the comprehensive production capacity of agricultural resour-
ces. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original
publication, including its DOI. [DOI: 10.1117/1.JRS.15.028501]
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1 Introduction

Image semantic segmentation assigns a label value to each pixel in an image.1 Researchers use
the shallow features such as image color, grayness, and texture along with deep semantic features
obtained via deep learning to assign each pixel in the image to its category.2 Using semantic
segmentation to extract crops in remote sensing images accurately and in real time can maximize
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agricultural productivity. Detailed crop coverage maps are essential for agricultural monitor-
ing,3,4 food security,5,6 and responding to global environmental changes.7,8

Early image semantic segmentation algorithms extracted features primarily based on manual
design; they include scale-invariant feature conversion,9 directional gradient histogram [histo-
gram of oriented gradients(HOG)],10 and histogram back projection.11 More recently, machine
learning methods based on probabilistic map models have been proposed, such as the Markov
random field,12 Bayesian network,13 and conditional random field (CRF).14 However, these
methods rely excessively on manually labeled feature libraries.15,16 Hence, a large amount of
manpower is required, which greatly restricts the practical application of these methods.

Deep learning methods have contributed to the development of image segmentation through
mining pixel information, neural networks,17 support vector machines,18 decision trees,19 and
random forests.20 Further, using a neural network can ensure that feature extraction and clas-
sification are completed concurrently. The deep belief network21 achieved satisfactory perfor-
mance in image segmentation.22,23 When used for image segmentation, the network completely
mines the characteristics of each pixel, and the spatial features between pixels can be better
utilized. Therefore, the convolutional neural network (CNN) sets reasonable convolution kernels
and batch normalization (BN) layers in the image characteristics and segmentation requirements
to build a network structure.24 This approach has achieved highly accurate results.25–27 A fully
convolutional network (FCN)28 realizes end-to-end training, which is more conducive to the
automatic extraction of refined winter wheat.29,30 However, the accuracy of the extraction result
is limited owing to the local receiving field and short-term context information.31,32 Some
encoder–decoder networks are used to gradually restore edge details,33–36 such as UNet,37

SegNet,38 and DeepLabv3.39 Despite their success, some details are lost after the encoder down-
sampling, which means that predictions are often less accurate near the boundaries. RefineNet40

uses features from various levels to make semantic segmentation near the boundaries more pre-
cise. Romera et al.41 proposed a lightweight real-time semantic segmentation model, ERFNet,
which uses the decomposition convolution of the one-dimensional convolution kernel to replace
the traditional convolution. The rise of the attention mechanism has seen its introduction into
semantic segmentation, such as non-local neural networks,42 CCNet,43 and DANet.44 This
mechanism can more effectively performs accurate segmentation within a long-range context.
However, the results obtained by upsampling with these models are still rough and some details
in the images should not be ignored. These methods may be optimized by introducing prior
knowledge.

Pixels will have strong grayscale jumps at the junction of different surface types. Edge detec-
tion algorithms are typically used to distinguish boundary pixels from internal pixels. Traditional
edge detection methods use derivative operators to highlight grayscale changes and set thresholds
through derivative values.45 The Roberts operator uses the local difference operator to find the
edge.46 The Sobel and Prewitt operators use the maximum value obtained by convolution in
the horizontal or vertical directions. The Canny operator judges the edge operator according to
the signal-to-noise ratio, positioning accuracy, and unilateral response standards.47,48 In most
cases, the Canny algorithm performs better than most commonly used edge detection algorithm.49

With the advancement of imaging technology and hardware equipment, more feature infor-
mation can be mined from high-resolution remote sensing images. Mixing pixel issues have also
been mitigated. The edge pixels themselves may be mixed pixels, but the edge features obtained
by capturing regional changes through edge detection can improve the edge fineness of the seg-
mentation results. In image segmentation, the integration of edge features and semantic features
improves the effectiveness of features in distinguishing different crops.50–53 Chen et al.54 pro-
posed the use of a domain transform as filtering to generate segmentation specific edges in end-
to-end trainable systems, thus optimizing semantic segmentation quality. Liu et al.52 merged a
semantic segmentation network and an edge network and used regularization methods to opti-
mize the resultant composite network. Marmanis et al.48 proposed a new cascade model com-
bining edge and semantic segmentation networks. He et al.55 introduced edge information as a
priori knowledge and used the feature information extracted from the overall nested edge branch
to correct the FCN segmentation result. However, these methods use end-to-end networks to
combine semantic segmentation with edge detection, which requires a large number of param-
eters to be trained simultaneously and consumes more time and computing power.
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The main purpose of this research is to develop a strategy to improve the semantic segmen-
tation of CNNs by combining edge features, and to propose a remote sensing image segmenta-
tion model for obtaining the spatial distribution of winter wheat with high precision.

