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ABSTRACT. In the field of neuroscience, the importance of constructing closed-loop experimental
systems has increased in conjunction with technological advances in measuring and
controlling neural activity in live animals. We provide an overview of recent techno-
logical advances in the field, focusing on closed-loop experimental systems where
multiphoton microscopy—the only method capable of recording and controlling tar-
geted population activity of neurons at a single-cell resolution in vivo—works through
real-time feedback. Specifically, we present some examples of brain machine inter-
faces (BMIs) using in vivo two-photon calcium imaging and discuss applications of
two-photon optogenetic stimulation and adaptive optics to real-time BMIs. We also
consider conditions for realizing future optical BMIs at the synaptic level, and their
possible roles in understanding the computational principles of the brain.
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1 Introduction
In neurophysiological experiments, the experimenter’s visual, auditory, and somatosensory per-
ception of the state of the living animals and cells has traditionally been crucial to maintain and
observe their physiological functions by adjusting the experimental conditions in real time. In
this sense, closed-loop experimental systems involving the experimenter (i.e., the human oper-
ator) appear in various physiological experiments. For example, in patch-clamp recording, a
square-wave is given, and its resistance is read by the eye from the oscilloscope or by the ear
when recordings are made audible. The resistance readings can then be used to control the
manipulator and suction to achieve gigaseal formation. In two-photon imaging, the acquired
images are also checked in real time to guide the visualization of the desired layer and desired
cell population. These are processes integrating animals, cells, recording systems, and humans.
In a broader sense, obtaining experimental data, creating a new hypothesis through analysis, and
conducting a new experiment to test this hypothesis is also a closed experimental system with
human intervention. We can ask the question “what is the need for ‘human’ intervention in such
experiments”? It might be because there is no way to automate the pattern recognition performed
by human vision and audition, or because it is difficult to control equipment more precisely than
through human manipulation. In this respect, current developments in machine learning, includ-
ing deep learning and control systems, have allowed levels of accuracy outperforming those of
humans. Accordingly, various kinds of closed-loop experiments have been realized, such as auto-
mated patch-clamp methods assisted by two-photon imaging1–4 and brain machine interfaces
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(BMIs) using two-photon imaging.5–10 In this review, we discuss such closed-loop systems inte-
grating animals, cells, recording and controlling equipment, and machine learning, and operating
without human intervention. Such closed-loop systems have the potential to revolutionize exper-
imental speeds and scales by eliminating the need for human involvement in the loop. In par-
ticular, we shed light on the use of multiphoton microscopy in closed-loop systems, where it has
notably succeeded in achieving both high-speed and large-scale operations.

We start by outlining the fundamentals of two-photon calcium imaging and its integration
into BMI technology and also discuss the technical development of two-photon optogenetic
stimulation and its real-time applications. The combination of these techniques provides the
foundation for all-optical experiments. We address the relationship between intentional control
and temporal delay, which must be considered when incorporating an all-optical system into a
closed-loop experimental setup (Fig. 1). The discussion then moves on to two-photon imaging
and control of synaptic strength and activity, which may have potential applications in future
BMI research. We also provide an overview of adaptive optics (AO) for performing such syn-
aptic-scale experiments in the deep brain. Finally, we discuss future technologies, including the
integration of the brain and artificial intelligence (AI), which can be potentially achieved with
these approaches.
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Fig. 1 Natural and artificial closed-loops. (a) Three learning rules11 and their time scales.
Unsupervised learning via STDP (spike-timing-dependent plasticity), supervised learning via sen-
sory-motor feedback, and reinforcement learning via dopamine-dependent plasticity have distinct
feedback times with about an order of magnitude difference. (b) BMI using a combination of two-
photon imaging (upper panel) and two-photon photostimulation (lower panel). It is thought that real-
time processing within 10 ms, 100 ms, or 1 s will allow us to see the recovery and enhancement of
different levels of brain functions. (c) Development of 2pBMI through a combination of two-photon
imaging (green) and two-photon photostimulation (red). The horizontal axis (green) is the number
of total recorded neurons during the 2pBMI experiment. The filled green is based on Ref. 6, but
other 2pBMI studies are not much different. The horizontal axis (red) is the number of neurons per
second of the two-photon photostimulation. The vertical axis shows the spatial resolution. The
open circle is not the one used for 2pBMI, but is that of the experiment that can be considered
the current state-of-the-art. Each arrow indicates the possible path of development that has been
or will be considered.
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2 Brain Machine Interfaces Using In Vivo Multiphoton Calcium
Imaging

2.1 Two-Photon Imaging and BMI
Two-photon calcium imaging is the best existing imaging method for observing in vivo cell mor-
phology and activity in deep brain tissue (< ∼ 1 mm).12,13 In the brain, the number of neurons that
can be simultaneously recorded with two-photon calcium imaging exceeds 1 million,14 about two
orders of magnitude more neurons than can be recorded with electrophysiological recording
using multisite electrodes, such as Neuropixels 2.0.15 This very substantial increase in the record-
ing number was made possible by the combination of bright genetically encoded calcium sen-
sors,16–19 large field-of-view (FOV) two-photon microscopes,20–23 and advanced scanning
technologies, such as reverberation microscopy.14,24 BMIs use neural activity to manipulate
external devices according to the subject’s intentions; however, the neural activity recorded
by conventional BMIs is limited to a few hundred neurons at most because of the limits of the
electrophysiological recording. Although electrophysiological recording is also currently making
progress, with the CMOS process and nanotechnology, the advantages of optical measurement
have been clearly established in terms of dense measurement of neurons and the ability to mea-
sure without directly penetrating the brain. Furthermore, two-photon microscopy allows us to use
optogenetic tools to stimulate targeted cell populations with single-neuron precision.25–33 Optical
methods can record membrane potentials of individual neurons even below a threshold for spike
generation.34–39 It can also detect a release of neurotransmitters, such as glutamate, dopamine,
and acetylcholine.37,40–44 Voltage imaging has recently been reported in combination with closed
loop two-photon photostimulation,45 and biofeedback of extracellular dopamine concentration
with the optical dopamine sensor enabled intentional control of the dopamine impulses.46 Thus
future BMIs are likely to be optics-based.47 We will begin by outlining the experiments that have
been realized with the current two-photon BMI (2p-BMI).

