
On-line process decisions using convolutional neural
network for centering high-precision short-focus lens

Shiau-Cheng Shiu, Ke-Er Tang, and Chun-Wei Liu*
National Tsing Hua University, Power Mechanical Engineering, Hsinchu, Taiwan

Abstract. This study integrated the use of a centering machine with an automatic optical axis
measuring technique to improve the centering process for short-focus lenses, which are widely
used in interferometric inspection, microscopy, and spectrometry. A major concern of the center-
ing process is coma aberrations during the axis centering of a lens, which leads to deformation of
the image system. Because of the small size and high curvature of short-focus lenses, high
optical axis error and unstable grinding quality are highly problematic within the high-precision
centering process. To reduce optical axis error and improve manufacturing quality, an on-line
optical axis measuring system that applies convolutional neural network (CNN) machine learn-
ing for the evaluation of centering stability was developed. According to experimental results,
the CNN achieved 95% accuracy. With the use of trace classification and optical axis measure-
ments, the optical axis error was controlled to <150 μrad, the range of cracks to <E0.1, and the
circularity error to <0.1 mm. © The Authors. Published by SPIE under a Creative Commons Attribution
4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.OE.60.7.075103]
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1 Introduction

High-end optical inspection instruments are widely used in interferometric inspection and
astronomy, as well as in microscopes, spectrometers, and cameras.1–14 The key factor affecting
inspection precision is the magnification of a lens module. In an inspection instrument, a lens
module comprising short-focus lenses can achieve magnification of 1000×. The high curvatures
of both surfaces, which mainly determine the effective focal length (EFL), limit the potential
diameter of a lens. Therefore, the diameters of short-focus lenses are usually smaller than 20 mm.
Generally, in a camera or telescope lens module, a short-focus lens is used to broaden the
viewing angle and depth, but this causes a decrease in magnification. By contrast, the working
distance is so much shorter for a microscope that a short-focus lens can greatly increase the
magnification.

However, the geometry of short-focus lenses creates challenges in the centering process.
Their small size renders them highly sensitive to radial grinding force during the edging process
and errors, including those caused by vibration. Because the thickness varies greatly from the
edge to the center, the grinding force varies as the grinding wheel feeds in.15 The low magni-
fication through a short-focus lens also results in low measurement accuracy of the optical axis
error. This critically increases the difficulty of centering because manufacturing a short-focus
lens usually requires high precision.

Centering is not only the final step of lens processing but also the key process that minimizes
optical axis centering error with respect to the lens mechanical axis. High optical axis precision
may require on-line measurement.16,17 Latyev et al.18 proposed design and processing methods
for lens centering and explained the value of centering in the manufacture of optical components
and lens-related products; they also introduced the key technologies used for centering and
measurement. Gluhchev et al.19 used real-time automatic image processing to measure lens
decentration through automatically collimated reticles. Magarill and Welham20 developed a

*Address all correspondence to Chun-Wei Liu, weilu@pme.nthu.edu.tw

Optical Engineering 075103-1 July 2021 • Vol. 60(7)

https://doi.org/10.1117/1.OE.60.7.075103
https://doi.org/10.1117/1.OE.60.7.075103
https://doi.org/10.1117/1.OE.60.7.075103
https://doi.org/10.1117/1.OE.60.7.075103
https://doi.org/10.1117/1.OE.60.7.075103
https://doi.org/10.1117/1.OE.60.7.075103
mailto:weilu@pme.nthu.edu.tw
mailto:weilu@pme.nthu.edu.tw
mailto:weilu@pme.nthu.edu.tw
mailto:weilu@pme.nthu.edu.tw


mathematical model to determine the positions of curvature centers in lens assemblies. Kaew-
aram and Sutapun21 designed an apparatus for measuring the centering error of ophthalmic
lenses. Parks22 used point source microscope to simultaneously view through the upper lens
surface of the centers of curvature of each element as it is assembled in a lens barrel.