The main contributions of this article are as follows:
A new image segmentation dataset structure is proposed, i.e., a high-resolution remote sens-

ing dataset is established based on Feicheng City, China. The dataset consists of image blocks of
remote sensing images, corresponding artificial label maps, and corresponding generated edge
maps. The edge map generated based on the edge detection algorithm is used as part of the model
to participate in the training and testing of the model. A semantic segmentation dataset for winter
wheat in Shandong Province, Gaofen-2, is established.

A new CNN framework with semantic features and edge features is constructed. The seman-
tic branch and edge branch extract shallow semantic features and edge features, respectively. The
shared decoder further extracts the shallow semantic features and performs upsampling to restore
the feature map size. Finally, the feature fusion module is used to fuse multi-scale edge features
and deep semantic features to obtain more distinguishable features with richer edge details.
Furthermore, the framework is incorporated into other models to improve their segmentation
results. Based on the proposed edge feature framework, a new CNN model fine feature network
[edge assistant feature network (EFNet)] is established.

2 Materials and Methods

2.1 Dataset

2.1.1 Study area

As shown in Fig. 1, Feicheng City is located in the central area of Shandong Province, China, at
the western foot of Mount Tai. Its geographic coordinates are 35°53′–36°19′N and 116°28′–116°
59′ E. The city is 48-km long in the north–south direction and 37.5-km wide in the east–west

Fig. 1 Geographical location of Feicheng City, Shandong Province, China.
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direction, with a total area of 1277 km2. This area is an important crop production region in
Northern China. The area is within a temperate continental semi-humid monsoon climate zone,
with four distinct seasons and sufficient light and heat for crop growth. The annual average
temperature is 13°C, annual average sunshine time is 2536.21 h, and annual average rainfall
is 688.3 mm.

2.1.2 Dataset Creation

We collected 40 Gaofen-2 (GF-2) remote sensing images covering the entire study area from
November 2017 to April 2018 and an additional 37 images from November 2018 to April 2019.
Each GF-2 image is composed of a multispectral image and a panchromatic image. After
preprocessing, each remote sensing image contained four channels: red, blue, green, and near-
infrared, with a spatial resolution of 1 m. The primary land use types in the images collected
included winter wheat, buildings, roads, woodland, mountains, and lakes. As winter wheat was
the primary crop in the pre-processed images, we selected winter wheat as the extraction target to
experimentally demonstrate the effectiveness of the method.

We divided the obtained Feicheng City GF-2 image into 7126 image blocks of equal size
(512 × 512 pixels). We then selected 20% of all images (1425) for manual annotation, of which
900 were used for model training, 125 for model verification, and 400 for model quantitative
analysis. When selecting image blocks, we chose representative and complex image blocks
containing winter wheat under various terrains and adjacent to other ground objects. Convolu-
tional neural networks rely on a large number of label maps to train the model and extract
effective features. Data sets of sufficient quality can improve the accuracy of the results. This
experiment prioritizes the accuracy of the data set as much as other similar models. During the
production of the semantic segmentation data set, some pixels may be misinterpreted. In this
experiment, through the guidance of professionals combined with ground surveys, we produced
as accurate a map as possible. As shown in Fig. 2, four areas were selected for field investigation
to verify the accuracy of the manual annotation graphs and correct the annotation maps in the
dataset.

Unlike previous approaches, this study innovatively used the edge detection map as an
important part of the dataset for model training and testing. The edge detection algorithm was
used to create an edge detection map whose edge pixel value was equal to the original pixel value
for each image block. As shown in Fig. 3, we established a dataset comprising the original,
labeled, and edge images.