2.2 Examples of 2p-BMI
Hira et al.6 performed a BMI task in which two-photon imaging with G-CaMP7 was used to
convert the activity of a single target neuron in M1 (primary motor cortex) or M2 (secondary
motor cortex) into a reward in real time. Mice were trained on a lever-pulling task before this
BMI task [Figs. 2(a) and 2(b)]. When switched from the lever-pulling task to the BMI task, the
same amount of reward was obtained by continuing to pull the lever in the same way if the target
neuron was associated with lever-pulling. By contrast, when the target cells were not associated
with lever pulling, mice significantly increased reward acquisition by increasing the frequency of
calcium transients in the target neurons without lever pulling over a task duration of 15 min.
Furthermore, analysis of changes in nontarget neuron activity recorded by two-photon calcium
imaging showed that neurons did not increase their activity in the same way just because they

Fig. 2 2p-BMI: (a) head-fixed mice trained to perform a lever-pull task were retrained to perform
2pSNOC (two-photon single neuron operant conditioning). The imaging area was M1 or M2.
(b) ROI analysis was performed in real time. The mouse was rewarded by the activity of a target
neuron, which leads to elevation of activity of the target neuron. (c) Densely expressed G-CaMP7
and sparsely expressed ChR2. (d) Photostimulation was applied 250 ms before or 2.5 s after the
reward. (e) The activity of surrounding neurons was elevated when the stimulus came before the
reward, and was decreased when the stimulus came after the reward, which replicated the
changes in neuronal activity during 2pSNOC (adapted with permission from Ref. 6).
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were in the proximity of the target neuron; neurons that were coincidentally synchronously active
just before reward acquisition increased their activity over the 15 min, whereas neurons that
showed activity after the reward was obtained showed a decrease in activity within 15 min.
This indicates that individual neuron activity was enhanced when the activity was causally
related to the reward and suppressed when the temporal order was reversed. The authors were
able to reproduce this bidirectional change in activity by manipulating neural activity with one-
photon optogenetics and substituting the timing of the reward [Figs. 2(c)–2(e)]. These results
suggest that the timing of neural activity relative to the reward plays an important role in the
proper control of a BMI.

Clancy et al.5 used GCaMP6f to perform two-photon calcium imaging to measure the differ-
ence in activity between two populations of neurons in layer 2/3 of mouse M1 in real time. They
converted the difference into a sound and fed it back to the mice while at the same time rewarding
them when the value exceeded a threshold, thereby encouraging intentional manipulation of neu-
ral activity. This training resulted in a change in the activity of the two populations and led to
efficient obtainment of the reward. By examining the changes in the activity of the neurons
(recorded by two-photon calcium imaging) that were not used for real-time feedback, the authors
found that neurons close to those used for control changed their activity in the same way.

Mitani et al.7 performed two-photon calcium imaging specifically on inhibitory cell types.
For example, Cre-dependent expression of calcium sensor enabled parvalbumin-positive neuron-
specific recording. They divided the parvalbumin-positive neurons into two populations and gave
rewards when the sum of one population activity minus the sum of the other population activity
exceeded a threshold value. They repeated this experiment with somatostatin-positive and vaso-
active intestinal peptide-positive neurons and found that while all three neuron types were suc-
cessfully volitionally controlled, only the parvalbumin-positive neurons were controlled by
decreasing the activity, whereas somatostatin and vasoactive intestinal peptide neurons were con-
trolled by increasing the activity. This indicates that in addition to flexible controllability of
inhibitory neurons, intentional control differs depending on the subtype. In addition, Mitani and
Komiyama 48 published a paper on a module for real-time analysis of two-photon calcium im-
aging data.

Differences in cell-type-dependent intentional regulation are also seen in excitatory neurons.
Vendrell-Llopis et al.10 expressed a calcium sensor in an intratelencephalic neuron-specific or
pyramidal tract neuron-specific manner, and used it to control a BMI. The results clearly showed
that volitional control was easier for pyramidal tract neurons. Together with the results of Mitani
et al.,7 these results show that the cortical circuitry involved in volitional control is highly struc-
tured by the cell type.

Prsa et al.8 performed two-photon calcium imaging using GCaMP6f to measure the activity
of a neuron in M1 in real time for operant conditioning of single neurons. At the same time, other
neurons in S1 were stimulated with one-photon optogenetics at an intensity proportional to the
activity of the recorded neuron in M1. This feedback was found to significantly increase the
efficiency of BMI training, probably because it worked as a conditional reinforcer. This strategy
was also successfully used to manipulate a robotic arm.