The present study combined on-line optical axis measurement with convolutional neural net-
work (CNN) machine learning to perform diagnosis and decision-making for the centering and
edging processes of short-focus lenses. Centering is the process to center the lens optical axis on
the lens edging machine, which shapes lens edge by wheel grinding, in order to provide a lens
mechanical axis that is coincident with the lens optical axis. However, if edge cracks or surface
scratches caused by wheel grinding or clamping are too large, the lens thickness or diameter
may be insufficient to reperform the centering or polishing processes to eliminate the defect.
Therefore, by analyzing the trace of reticle images during centering and training a CNN,
aberrations can be detected early in the edging process. The following sections present theory
regarding on-line measurement; the procedures for optimizing optics and magnification, for data
preprocessing, and for trace classification and making process decisions; and the structure of
the CNN used in this study. After training on numerous data, the process decisions made by
the CNN achieved 95% accuracy.

The specifications of the lenses used for the present study are shown in Fig. 1.

2 Theory of On-Line Measurement

Figure 2 shows the optical structure of an on-line optical axis transmission measuring device.
Transmission measurement considers the optical axis of the whole lens system. The light source
on the side opposite the image sensor emits light toward the target lens. The light is first focused
at the point located at a distance A behind the target lens. In an on-line optical axis transmission
measuring device, the lens module of the camera includes a head lens and an objective lens. The
position of the head lens and sensor can be adjusted so that the image focused by the target lens
can pass through the head lens and object lens and be focused on the image sensor.

Since optical axis error is small, the distance between the first focused reticle image and
the optical axis is ignored. In this study, the first focused reticle image is considered to be
on the optical axis. Therefore, the optical axis error α is calculated as

EQ-TARGET;temp:intralink-;e001;116;196α ¼ a

A
; (1)

Drawing

Specification

R1 9 mm Diameter 15.6 mm

R2 15 mm Material BK7

CT (center thickness) 12.03 mm EFL 13.126 mm

Fig. 1 Short-focus lens specifications in the present study.

Fig. 2 Optical structure of on-line optical axis transmission measuring device.
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where a is the distance between the image of target lens and the main axis, and A is the image
distance of target lens, as shown in Fig. 2.

In the preprocessing algorithm, the distance d is obtained through image processing. In an
image system, the magnification of image is proportional to image distance and inversely propor-
tional to object distance. The magnification between the initially focused image and the image on
the sensor is determined by the following equation:

EQ-TARGET;temp:intralink-;e002;116;663mag ¼ d

a
¼ a 0

a

d

a 0
¼ C

B
Q
D

¼ QC
DB

; (2)

such that the optical axis error α is

EQ-TARGET;temp:intralink-;e003;116;609α ¼ a

A
¼ DB

AQC
d: (3)

where d is the distance between the final image on the sensor and the main axis, a’ is the distance
between the image of head lens and the main axis, B is the object distance of head lens, of which
the object is the image of target lens, C is the image distance of head lens,D is the object distance
of object lens, of which the object is the image of head lens, and Q is the image distance of
object lens.

3 Methods

3.1 Position and Magnification Optimization

To clearly capture the image on the reticle through multiple lenses, the camera of the measure-
ment module is made to be adjustable. However, even though the lens focal length is known, the
magnification, which is used to calculate the optical axis error, is still variable. An additional
parameter or constraint is required to simplify the algorithm so that the magnification can be
determined entirely by the lens focus.

Figure 3 shows the system mounted on the centering machine, and the distances marked on
the figure correspond to those in Fig. 2. The distance Q follows the Deutsches Institut für
Normung standard regulating the distance of a sensor behind a microscope objective. The dis-
tance D is also standardized in accordance with object lens specifications.