2.1.3 Edge detection map

Figure 4 shows the results of five different edge detection algorithms. Because of the sowing time
and growing tendency of winter wheat, the spectrum, texture, and shape characteristics of the
farmland varied. Compared with its counterparts, the edge map obtained by the Canny edge
detection algorithm more accurately coincided with the edges of the actual winter wheat plot.
Therefore, the Canny edge detection operator was selected to extract the edges of winter wheat
production plots.

2.2 EFNet Model

In this experiment, a new CNN framework with improved edge features was developed (Fig. 5).
First, semantic branches were used to extract the rich semantic information. Next, the edge infor-
mation was generated by combining the edge branches with multi-scale semantic information.
Finally, through the shared decoder module, multi-scale edge features and deep semantic fea-
tures were combined to generate the final image segmentation results.

Based on the proposed model framework, the EFNet model is proposed for extracting fea-
tures from remote sensing images. As shown in Fig. 6, the EFNet model network uses a semantic
branch and an edge branch for feature extraction. The feature fusion unit in the shared decoder is
used to fuse edge features of different scales with deep semantic features.
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Fig. 3 An example of the winter wheat dataset: (a) image block; (b) manually labeled image
corresponding to (a); (c) edge image corresponding to (a).

Fig. 2 Field investigation area.

Yin et al.: Improved semantic segmentation method using edge features for winter. . .

Journal of Applied Remote Sensing 028501-5 Apr–Jun 2021 • Vol. 15(2)



2.2.1 Semantic branch

The semantic feature extraction unit is composed of five feature extraction units connected in
series, which can extract five levels of semantic feature information for each pixel. Each feature
extraction unit contains two or three convolution layers, one BN layer, one activation layer, and
one 2 × 2 maximum pooling layer. Table 1 lists the number and size of the convolution kernels
used by each convolution layer.

Fig. 5 Schematic diagram of the CNN framework with improved edge features.

Fig. 4 Comparison of the segmentation results of five edge detection algorithms: (a) image block;
(b) Canny edge detection map; (c) Laplacian edge detection map; (d) Roberts edge detection map;
(e) Prewitt edge detection map; (f) Sobel edge detection map.
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The continuous use of multiple 3 × 3 convolutional layers can achieve the effect of a larger
convolution kernel and reduce the computational complexity. The activation layer is widely
applied to the convolution of neural networks and uses the rectified linear activation function
as the activation function. The maximum pooling layer discards some of the eigenvalues but
retains the eigenvalues of the key points in the region. The computational complexity is reduced,
but high classification accuracy is still guaranteed. To ensure that sufficient semantic features can

Table 1 Number of convolution kernels in each convolution layer.

Convolution
layer

Number of
convolution kernels

Size of
convolution kernels

1, 2 32 3

3, 4 64 3

5, 6 128 3

7 128 1

8, 9 256 3

10 256 1

11, 12 512 3

13 512 1

Fig. 6 EFNet model network structure.
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be extracted, this network structure avoids the problem that the use of an excessively deep con-
volution structure may cause significant noise in feature values. It is helpful for pixels of the
same kind to generate pixel-by-pixel feature vectors with good stability. Because the feature
value of the key point of the suspected edge pixel in the edge feature map is the weighted sum
of the edge feature and the semantic feature of the same scale, the pixel point retained by the
largest pool is the most representative edge feature key point in the receptive field.

2.2.2 Edge branch

The edge feature extraction unit is the same as the semantic feature extraction unit (Table 1), but
with the feature compensation module added between each of the five feature extraction units.
The working principle of feature compensation module is as follows: the semantic feature map
after the same number of feature extraction units is multiplied by the trainable coefficient γ and
added to the edge feature map [Eq. (1)] to develop a new edge feature map. γ can be automati-
cally adjusted during model training, and the value of γ at each level is determined separately
when training the model.

EQ-TARGET;temp:intralink-;e001;116;543fedgeðnÞ ¼ fedgeðnÞ þ fsemanticðnÞ × γ: (1)

2.2.3 Shared decoder

The shared decoder is composed of five feature fusion modules, which fuse shallow edge features
and deep semantic features to obtain fusion features (Fig. 7). The EFNet model adopts a gradual
recovery strategy. Each upsampling layer adjustment doubles the number of rows and columns.
Three convolutional layers are used to fuse two feature maps and adjust the feature values.