2.3 Current Status of 2p-BMIs for Human Applications
As described above, BMI using two-photon calcium imaging has already contributed to our
understanding of the computational principles of the brain.49 In respect to this work, we can
ask the question “what is the situation considering its application in humans for driving a neuro-
prosthetic device”? Trautmann et al.9 first demonstrated a 2p-BMI in nonhuman primates using
two-photon calcium imaging in macaques. The macaque cortex is several times thicker than that
of mice, and thus imaging the cell body of layer 5 Betz cells is difficult. Therefore, they used
adenoassociated virus vectors to express GCaMP6f in dorsal premotor (PMd) or M1 cortices and
performed temporal (13 days, seven sessions) imaging of dendritic activity in layer 1. They dem-
onstrated that dendritic activity can be used for decoding the movement of the arm.

This successful decoding of movement via two-photon imaging in primates is a major step
toward its application in humans. Gene transduction in humans for the restoration of vision and
hearing in hereditary diseases is already being studied.50,51 Gene transfer with virus vectors to the
human brain is also being developed because of the need for gene therapy for glioblastoma and
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other diseases.50,52,53 Another important step for human applications of BMI in daily life is minia-
turization of the ultrashort pulsed laser, scan optics, and detectors used for two-photon imaging
and two-photon stimulation (as discussed below) so that they can be placed on the head. Such
miniaturization of the scanning optics is already underway;54–58 in particular, the latest MINI2P57

realized three-dimensional scanning using a micro-electro-mechanical system (MEMS) scanner
and an MEMS tunable lens. However, no work has yet been done on the miniaturization of the
laser and photodetectors. Major technological innovations will be required in this area in the
future.

2.4 Volitional Control and Delay Time
Even though the body has many degrees of freedom, the execution of smooth movements requir-
ing the precise control of individual muscles does not require intentional effort. If the mechanism
behind this smooth control can be incorporated into BMIs, smooth BMI control with many
degrees of freedom and no burden on the subject should be possible. Although the brain outputs
motor control signals, it also estimates the results of its own movement and predicts the sensory
input that will occur after the output. By detecting sensory inputs and correcting for errors
between the proprioceptive59 and/or visual feedback (that occurs after motor output) and the
estimated results, the brain can acquire an internal model enabling motor skills.59–62

Estimation of the consequences of one’s own locomotion according to an internal model (for-
ward model) becomes more difficult as the time lag between the generation of the motor output
signal produced by the brain and the resulting sensory feedback increases. For example, when
balancing upright, the sensory feedback associated with lower limb motor commands is delayed
by about 100 ms.63 Giving sensory feedback with a 200 ms delay makes it difficult to maintain
balance in the upright position.64 Furthermore, tactile sensory feedback for touch according to
one’s own movements provokes significantly greater ticklishness when delayed by 100 ms com-
pared with actual feedback.65 The maximum delay for visual feedback to motor output was
230 ms, beyond which subjects perceived misalignment.66 Thus although there are some
differences between modalities, a rough estimate suggests that sensory feedback within or around
100 ms is important for control via the internal model. This suggests that feedback within 100 ms
would also be beneficial for BMI control.

By contrast, in operant conditioning, a delay of up to a few seconds between the behavior to
be reinforced and the outcome is usually acceptable. This is probably because the dopamine-
dependent plasticity time window of the corticostriatal synapse is about 1 s,67 and there is a
mechanism in the brain for credit assignment to earlier neural activity.68 Thus the time window
over which reinforcement learning is possible (∼1 s) is an order of magnitude larger than the time
window over which supervised learning using internal models is possible (∼100 ms).

The two-photon calcium imaging described above was conducted at 3 to 30 frames per
second, with a delay of about 30 to 300 ms. In addition, it takes about 100 ms from neural activity
for the calcium concentration to reach a threshold. Considering the delay between real-time
motion correction, ROI segmentation, and reward output using a mechanical pump, there should
be a delay of 200 to 500 ms in total. This is shorter than the time available for credit assignment
for behavioral reinforcement through operant conditioning but is longer than the delay available
for learning with the internal model. In this case, the 2p-BMI control could be learned to a certain
degree by reinforcement learning, but the feedback time should be faster when there are more
degrees of freedom to manipulate external devices. To shorten the feedback time, it is necessary
to develop sensors with faster kinetics and speedy image processing algorithms for motion cor-
rection and segmentation. Recently, fast calcium sensor jGCaMP8f was developed, where the
delay from the onset of the action potential to half of the peak fluorescence value was about
2 ms,69 which is comparable with that of calcium sensors based on synthetic organic
compounds.70 Real-time image processing is addressed in the next section.

2.5 Real-Time Image Processing and its Speed
As we noted above, feedback within ∼100 ms is needed for control of one’s own body move-
ments, with this allowing for a natural application of internal models, rather than feedback within
∼1 s, which is the time delay allowing for reinforcement learning. Is it possible to record
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neuronal activity with two-photon imaging and loop through to compose the appropriate feed-
back within this time?

There are already several algorithms for registration and ROI segmentation of neural cell
bodies in two-photon calcium imaging data.71 Here we summarize particularly important papers
on real-time use. Mitani and Komiyama48 completed motion correction of 1000 512 × 512-pixel

video frames in <3 s and showed that such processing can be applied to BMIs.7 Giovannucci
et al.72 developed an algorithm called CaImAn (calcium imaging data analysis) that can be used
online with the fast motion correction algorithm NoRMCOrre73 and ROI segmentation. Bao
et al.74 utilized U-Net75 for this purpose and successfully extracted active neurons from two-
photon calcium imaging data in real time. CITE-On, a platform for real-time convolutional neural
network (CNN) analysis of large FOV two-photon calcium imaging, was also reported,76 and is
currently considered to be the best algorithm. CITE-On is much faster than other algorithms
because it does not perform real-time correction for motion of <4 μm. Even when the number
of neurons to be detected is several thousand, the analysis can be completed within 10 ms, mak-
ing CITE-On suitable for large-scale imaging at 100 fps.