The parameters Aþ B and C are controlled by the camera; Aþ B is determined by the head
lens position, and Aþ Bþ C is determined by the sensor position. With the head lens or sensor
position fixed, the image magnification can be determined from the target lens focal length f; f
can be calculated from the distances Aþ B and C:

EQ-TARGET;temp:intralink-;e004;116;284f ¼ fðAþ B;CÞ or f ¼ fðAþ Bþ C;CÞ: (4)

Because of the limitations of the mechanical structure, if the head or sensor position is fixed,
then the short EFL is insufficient to focus an image clearly on the sensor. With Eq. (4), the
immeasurable focal range can be calculated. The following are two possible mechanical setups:

Fig. 3 Light source on the left, centering machine in the middle, camera plus sensor on the right
and distance relationships corresponding to those in Fig. 2.
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1. The head lens position (distance B) is fixed.
2. The sensor position (distance Bþ C) is fixed.

C is variable in both setups. That is, within a limited distance C, the range of focal lengths is
immeasurable. The equation f ¼ fðAþ B;CÞ describes setup 1, and f ¼ fðAþ Bþ C;CÞ
describes setup 2. By rearranging Eq. (3), the formulas for the focal lengths in setups 1 and 2
can be expressed as follows:

EQ-TARGET;temp:intralink-;e005;116;346fðlAB; CÞ ¼
PlABðC − fhÞ − PCfh

ðPþ lABÞðC − fhÞ − Cfh
: (5)

EQ-TARGET;temp:intralink-;e006;116;277fðlABC; CÞ ¼
PlABCðC − fhÞ − PC2

ðPþ lABCÞðC − fhÞ − C2
; (6)

where lAB is distance Aþ B, and lABC is distance Aþ Bþ C, P is the object distance of target
lens, or the distance between light source and target lens, and fh is the focal length of head lens,
as shown in Fig. 2.

If lAB or lABC is fixed, then the image magnification and target lens focus are a function of
distance C, as displayed in Fig. 4. In this study, the optimal position was considered to be that
with the minimal range of focal length.

3.2 Data Preprocessing

The optical axis error algorithm has five steps: contrast maximization, subpixel division, binar-
ization, reticle center definition, denoising, and trace center calculation.

1. Contrast maximization: Maximizing contrast is effective for identifying the most distinct
features of an image. By proportionally increasing the luminance difference between each
pair of pixels, all the contours of images become apparent. The following method is used
to calculate the new luminance by using the maximal and minimal values:

Fig. 4 (a) Immeasurable focus range of setup 1. (b) Magnification when Aþ B ¼ 447.76. (c) Focal
length when Aþ B ¼ 447.76. (d) Immeasurable focal range of setup 2. (e) Magnification when
Aþ B þ C ¼ 605.5. (f) Focal length when Aþ B þ C ¼ 605.5.
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EQ-TARGET;temp:intralink-;e007;116;735lmid ¼ lmin þ ðlmax − lminÞ
lmin

ð255 − lmaxÞ þ lmin

; (7)

EQ-TARGET;temp:intralink-;e008;116;691lnewðlÞ ¼ ðl − lmidÞ ·
255

ðlmax − lminÞ
þ lmid: (8)

Here, lmax and lmin are the maximal and minimal values of the image, lmid is the defined
middle value of the image, and lnew is the new luminance according to the original lumi-
nance value l. The type of luminance value is uint8, which is from 0 of the darkest to 255
of the lightest. With this method, the new minimal luminance is sure to be 0, new maximal
luminance is 255.

2. Subpixel division: By dividing each pixel into 3 × 3 or more subpixels, the contours
between the black and white areas can be evaluated more precisely. The luminance value
of each subpixel is linearly calculated among four neighboring pixels.

3. Binarization: A reticle image includes a dark background and light reticle. The back-
ground luminance is always below average, and the reticle luminance is above average.
In the present study, the mean value is set as the threshold of binarization.

4. Reticle center definition: A reticle is composed of a vertical and a horizontal line. The
center point is the intersection of the two lines.