2.2.4 Classifier and loss function

The EFNet model uses the Softmax function [Eq. (2)] to calculate the probability of pixels
belonging to each category in the feature map generated by the decoder. The EFNet model uses

Fig. 7 Feature fusion module.
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the category number corresponding to the maximum probability value as the pixel category. Si is
the Softmax value of the i’th node, Vi is the output value of the i’th node, and j is the number of
output nodes, that is, the number of classification categories.

EQ-TARGET;temp:intralink-;e002;116;699Si ¼
eViP
j
eVj

: (2)

The EFNet model inputs the output (x) of Softmax and the label map (label) into the cross-
entropy loss function [Eq. (3)] to calculate the loss value.

EQ-TARGET;temp:intralink-;e003;116;623lossðx; labelÞ ¼ − log
ex½label�P
N
j¼1 e

xj
¼ −x½label� þ log

�XN
j¼1

exj
�
: (3)

2.3 EFNet Model Training

2.3.1 Optimizer

The EFNet model uses adaptive moment estimation (Adam) as the optimizer. The Adam algo-
rithm uses the gradient’s first moment estimation (mean of the gradient) and second moment
estimation (uncentered variance of the gradient) to adjust the learning rate of each parameter
dynamically and calculate the update stride.

The Adam algorithm combines the advantages of the adaptive gradient and root-mean-square
propagation optimization algorithms. The parameter update is not affected by the scaling trans-
formation of the gradient, and it can automatically adjust the learning rate within the initial learn-
ing rate range. In addition, the hyperparameters usually require only minimal fine-tuning or do
not need to be adjusted.

2.3.2 Training method

The EFNet model is used in an end-to-end manner. The specific training steps are as follows:

1. Determine the hyperparameters in the training process and initialize the parameters of
the EFNet model.

2. Input the image blocks, label maps, and corresponding edge detection maps in the train-
ing set as training data for the EFNet model.

3. Use EFNet to perform a forward calculation on the current training data to obtain
the output value.

4. Calculate the loss value of the true and predicted values according to Eq. 3. Use the
Adam optimizer to update the parameters of the EFNet model according to the
loss value.

5. Obtain a new experience file and complete the training.
6. Repeat steps 3, 4, and 5 for the specified number of times.

2.4 Experimental Setup

Three classic CNNmodels and three models combined with an edge feature improvement frame-
work (Fig. 5) were selected for comparative experiments (Table 2). The three classic models that
follow the encoder–decoder structure are widely used in semantic segmentation and have
achieved notable results.

SegNet realizes end-to-end pixel-level image segmentation, and the information lost in the
pooling process can be obtained in the decoder through upsampling. SegNet is used to explore
the effect of adding only edge features or not adding edge features to the encoder. UNet allows
learning of the missing features in the encoder pool at each stage of the decoder and connects the
different scale feature maps of the encoder to the upsampled feature maps of the decoder at each
stage. It is also used to explore the effect of combining edge features after the encoder combines
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low-level semantic features. ERFNet uses non-bottleneck-1D to achieve a balance between accu-
racy and parameter volume and is also used to explore the effect of combining edge features on
networks with fewer parameters.

As shown in Table 2, two configuration levels were used for each experiment: the original
model and the CNN with improved edge features.

By setting different numbers of edge feature extraction units, four sets of ablation experi-
ments were designed to explore the performance of the edge feature compensation unit and fully
understand the network.

We used the horizontal flipping, vertical flipping, random radiation transformation, 90 deg
rotation, and hue, saturation, value color space contrast transformation steps for image enhance-
ment on the training dataset. All image enhancement techniques were used only for model train-
ing data sets.

2.5 Evaluation Metrics

Four metrics were used to evaluate the experimental results in our experiment: intersection over
union (IOU), precision, recall, and F-score (F score). The results of winter wheat extraction can
be divided into true positive (pixels correctly identified as winter wheat), true negative (pixels
correctly identified as other types), false positive (pixels that are misclassified as winter wheat),
and false negative (pixels that are misclassified as others).

The pixel-wise IOU score evaluates segmentation accuracy.

EQ-TARGET;temp:intralink-;e004;116;315IoU ¼ TP∕ðTPþ FPþ FNÞ: (4)

Precision is used to indicate the proportion of winter wheat pixels that are accurately clas-
sified compared to all pixels identified as winter wheat.