So far, we have assumed imaging of a rectangular region using a resonant scanner and a
galvanometer scanner and have introduced real-time processing of rectangular images with the
same FOV. By contrast, if the motion can be handled at the level of the scanning, there should be
no need for image processing. The fastest closed-loop scanning system currently available is the
real-time 3D movement correction (RT-3DMC) system using two field-programmable gate
arrays (FPGAs).77 In the study describing this system, instead of scanning rectangular regions,
the authors used acousto-optic lens (AOL) 3D scanners to obtain fast random access to the cell
bodies of neurons. To compensate for the effect of brain motion, scanner movement was modi-
fied by an FPGA according to estimation of the three-dimensional motion by another FPGA,
thereby facilitating constant targeting of the cell bodies. The delay time between the brain motion
and the control of the AOL was <1 ms (395 to 669 μs). Thus both the CITE-ON CNN-based fast
motion tracking and the RT-3DMC with two FPGAs provide fast and accurate image processing
for real-time purposes.

2.6 Closed-Loop Multiphoton Calcium Imaging for Purposes other than BMIs
Studies using BMIs have monitored neural activity and linked it to rewards in order to facilitate
learning in the animal brain. In addition to such closed-loop experiments for operant conditioning
or BMIs, there are other unique studies using two-photon imaging in real time, two examples of
which we describe below.

One such study used two-photon imaging to automate in vivo patch-clamp recording sys-
tems targeting fluorescently labeled neurons. Automation of the patch-clamp method had already
been performed for so-called blind patches, but recording against a targeted cell required a
human to analyze the image and guide a pipette close to the cell.3 In two papers published
in 2017,1,4 the images acquired by two-photon imaging were analyzed in real time to allow the
glass pipette to be operated with a manipulator to increase or decrease the pipette’s internal
pressure at the right time, thereby achieving full automation. The success rate reached by this
system was equivalent to that of a skilled human. Such automation can substantially reduce the
stress on the experimenter when applied to multipatches.2 It may also be applicable to exper-
imental systems that repeatedly measure the RNA levels of the same cell, systems that have been
developed in recent years with the increasing use of single-cell RNA-seq technology.78 Indeed, it
is feasible to electroporate a plasmid in the brain of a live animal and then perform patch-clamp
recording on the very same cell.79 Without automation, it would be impossible to perform multi-
ple cellular operations that repeatedly access the internal chemical environment of a living cell.

The second application utilized a closed loop to examine the receptive fields of cellular
activity in the visual cortex.80,81 Two-photon calcium imaging was used to record the firing activ-
ity of neurons in the visual cortex while the animal was exposed to various stimuli. The deep
neural network trained to be a “digital twin” mimicking the visual cortex, searched for the com-
plex receptive fields of recorded neurons from pairings of visual stimuli and corresponding neu-
ron activities. The images that were predicted to enhance the activity of neurons were then given
back to the animal to see if the activity was actually enhanced. By repeating this loop, the authors
were able to determine the most exciting inputs.80 Moreover, the closed-loop also determined the
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diverse exciting inputs (DEIs), which are sets of dissimilar visual stimuli that together enhance
the activity of neurons in the visual cortex.81 It is particularly noteworthy that the DEIs revealed,
for the first time, a configuration of receptive fields that could be useful for object segmentation
according to texture boundaries.81 As the authors pointed out, such a finding would be difficult to
make without a closed-loop experiment. In the future, this method should contribute to our
understanding of the complex response properties of neurons in the association cortices, inte-
grating not only visual but also auditory and somatosensory information.

2.7 Sensory Feedback for Comfortable BMI Control
Even after subjects learn how to control external devices through a BMI, they may need to tune it
repeatedly because of deterioration in the decoder performance due to neuronal representational
drift.82 Alternatively, the decoder itself, rather than the subject, may need to change from moment
to moment, even when the recording is stable.83,84 In both cases, even if the volitional control
appears to be effortless, it may require the subject to pay a tuning effort. On the other hand, stable
low-dimensional representations can be obtained over several years when a sufficiently large
number of neurons are recorded.85 BMI control using such stable low-dimensional dynamics
would be very tractable for subjects.86 It is important to develop algorithms to efficiently extract
latent dynamics from large-scale calcium imaging data.87 Alternatively, if the prediction error
signal in the internal model could be extracted directly from the recorded neural activity, it might
be possible to use it to directly modify the decoder.

If the BMI is also to be used to complement and extend sensory functions in addition to
manipulation of external devices, the photostimulation parameters of the sensory cortex and other
neuronal populations must be determined in real time. In this context, pioneering work by Prsa
et al.8 varied the intensity of one-photon stimulation on the sensory cortex in real-time. In another
study, an electrophysiological study using a BMI with sensory feedback with a delay of <100 ms

allowed recognition of object texture mimicking cutaneous sensations associated with motion.88

If such methods could be extended to provide virtual sensory feedback to targeted neural
populations in the cerebral cortex (e.g., primary somatosensory cortex) at the right time, further
improvement in BMI control should be possible. For this purpose, it is necessary to select the
next population to be stimulated in real time according to the recorded neuronal activity.
Furthermore, a delay of about 100 ms or less for the entire process needs to be achieved for
natural feedback control with an internal model. We will see in the next section how we can
quickly target and photostimulate a population of neurons.