5. Denoising: A noise point is two standard deviations’ distance away from the trace center
and should be discarded.

3.3 Structure of CNN

The CNN structure for trace classification is built referring to the Modified National Institute of
Standards and Technology (MNIST) database and learning algorithms for classification.23 Each
piece of data in the MNIST dataset is a 28 × 28 pixels grayscale picture of 0-9 handwritten digit.
The input images are replaced by the reticle trace images with 640 × 480 pixels in this study.
Under various conditions, traces appear at different locations on images, or the reticle of the trace
can pass through half or more of the image. Thus, an image cannot be compressed. The large size
of the images and the small number of trace types require that the four convolutional layers be
used to achieve training that results in 96.18% accuracy.

The CNN in the present study contains an input layer, four convolutional layers, three max
pooling layers, a fully connected layer, and a classification layer, as shown in Fig. 5.

The CNN was trained on 2936 data points, with 734 trained for each type of trace, 80%
for training and 20% for testing. By using this structure, classification accuracy of 96.18% was
achieved.

Fig. 5 Structure of CNN for trace classification.
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Figure 6 shows the confusion matrix of CNN trace classification results. The blocks on the
diagonal from the upper-left to the lower-right corner, which are deep-colored, indicate the cor-
rect prediction part, while the other blocks with light color indicate the misidentification cases.
The prediction accuracy for testing data is 96.18%.

The trace of reticle image is classified by the CNN trace classification. Then according to the
classification result, the corresponding process decision is provided by system. This method
assists operators to adjust process parameters immediately and accurately, and the improper
decisions by operator experience are highly decreased.

4 Trace Classification and Process Decisions

The optical axis of a lens was tested according to International Organization for Standardization
standard 10110-6. Because the centering and edging process are complex and the requirements
are strict, the stability of the edging process always depends on experience. However, short-focus
lens is too small to resist any unstable grinding process that causes cracks, which usually occur in
20 or even more process decisions purely by the operator experiences.

When a lens rotates along its geometric central axis, the reticle image, which represents the
optical axis, revolves around the geometric center. The trace of the reticle image is a perfect circle
in theory. However, if the work axis does not coincide with the central axis of the clamp or
if vibration occurs during rotation, the trace would become distorted and include noise points.

Figure 7 shows the common trace types for a reticle image. In the analysis of optical axis
error, traces are classified as points, circles, noncircles, irregular traces, or other types of traces.
Points are ideal because they indicate that the optical axis error of the target lens is small. Circles
are common traces indicating no manufacturing error. Noncircles are caused by lens tilt or high
circularity error. Irregular traces result from working vibration. The optical axis error values of
both noncircles and irregular traces are nonsense and usually high because they indicate that
the centering process has already caused measurement error.

Figure 8 shows the result of a process decision experiment. Process decisions were made in
accordance with the on-line optical axis measurement and trace classification.

Centering and edging processes were executed for every lens. On-line measurement mea-
sured optical axis error of target lens immediately during both processes. In centering process,
lens was placed so that the reticle image on the screen was located at the center point, and then
optical axis error was measured while lens rotates. In edging process, on-line measurement not
only measured optical axis error, but also recorded the trace of reticle image. By the effect of
wheel grinding, trace in edging is not the same as that in centering for the same lens. Process
decision was made by the system at the end of edging process. Before the next lens was placed,
process parameters were adjusted manually according to CNN trace classification and process
decision. Five lenses were tested after every process decision. A total of 10 process decisions and
50 lenses were tested.

Fig. 6 Confusion matrix of CNN trace classification results.
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Specifications of every processed lens like optical axis error, circularity error, edge cracks,
and variance of trace distance were measured. The optical axis error was measured by the on-line
measurement. The circularity error was evaluated by 6 measured diameters, which were mea-
sured by micrometer, at different angles. The edge cracks were measured by scale loupe. The
variance of trace distance was calculated by the reticle traces recorded by the on-line measure-
ment device in this study to evaluate manufacturing quality.

Thus, trace variance was used to evaluate the stability of the trace and was calculated by using
the following formula during optical axis measurement:

EQ-TARGET;temp:intralink-;e009;116;128Vt ¼
P

n
i¼1ðd2i − μ2dÞ
n × μ2d

× 100%; (9)

EQ-TARGET;temp:intralink-;e010;116;70di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi − xcÞ2 þ ðyi − ycÞ2

q
; (10)

Fig. 8 Results of process decision experiment. (a) Optical axis error. (b) Circularity error. (c) Edge
cracks. (d) Trace variance.