EQ-TARGET;temp:intralink-;e005;116;259Precision ¼ TP∕ðTPþ FPÞ: (5)

Recall indicates the proportion of accurately classified winter wheat pixels compared to all
actual winter wheat pixels.

EQ-TARGET;temp:intralink-;e006;116;203Recall ¼ TP∕ðTPþ FNÞ; (6)

The F-score is an index used to evaluate the accuracy of classification models in statistics.
The F-score can be regarded as a weighted average of model accuracy and recall.

EQ-TARGET;temp:intralink-;e007;116;147Fscore ¼ 2 × ðPrecision × RecallÞ∕ðPrecisionþ RecallÞ: (7)

3 Results

The three models SegNet, ERFNet, and UNet were selected for the experiments in the early
stage. Then, the models with improved edge features were selected. As shown in Fig. 8, we

Table 2 Models used for comparison.

Number Name Description

1 UNet Original UNet

2 UNet-edge Improved UNet combined with edge features

3 ERFNet Original ERFNet

4 ERFNet-edge Improved ERFNet combined with edge features

5 SegNet Original SegNet

6 EFNet Ours
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compared and analyzed the results of the six experiments. In the first row, the spectrum and
texture of the water area and winter wheat are similar, and the SegNet model mistakenly iden-
tified the river as winter wheat. However, this problem was solved after introducing edge fea-
tures. Affected by topography and landform, winter wheat planting plots are small in area and
irregular in shape (second, third, and fourth rows of Fig. 8). The simple combination of semantic
features cannot accurately segment winter wheat.

After introducing edge features, small planting areas were also effectively segmented.
Affected by the growth of winter wheat, the spectral gaps of winter wheat in the same plot are
relatively large, resulting in them not being fully recognized (fifth and sixth rows of Fig. 8). In
addition, the color of some winter wheat with poor growth conditions was lighter. The model that
combined edge features better resolved this problem than the original model. Specifically, EFNet
identified almost all winter wheat plots [Figs. 5(h) and 8] in the image block [Figs. 5(a) and 8].

Fig. 8 Comparison of the segmentation results for 10 randomly selected image blocks: (a) original
images; (b) manually labeled images corresponding to (a); (c) UNet; (d) UNet-edge; (e) ERFNet;
(f) ERFNet-edge; (g) SegNet; (h) EFNet.
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Because of the different planting times of winter wheat, the spectra between various plots could
also have large differences (ninth and tenth rows of Fig. 8). The introduction of edge features
increased the difference between the edge pixels and the interior; hence, the feature values of the
same category were more similar. In other challenging conditions, such as the roads and plots in
rural areas being easy to confuse (seventh and eighth rows of Fig. 8), EFNet demonstrated better
performance and obtained more refined edges.

The fusion of edge features and semantic features is used to solve the problems of incon-
sistency within classes and indistinguishability between classes. High-quality features improve
the accuracy of winter wheat results under different terrains and different maturity levels; further,
they improve the edge fineness segmentation results, making the results more accurate and real-
istic. Among all models, EFNet obtained the best segmentation results. The results show that the
edge feature branch can improve the boundary accuracy and reduce the semantic ambiguity
between different regions of the same category.

Through statistical analysis of the experimental results, we can intuitively observe that the
four evaluation indicators of the three groups of improved models were superior to those of the
original model (Table 3). The recall rate and IOU improved, F-scores improved to a certain
extent, and the accuracy rate improved slightly. Compared with the other methods, UNet,
ERFNet, SegNet, ERFNet-edge, and UNet-edge, EFNet achieved the best performance in terms
of recall, IoU, and F-score. In addition, EFNet’s IOU and F-score were significantly higher than
those of SegNet, by 4.07% and 2.75%, respectively. The recall of the three models when com-
bined with edge features increased by 1.83%, 2.81%, and 5.58%, respectively. This means that
the edge features are effective in network improvement.

As shown in Fig. 9, the spatial distribution information of winter wheat planting in the whole
of Feicheng City was obtained using the trained EFNet model. The extraction results of the
whole city reached a very high precision.