3 Two-Photon Photostimulation of Neurons

3.1 Methods for Two-Photon Photostimulation
An important step in the further development of BMIs is the complementation and extension of
artificial sensory feedback.88 Since sensory feedback is crucial for precise movements,89 the pre-
cise manipulation of devices with a high degree of freedom by a BMI requires sophisticated ways
to provide appropriate feedback to the brain. Visual recognition of a cursor on a computer or a
robotic arm can provide feedback on the results of manipulation, but this is less precise and more
delayed than somatosensory feedback.

Restoring vision through the introduction of opsin into retinal neurons is one example of
mimicking sensory input by optogenetics.51 The retina is composed of thin layers of cells that can
be stimulated with high resolution, even by one-photon stimulation; the way the eye is struc-
turally evolved facilitates this. However, when such a method is applied directly to the brain, it is
necessary to properly illuminate the population of neurons arranged three dimensionally in the
deep brain. One-photon stimulation is useless in the case of L2/3 (∼200 μm) or deeper because of
strong scattering, and two-photon optogenetics is necessary to stimulate a large number of tar-
geted neurons.

Two-photon photostimulation has advanced remarkably over the past decade, with the
development of both opsin and optics, and further progress is expected in the future. Two-photon
excitation of opsins, such as channel rhodopsin 2 (ChR2), like that of ordinary fluorescent mol-
ecules, is evoked by an ultrashort pulsed laser with a wavelength about twice the one-photon
absorption wavelength. Although the time required for fluorescent molecules to return to the
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ground state after excitation is on the order of ns, that of the state changes of ChR2 is on the order
of μm to ms. In addition, the peak power required for two-photon excitation seems to be higher
for opsin than for fluorescent molecules. Therefore, unlike fluorescent molecules, two-photon
excitation of opsin uses lasers with higher peak power and lower repetition rate.29,30,90,91

Opsins are expressed in two dimensions within the cell membrane, making excitation inef-
ficient compared with fluorescent molecules distributed in three dimensions within the cyto-
plasm. For this reason, the early studies used a galvanometer scanner to scan spirally around
the cell body to efficiently stimulate membrane opsins. Later, a holographic method using a
spatial light modulator (SLM) was developed to simultaneously stimulate multiple neurons, and
temporal focusing92 was added to increase the resolution in the depth direction of holographic
focus.93,94 Furthermore, in 3D-SHOT, a diffraction grating and a rotating diffuser was used before
the SLM so that a temporally multiplexed beam uniformly illuminated the SLM, whereby the
SLM simply copy it for all the neurons. This allowed the compatibility between 3D computer-
generated holography (CGH) and temporal focusing and realized efficient three-dimensional
photostimulation.25,27 Currently, the most efficient opsin for this purpose would be either modi-
fied versions of ChRmine95,96 or modified versions of ChroME.97 A combination of 3D-SHOT
and ChroME2s realized targeted photostimulation of more than 600 cells per second.98 3D-
SHOT can be used with large FOV two-photon microscopy,99 which should enable the control
of more neural activities.

3.2 Speed of Two-Photon Photostimulation
How many neurons can be stimulated per second with the current level of technology? Let us
assume that each cell needs to be stimulated with a laser of about 10 mW for about 10 ms.28,97–101

The upper limit of total laser power would be about 200 mW due to the problem of overheating
caused by water absorption.102 Thus the limit would be 100 patterns of 20 populations, a total of
2000 neurons/s. The upper limit of laser power at which a large FOV microscope can be used
simultaneously may be around 400 mW,14 and the laser power for single neuron stimulation for
10 ms could possibly be shortened several times, but at current levels, simultaneous stimulation
of 10,000 neurons/s would be difficult. This is two orders of magnitude smaller than the number
that can be simultaneously imaged (1 million neurons14). Furthermore, the FOV area for photo-
stimulation is also critical when we want to photostimulate as many neurons as possible. To
increase total number of photostimulated neurons, incorporating two or more SLMs within the
same microscope would be useful96 in addition to using a large FOV two-photon microscope.20,99

To stimulate a targeted population as simultaneously as possible, it is necessary to create a
pattern for the SLM on the fly. The GS algorithm,103 which is still the one most commonly used
for holographic stimulation, requires iterative calculations and takes 200 to 300 ms to construct a
single pattern. DeepCGH104 succeeded in creating an arbitrary CGH pattern with high accuracy
through unsupervised deep learning of images that are close to the target image among those that
can be constructed using an SLM. The trained CNN was able to create SLM patterns an order of
magnitude faster than the GS algorithm at 8.7 ms per image. The computational speed of CNNs
is expected to increase further with the development of GPUs.

Various SLMs have been developed in recent years. The fastest liquid crystal on silicon-
SLM currently available is from Meadowlark Optics, with a claimed refresh rate of 2 kHz for
a 1024 × 1024 resolution. In reality, it takes 1.7 ms to stabilize the liquid crystal at the 1064 nm
used for two-photon stimulation, so the stimulation must be turned off during this time.
Nevertheless, this latency is shorter than that of SLM pattern formation with DeepCGH.
Currently, SLMs have achieved 10 kHz for 100 × 100 pixels, and faster SLMs with higher res-
olution will be developed. Since spatiotemporal focusing does not use the entire two-dimensional
surface of the SLM, multiple patterns can be placed at multiple locations on the SLM, and the
scanner can select one of the patterns in order to change the holographic pattern at high speed.105

Thus improvements in the spatial resolution of the SLM would also improve the speed of
photosimulation.