Fig. 7 Common reticle trace types. (a) Point. (b) Circle. (c) Noncircle. (d) Irregular trace.
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where Vt is the trace variance, di is the distance between the i-th point and the center point, μd is
the mean value of di, and n is the number of points. The trace variance of a circle or point is
nearly zero. Trace variance can be used to evaluate how much an irregular or noncircular trace
varies from a circular trace.

Figure 8(a) shows that the optical axis error generally decreased as the number of process
decisions increased. Most traces in the beginning were noncircles or irregular traces; thus, the
optical axis errors were high and nonsense. Figures 8(b) and 8(c) reveal that both circularity error
and edge cracks, which depend on working parameters, improved with more process decisions.
In this experiment, noncircular traces were considered to be those with circularity error exceed-
ing 0.6 mm, and irregular traces were considered those with edge cracks exceeding 0.3 mm.
In Fig. 8(d), the initial trace variance of the trace ranged from 10% to 35%, indicating that the
centering process was unstable, and noncircular or irregular traces were common. As process
decisions were made, the magnitude and range of the trace variance decreased. The trace vari-
ance indicates lens position offset caused by grinding force difference that might lead to edge
cracks and circularity error.

In this experiment, processing did not stop or change with regard to the trace or optical axis
error. The process decisions were made to assist the operator to adjust the working parameters
of the centering machine. Based on the CNN trace classification, parameters and the direction
were provided by the algorithm. Then the parameters were evaluated by the operator according
to the degree of trace deformation. Figure 9 presents four cases with their corresponding opti-
cal axis error and trace classification from the experiment. In the first case, an irregular trace
was observed. By increasing the wheel feed rate from 0.005 to 0.01 mm∕s and changing the
diameter of grinding wheel from 160 to 140 mm, the wheel deflection and grinding vibration
were reduced. Consequently, the trace became a circle. In the second case, a noncircular trace
was observed. Reducing the wheel feed rate from 0.015 to 0.01 mm∕s and increasing the
clamping force resulted in the resistance from the clamps preventing the wheel from pushing
the lens. The third case was a normal case, indicating stable grinding, but the optical axis error
was high. The lens slightly moved until the reticle image coincided with the trace center. Thus,
the optical axis was certain to coincide with the work axis, and the optical axis error was
reduced.

On-line optical axis measurement supported by CNN machine learning is able to limit the
optical axis error to <150 μrad, the range of cracks to <E0.1, and the circularity error to
<0.1 mm. Process decisions according to trace classification help operators to immediately fig-
ure out the improper parameters leading to optical axis error or unstable grinding quality. The
experiment results show that it can save parameter adjustment time from>20 times to <10 times.
Therefore, the process decisions made in accordance with trace classification by the CNN in the
present study can effectively improve short-focus lens manufacturing quality.

5 Conclusion

The on-line optical axis measuring device in the present study was designed to measure the
optical axis error during the centering process. The small size and short focal length of
short-focus lenses create challenges in controlling grinding quality. By observing the trace types
of reticle images, manufacturing error can be minimized. CNN machine learning was integrated

Case 1 2 3 4

OAE -- 109 µ rad 145 µ rad 345 µ rad 63 µ rad 72 µ rad--

Image

Type irregular circle noncircle circle circle point point

Fig. 9 Different trace classification cases before and after process decisions.
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into the on-line optical axis measuring device. Optimization of optics, positioning, and magni-
fication and data preprocessing were implemented to improve measuring precision and trace
classification.

The accuracy of trace classification by the CNN reached 95%. In 10 times of process deci-
sion, the optical axis error was controlled to <150 μrad, the range of cracks to <E0.1, and the
circularity error to <0.1 mm. Thus, the present study realized an on-line centering process for
high-precision short-focus lenses.
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