4 Discussion

4.1 Importance of Edge Features for CNN Models

Traditional CNN models generally use high-level semantic features extracted by multiple feature
extraction units for semantic segmentation; however, such features cause a loss of accuracy
owing to upsampling. Because the CNN uses image blocks as the basic unit when extracting
features, as the receptive field continues to expand, the pixel inconsistency in the image blocks
increases, and the inconsistency of the extracted semantic features further increases. Therefore,
other information needs to be introduced to improve the consistency of semantic features. In the
high-level semantic feature map, different types of pixels in the pixel sensing field at the edges
of the image blocks are mixed. After multiple convolutions, because of being affected by the
feature values of different types of surrounding pixels, the feature values of the edge pixels are
considerably different from those of the pixels of the same category located inside the image
block. Therefore, the difficulty of the model segmentation of the edge pixel is high and the

Table 3 Comparison of our technique with network extraction techniques. The best result for each
metric is highlighted in boldface.

Model name Recall (%) Precision (%) IOU (%) F-score (%)

ERFNet-edge 88.27 89.61 79.40 86.96

ERFNet 86.44 89.45 78.49 86.24

UNet-edge 84.04 90.37 77.30 85.79

UNet 81.23 88.92 73.51 82.55

SegNet 85.43 88.81 77.32 85.84

EFNet 91.01 88.44 81.39 88.59
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segmentation effect is poor. The edge branch adopts a hierarchical extraction strategy and uses a
convolution operation to extract the feature information of the object edge. Finally, the model
uses a hierarchical fusion strategy to fuse multi-level edge features into the final feature map,
which improves the robustness of features and the consistency of features of similar objects.

In the early experiments, the features extracted from the edge map were directly applied to the
encoder part. The multi-scale edge features extracted from the edge graph were integrated with
semantic features by adding, multiplying, or concatenating operations. New features replaced
low-level semantic features in subsequent feature extraction. After many experiments and a
thorough analysis of the results, the results of these methods are not significantly better than
those of the original models. Since the value of non-edge pixels in the edge map is 0, the feature
map obtained after multiple convolutions loses a great deal of feature information.

The CNN framework with improved edge features (Fig. 5) used low-level semantic feature
maps and feature maps extracted from edge maps to obtain an edge feature map. The edge fea-
tures obtained using this method retained the differences between the pixels of the original edge
feature map and supplemented the pixel feature values at non-edge points. Enlarging the feature
difference between edge pixels and internal pixels caused the feature values of pixels of the same
category to be closer so that the model more accurately distinguished pixels of different catego-
ries. In the shared decoder, the multi-scale edge feature maps are connected with different levels
of deep semantic features. The connected feature map is upsampled and input to the continuous
three-layer convolutional layer, and the feature value is adjusted to fully integrate the two fea-
tures. Completely fusing the two features using this method compensated for the loss of accuracy
of pooling, enlarged the differences between the feature values of different category pixels at the
edge, and reduced the differences in feature values between pixels within the same category.
EFNet introduced edge information as a priori information and further extracted edge features
to guide semantic segmentation. Therefore, introducing edge features into the CNN model can
improve the network structure and the model segmentation accuracy.

4.2 Comparison of Edge Features and Low-level Semantic Features

The pixel values of the edge pixels in the edge image were the same as the corresponding pixel
values in the original image; however, the pixel values of the non-edge pixels in the edge image

Fig. 9 Extraction results of winter wheat from Feicheng City.
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were 0. This resulted in a large difference between the feature values extracted from the edge
pixels and internal pixels. In the encoder part, the same feature extraction unit was used for
feature extraction of two types of inputs. The same convolution kernel led to similarities between
the two types of feature maps; however, the semantic feature map displayed all the local infor-
mation of the pixels in the original image, and the edge feature focused on the edge pixels in the
edge image. The semantic feature information was richer and more suitable for further extracting
deep features. The edge pixels were susceptible to several different types of nearby pixels; hence,
the feature value exhibited a large difference within the same type. Compared with the semantic
features of the same level, the edge feature in the edge branch widened the gap between the
feature value of the edge pixel and those of the surrounding pixels. With a deepening of the
network level and the addition of semantic features, the internal pixel features of the same cat-
egory differ from those of different categories. When the receptive field of pixels in the edge
features is large, the eigenvalues are affected by the edges of other categories. Hence, edge
features are not suitable for networks with several layers.