A combination of imaging and stimulation with two-photon microscopy, i.e., an all-optical
experiment in which activity is monitored by two-photon imaging and simultaneously controlled
by two-photon stimulation of opsin, has been realized.27,29,30,54,96,99–101,106–113 What is possible
when we can record and stimulate at the same time? In the case of whole-cell patch-clamp
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recording for monitoring and stimulating the cell, one can hold the membrane potential according
to the negative feedback of the operational amplifier. A similar experiment can now be performed
noninvasively with a two-photon microscope.29 More experiments would be realized with an
all-optical two-photon microscope contributing to a BMI, a point we discuss in the next
section.

4 Interaction of Brain and Machine
Techniques that read and process neuronal population activity and then utilize it to stimulate the
activity of another neuronal population can advance the integration of the computer and the
brain.114,115 For example, in a pioneering study, single neuron activity was recorded in the motor
cortex of a monkey, and immediately after detection of a spike, a neural population in another
region was electrically stimulated.116 This resulted in a strong functional coupling between the
neuron used for triggering and the stimulated population. This artificial functional connection
was created only when the time between recording and stimulation was <50 ms. The authors
argued that a multisynaptic spike-time-dependent plasticity (STDP)117 was involved in this func-
tional connection. A similar experiment was performed with two-photon microscopy.29 Although
performing two-photon recording of the activity of a group of neurons that simultaneously
expressed a calcium indicator (GCaMP6f) and an opsin (C1V1), the researchers photostimulated
tens of predetermined neurons by two-photon laser immediately after the calcium transient of a
trigger neuron occurred. They showed that the increase in the activity of the stimulated popu-
lation was significantly greater when it was triggered by the trigger neuron than when it was
stimulated randomly. However, in this system, the time between the firing of the trigger neuron
and the onset of stimulation may not be <50 ms (for details, see supplementary figure 6 of Zhang
et al.29).

When one can predetermine the populations of neurons for photostimulation, the SLM pat-
tern can be obtained before the experiment. In this case, one does not need to construct a new
SLM pattern on the fly. However, if one were to select the neurons for photostimulation based on
the recording and then photostimulate them by determining the SLM pattern in real time, appli-
cation of this close-loop experiment could be further expanded. For example, we would be able to
establish communication between the brain and AI. Although currently not yet successfully per-
formed, it is in principle possible to utilize ongoing neural population activity to drive an artificial
spiking neural network (SNN) and feedback the weighted sum of the activity of the SNN units
through two-photon stimulation in real time. If such a system could learn to provide appropriate
feedback reflecting the brain state in real time, it could suppress epileptic seizures and replace
deep brain stimulation for treating Parkinson’s disease.47 Moreover, it could also extend the func-
tion of the brain, as foretold in science fiction novels.

5 Closed-Loop Experiments at the Synaptic Level

5.1 Synapse and Learning
So far, our discussion has focused on how to record and control the neuronal cell body, but not
the synapse. Since the brain is a system that learns by plastic changes in the strength of synaptic
connections, direct measurement of synaptic strengths and the ability to modify them will con-
tribute to recovery or augmentation of brain functions in the future. For example, as in the error
backpropagation of deep learning,118 it would be possible to optimize an arbitrary objective func-
tion in the local circuit of the brain by estimating the contribution of individual synapses to this
objective function and manipulating them according to the contribution. Even if the brain is not a
circuit where exact error backpropagation is computed, a credit assignment for each synapse
would still be possible with locally available information that each synapse can access.119–121

In this way, by hijacking biological learning rules for optimization of the objective function
by synaptic plasticity, the brain may be able to “directly learn” desired functions. Thus technol-
ogies to measure and manipulate synapses in local circuits will take brain-AI integrated systems
to the next level.
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5.2 Optical Measurement and Control of Synaptic Strength and Synaptic
Activity

In the cerebral cortex, the weight of excitatory synaptic connections is proportional to the volume
of the dendritic spine, a postsynaptic structure that receives synaptic inputs from axonal
boutons.122 Therefore, if fluorescent proteins are expressed in the spine and the volume of the
spine can be measured by two-photon imaging or a super-resolution stimulated emission
depletion microscope based on 2P excitation,123 the strength of individual synapses can be esti-
mated. In addition, by using fluorescent proteins, such as iGluSnFR3,41 which can directly visu-
alize glutamate (the neurotransmitter of excitatory synapses), the amount of transmitter released
between synaptic clefts can be estimated. Calcium imaging of the spines can also be used to
estimate the influx of calcium ions due to synaptic inputs.124 Recently, direct observation of
spines by two-photon voltage imaging was realized.39 Many technologies, such as multiple
beams strategy,125 tomography,37 laser multiplexing with a FACED module,36 and the 16
PMTs strategy,34 could contribute to high-speed scanning for tracking of changes in membrane
potential over a larger scale, although heating from high-power laser would be a problem. Thus
the volume, glutamate, calcium, and membrane voltage of single spines are now all observable in
vivo. As mentioned above, the voltage imaging can combine with closed loop two-photon
photostimulation.45 In addition to recording the features of postsynaptic spines, direct axon im-
aging and photostimulation of presynaptic neurons would be useful for identifying presynaptic
partners for each synapse.

Is it possible to use photostimulation to artificially impose inputs on targeted single syn-
apses? It is already possible to target two-photon photostimulation to spines using C1V1
opsin.26 However, it should be noted that although the input depends on the amount of
C1V1 expression on the spines, it is independent of the synaptic strength. Optical stimulation
of axons would be useful to induce natural synaptic transmission. It was shown that while one-
photon stimulation of an axon readily induces action potentials, two-photon stimulation is less
likely to do so.28 Moreover, once an action potential is triggered, synaptic inputs can occur any-
where on the same axon, making it difficult to localize them to a targeted synapse. To stimulate
only the targeted presynapses, stimulation must be applied without triggering action potentials.
The sCRACM (subcellular ChR2-assisted circuit mapping) method involves photostimulating
exocytosis only at the photostimulated presynaptic area in the presence of tetrodotoxin
(TTX).126 However, this method cannot be used in vivo because of the TTX. Stimulation of
presynaptic terminals without triggering action potentials requires direct access to the molecular
mechanisms that would occur after presynaptic depolarization. This may be possible by directly
controlling the exocytosis of presynaptic terminals. Light-sensitive Gi proteins, such as
eOPN3127 and PPO,128 can suppress synaptic transmission when expressed presynaptically and
are potentially usable with two-photon excitation, although they may cause effects via activation
of Kir channels at presynapses. In this respect, opto-SynC,129 which uses light-evoked homo-
oligomerization of cryptochrome CRY2 to cluster synaptic vesicles and inhibit exocytosis, would
be completely independent of membrane potential. If the opposite is also possible [i.e., photo-
activation of Gs and Gq proteins (opto-XR130), photoactivation of cAMP (bPAC),131 or light-
evoked clustering of synaptic proteins] and exocytosis can be facilitated with two-photon tar-
geted photostimulation, it would be possible to stimulate targeted synapses.

In this respect, can we artificially alter the strength of synaptic connections? The molecular
biology of synaptic plasticity is one of the best understood areas of neurophysiology, and we
know that a variety of molecules are involved in the synaptic strength and its plasticity.
Optogenetic regulation of Ras132 and CaMK2133 confined to the spine, regulation of the endo-
cytosis of AMPA receptors in the postsynapse,134 and control of presynaptic cAMP135 have
already been successfully used to manipulate plasticity. Thus it is possible to regulate plasticity
up or down by two-photon stimulation of a targeted spine, as in the various intracellular
compartments.136 Such technologies could contribute to clinical medicine in the future by restor-
ing or enhancing brain function or erasing unwanted memories.137

5.3 Adaptive Optics for Synapse-Level BMIs
Spines are an order of magnitude smaller than neurons. Accordingly, two-photon microscopy
only allows clear in vivo imaging of spines in layer 1. To visualize synaptic structures with
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diffraction-limited resolution in the deeper layer of the brain, AO should be incorporated into
two-photon microscopy.138–140 AO can optimize the effectiveness of photons in terms of the exci-
tation of molecules and enhance the resolution of imaging by modifying the wavefront of the
laser. The challenge for AO is to obtain information on how the wavefront is distorted inside the
brain tissue and compute it backward. Closed-loop control is also required for this computing
process.

The simplest case is to perform two-photon imaging and evaluate the excitation efficiency by
averaging the intensity of the fluorescence image while changing the parameters of the deform-
able mirror (DM),141 which is also used in large FOV two-photon microscopy.20 Zernike modes
up to the 15th order have been optimized with this strategy, and the method has also been applied
to three-photon imaging.142 The advantage of this simple but powerful method is that it does not
require any equipment or devices other than a DM. Although DMs can correct tissue aberrations
with isoplanatic patches of ∼100 μm, an SLM is required for scattering compensation because it
can generate more complex patterns but with isoplanatic patches of less than ∼50 μm.

5.4 Four Methods of Adaptive Optics
The most straightforward way to efficiently perform AO is to directly observe the wavefront with
“a guide star.” Wang et al.143 injected indocyanine green directly into the brain and used it as a
guide star. Liu et al.144 introduced Cy5.5-dextran into blood vessels by retro-orbital injection and
used its fluorescence as a guide star when it traveled through the blood vessels and filled the
brain. The fluorescence from the guide star entered the optical pathway from the brain in the
opposite direction to the excitation laser and reached the Shack-Hartmann wavefront sensor at the
pupil plane, with this sensor being able to directly measure the wavefront. By optimizing the
parameters of the DM according to the wavefront information, they were able to modify the
wavefront of the excitation laser and dramatically increase the excitation efficiency of fluorescent
proteins. As a result, Wang et al. succeeded in clear calcium imaging at a depth of 700 μm from
the brain surface, and Liu et al. succeeded in observing dendritic activity and glutamate release
from axons in layer 5b of the mouse cortex.

Ji et al.145 successfully performed high-resolution wavefront modification using SLM with-
out a guide star. They first divided the pupil plane into segments and performed laser excitation
through each compartment. They modified the wavefront of the laser with SLM conjugated to the
pupil plane in each segment so that the excitation by the laser through each segment occurred at
the same location. This cycle was repeated several times, and once the optimization of the wave-
front of the laser was completed in all segments, a high-resolution image was successfully
obtained using all segments. A parallelized version of this method was also developed to speed
up the process.146 This enabled observation of L4 axons and synaptic structures and activities.147