As shown in Fig. 10, compared with semantic features of the same level, the feature value
difference within the winter wheat plots in the edge feature map is small and is considerably
different from other surrounding features. Roads, bare land, and other crops can also be effec-
tively distinguished, and edge features in hilly areas are also more distinguishable than low-level
semantic features. The edge features have strong positioning details and distinguishing edges.

Fig. 10 Comparison of the feature maps for four randomly selected image blocks: (a) image block;
(b) manually labeled image corresponding to (a); (c) semantic feature map of fine feature net-
work (EFNet) after two feature extraction units; (d) edge feature map of EFNet after two feature
extraction units.
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As shown in Fig. 8 and Table 3, EFNet (which introduces edge features in the decoder) is
superior to edge-UNet (which introduces both edge features and low-level semantic features),
UNet (which introduces low-level semantic features), and SegNet (which does not use other
features to compensate for deep semantic features).

In the extraction process, edge features that combine low-level semantic features have the
advantages of two features. The number of feature maps is only half of the sum of the two types
of feature maps, which reduces the computational complexity and avoids feature redundancy.
The CNN of the encoder–decoder structure can effectively improve the accuracy of semantic
segmentation by optimizing the network with improved edge features.

4.3 Ablation Study

To verify the influence of edge features on the model completely, four sets of ablation experi-
ments were performed with 1–4 sets of edge features and compared with the SegNet model
without edge features and EFNet with five sets of edge features. As shown in Table 4, we cal-
culated four evaluation indicators of six modeling results. When an edge feature unit was added,
the recall increased from 85.43% to 88.74%. When two edge feature units were added, the recall
increased from 85.43% to 90%, the IOU increased from 77.32% to 79.60%, and the F-score
increased from 85.84% to 87.38%. With an increase of three edge feature units, the precision
continually rose and gradually increased beyond the value of the original model. When the fifth
edge feature unit was added, the precision dropped by 2.04%.

As shown in Fig. 11, with the introduction of edge features, various roads between fields can
be effectively distinguished and the edges of the segmentation results become smoother. Some
unrecognized winter wheat plots were successfully identified, and some roads between plots
with complex terrain were distinguished. The experiment also confirmed that adding two or
more edge feature units can greatly improve the accuracy of semantic segmentation.

5 Conclusions

The edge feature branch proposed in this research uses an edge detection map combined with
semantic features to extract improved edge features. The EFNet model was proposed based on
this methodology. EFNet, which combines the advantages of semantic features and edge features
to improve the model structure, is an effective method to improve model accuracy.

The main contributions of this research are as follows:
A semantic segmentation dataset for winter wheat in Feicheng City, Shandong Province,

China was established. The original images were used to assign values to the edge pixels in
the edge detection image and used as part of the semantic segmentation dataset for experiments.

A CNN framework with improved edge features was proposed. Combining low-level se-
mantic features and edge features to compensate for high-level semantic features improves the
accuracy of the model. The framework was validated using multiple classic models.

Table 4 Comparison of the results of six groups of ablation experiments. The best result of each
metric is highlighted in boldface.

Model name Recall (%) Precision (%) IOU (%) F-score (%)

SegNet 85.43 88.81 77.32 85.84

SegNet-1edge 88.74 85.25 77.26 85.81

SegNet-2edge 90.00 87.17 79.60 87.38

SegNet-3edge 89.30 89.73 80.98 88.25

SegNet-4edge 89.63 90.48 81.04 88.38

EFNet 91.01 88.44 81.39 88.59
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The proposed EFNet model improved the semantic segmentation using edge features for
extracting winter wheat from remote sensing images.

EFNet is more suitable for high-resolution images with more information. This experiment
was intended to improve the features’ inter-class distinction and intra-class consistency, and is
also suitable for low-resolution remote sensing image segmentation. Furthermore, it is possible
to adjust and build a new network using the edge CNN framework based on the experimental
images and the planting characteristics of the extracted crops. The proposed EFNET requires
pixel-by-pixel label images to construct a training dataset and thus the task of visual interpre-
tation creates a large workload. The purpose of semantic segmentation of supervised CNNmodel
based on labeled graph is to free human beings from tedious and repetitive tasks. A small number
of error flags will not affect the results. In the final result, the segmentation precision of the edge
is as close as possible to the precision of the mark graph. In subsequent research, we intend to
introduce a semi-supervised method in the training process to reduce EFNet’s dependence on
label maps.
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