This pupil segmentation strategy was also used for three-photon excitation.148

The three methods described above, called pupil AO, can correct for aberration but not for
finer μm-scale scattering. To deal with scattering, it is necessary to compensate for large degrees
of freedom, including high Zernike mode coefficients. A method making this possible is con-
jugate AO,149–151 which works by placing the SLM or DM on a plane that is conjugated to the
layer where scattering is most likely to occur, instead of the pupil plane. To perform AO with two
or three photons, the electromagnetic point-spread function can be measured using interferomet-
ric focus sensing methods.152–154 These methods have successfully optimized more than 1000
independent Zernike modes,155 allowing two-photon imaging of small structures, such as den-
drites and spines in deep brain tissue through thinned skulls. Moreover, the conjugate AO can
have larger correction FOV than pupil AO.149

Although conjugate AO is an order of magnitude better than other methods as far as the
accuracy of correction and FOV area, it requires remeasurement when the FOV is shifted more
than 100 μm. Since the optimization process takes at least a few seconds, the parameters for each
FOV should be predetermined for large FOV imaging. Supposing that the parameters need to be
changed every 100 μm, if a 1 mm FOV is scanned with a resonant scanner at 8 kHz, the param-
eters must switch at more than 160 kHz. This is well beyond the current technological limits of
SLMs or DMs. If there is a large aberration in a single layer, as in a thinned-skull condition, it is
sufficient to place an SLM or DM on the conjugate plane of that layer. However, if the aberration
that we want to correct is distributed three dimensionally, as in the case of an open skull
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condition, conjugate AO on a single layer will not be sufficient. Therefore, correction on at least
multiple planes (multiconjugate AO139,156) or SLM with a 3D structure will be necessary in the
future.138 Thus the development of SLMs or DMs is essential for the application of conjugate AO
for high-resolution two-photon imaging in a large 3D volume.

We have seen four ways to perform AO. Since the aberrations of brain tissue are considered
to be stable across the imaging time (∼1 h), it should be possible to acquire wavefront correction
information for each small FOV prior to performing calcium imaging. The fact that real-time
acquisition of correction parameters is not necessary is good news for imaging of large volumes
in a closed-loop system. However, we also pointed out that conjugate AO, which is necessary for
deep brain imaging at the synapse level, requires faster switching of correction parameters when
the FOV is large, which limits the feedback time. These issues may be addressed by improving
scanning methods and developing faster SLMs and more flexible DMs.

After outlining the recording and control of synaptic strength and synaptic activity using
two-photon microscopy, we discussed AO techniques that improve the resolution of two-photon
excitation to the synaptic level in deep brain tissue. Integrating these techniques will enable
experiments on large numbers of synapses in vivo. We have pointed out that synaptic control
based on the identification of synaptic circuits, if possible, has the potential to optimize local
circuits for a given objective function like artificial neural networks. Needless to say, we need to
advance our understanding of how synaptic plasticity realizes sophisticated brain functions for
this purpose. Research on the architecture and learning rules of artificial neural networks and
their implementation in the biological brain circuit (so-called “biological plausibility”) will
become increasingly important.120,157

6 Multiple Learning Rules and Distinct Feedback Control Speeds
According to Doya,11 different circuits of the brain are responsible for unsupervised learning,
supervised learning, and reinforcement learning. As mentioned in the first half of this article,
supervised learning and reinforcement learning can be learned with feedback times of
∼100 ms and ∼1 s, respectively. STDP leads to self-organization and can be considered an
implementation of unsupervised learning. In STDP, presynaptic and postsynaptic action poten-
tials must be controlled to within the order of ∼10 ms or less, which suggests that the timescale
for unsupervised learning is 10 ms. Therefore, closed-loop experimental systems with time
delays of 10 ms, 100 ms, and 1 s are considered essential conditions for the external control of
unsupervised learning, supervised learning, and reinforcement learning, respectively [Fig. 1(a)].
Note that although each of these molecular-level mechanisms occurs on a fast timescale, the time
delay required for external control differs among them.

The ability to provide feedback control faster than any of the 10 ms, 100 ms, or 1 s thresh-
olds determines what kind of learning rules the closed-loop experiment can implement. This
indicates that the ability of a two-photon microscope to record and control the activity of neuro-
nal populations depends critically on the feedback speed that these thresholds can exceed
[Fig. 1(b)]. The elements of this closed-loop experimental system include fluorescent molecules,
scanning schemes, real-time image processing, AO, the selection of stimulated neurons, CGH,
and SLM control, and each must work together in an integrated manner.

For closed-loop experimental systems to reproduce the computational principles of neural
circuits and to create more effective BMIs, it is essential to further increase the number of neurons
that can be recorded and controlled in real time, in addition to the speed. Figure 1(c) briefly
outlines prospects, including technological developments. Considering the development of this
field over the last 20 years, it is likely that there will be further unforeseen technological develop-
ments in the near future. The recent spectacular developments in multiphoton microscopy and
optogenetics provide us with an optimism that the technological problems explicitly illustrated
will be solved.

7 Conclusion
In this paper, we reviewed multiphoton imaging via closed-loop systems and two-photon opto-
genetics and discussed its potential to significantly advance BMI technologies. Two-photon BMI
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is not difficult to realize. If you already have an experimental system for two-photon calcium
imaging in head-fixed mice, all that needs to be done in addition is to create a feedback mecha-
nism from real-time neural activity to the control of the device. Compared with electrophysio-
logical techniques, the advantages of multiphoton microscopy are now clear at the experimental
level. However, application of this technology in humans will require major technological inno-
vation, as well as careful discussion and consideration of the ethical issues.158,159 Nevertheless,
experimental systems that record and control brain dynamics in real time will undoubtedly be key
to solving the mysteries of the brain. Such experimental research contributes to a mechanistic
understanding of the brain, and we expect to see an acceleration in the applications of it to human
diseases in the future.
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