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ABSTRACT

A mathematical formulation of the problem of electromagnetic wave scattering by a system of two homoge-
neous triaxial dielectric ellipsoids of complex index of refraction is presented. The analysis is based on the
Lippman–Schwinger integral equation for an electric field. The corresponding integral equation for the scat-
tering, which contains two singular kernels, is transformed into a pair of nonsingular integral equations for
the angular Fourier transform of the electric field inside each scatterer. The latter equations are solved by
reducing them by quadrature into a matrix equation. The resulting solutions are used to calculate the scat-
tering amplitude. As a numerical application, the case of a two red blood cell rouleau model is considered.
Typical values of the appropriate discretization parameters, which proved sufficient for achieving conver-
gence, are presented, along with validity tests. The effect of the electromagnetic coupling of the scatterers is
also illustrated. Efficient techniques, which are capable of reducing the rather high computing demands of the
analysis, such as parallel processing, are both suggested and applied. © 1997 Society of Photo-Optical Instrumentation
Engineers. [S1083-3668(97)00503-0]
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1 INTRODUCTION

The problem of electromagnetic scattering by a sys-
tem of two interacting dielectric ellipsoids has been
rigorously solved only for special forms of the gen-
eral triaxial ellipsoid. Examples include electromag-
netic scattering by a pair of spheres1–3 and by a pair
of prolate spheroids.4

In this paper, a solution to the problem of electro-
magnetic scattering by a system of two uniformly
lossy general dielectric triaxial ellipsoids is pre-
sented. The shape of a triaxial ellipsoid is highly
versatile and consequently can be used to model a
large number of scattering objects [e.g, raindrops,
airplanes, fish, tumors, erythrocytes (normal,
pathological, deformed, and aggregated)]. In the
biomedical field, our approach may be of particular
interest to the study of the aggregation of ellipto-
cytes. Elliptocytes are abnormal erythrocytes that
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have a shape close to a triaxial ellipsoid (discoidal
elliptocytes). They are present in many forms of
anemia (e.g., hereditary elliptocytosis, thalassemia,
and megaloblastic anemias) in varying proportions.
In hereditary elliptocytosis, they may constitute up
to 98% of the total number of erythrocytes.5

A Fredholm integral equation model (FIEM) is
developed, based on the Lippman–Schwinger inte-
gral equation for the electric field. However, the
corresponding integral equation for the scattering
contains two singular kernels. Therefore, it is trans-
formed into a pair of nonsingular integral equations
for the angular Fourier transform of the electric
field inside each ellipsoid. The latter equations are
solved by reducing them by quadrature into a ma-
trix equation. The resulting solutions are used to
calculate the scattering amplitude.

Serial and parallel computer codes have been de-
veloped and run on various Silicon Graphics Inter-
national Inc. (SGI) shared-memory parallel systems.
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LIGHT SCATTERING BY ERYTHROCYTE AGGREGATES
Fig. 1 Geometry of the problem.
The convergence of the complete model has been
checked for the case of plane wave irradiation
(l50.633 mm in vacuum) of a system of two adja-
cent oblate spheroidal models of erythrocytes. Two
different angles of incidence have been considered.

A partial test of the computer code has been per-
formed by comparing the scattering diagram of a
single spherical erythrocyte irradiated by red light
(l50.633 mm in vacuum) as predicted by FIEM
with the diagram predicted by Mie theory. A fur-
ther test ensuring the validity of the analysis for the
approximate case with the electromagnetic interac-
tion neglected has also been applied. The effect of
electromagnetic coupling between two adjacent
erythrocytes is illustrated. It is demonstrated that
the near-forward scattering pattern allows easy dis-
crimination between a single red blood cell (RBC)
and a RBC doublet (e.g., in flow cytometry). Typical
values of the discretization parameters present in
FIEM that are sufficient for obtaining convergence
are provided.

2 THEORY

2.1 THE MODEL

Both RBCs (or dielectric scatterers in general) are
modeled as triaxial homogeneous dielectric ellip-
soids with semiaxes a1 ,b1 ,c1 and a2 ,b2 ,c2 , respec-
tively (Figure 1). For a15b

1
, c1,a1 and a25b2 ,

c2,a2 , the shapes of oblate spheroids, which are
relatively close to the shapes of normal discoid
RBCs, are obtained. For a15b1 , c1.a1 and a25b2 ,
c2.a2 , the shapes of prolate spheroids which can
model mechanically deformed RBCs are obtained.
The relative (to the suspending medium) index of
refraction n0 and consequently the relative dielec-
tric constant e5n0

2 of both RBCs for a given wave-
length are considered to be complex. The index of
refraction of the suspending medium, which is usu-
ally plasma or an optically eqivalent isotonic liquid,
is considered real. Plasma has a very low optical
absorption in the visible spectrum range, where
most diagnostic instruments operate.

Dyadic notation is used throughout the analysis.
The following three cartesian coordinate systems
are used: the ‘‘absolute’’ system xyz and the local
coordinate systems x1y1z1 and x2y2z2 with their
origins at the centers of the ellipsoids V1 and V2 ,
respectively (Figure 1). The ellipsoids Vm , m51,2
are defined in their corresponding local coordinate
systems by the equation

xm
2

am
2 1

ym
2

bm
2 1

zm
2

cm
2 51. (1)

The following symbol conventions are used
throughout the analysis. X denotes a scalar quan-
tity (generally a complex number). XI , X= denote
vectors (generally of complex elements). X̂ , XÎ , X=̂
denote unit vectors (of real elements). XĪ denotes a
matrix or a dyadic (generally of complex elements).
A product sign at the beginning of an equation con-
tinuation line stands for a scalar product.

A plane electromagnetic wave of wave vector
kI i5k0k̂ i and polarization ê i is incident on the sys-
tem of the two ellipsoids. The time dependence is
taken as exp(2ivt) and is suppressed throughout
the analysis. The electric field (dyadic) at any point
rI in the xyz coordinate system is given by6–8

EĪ ~rI !5JĪ i exp~ ikI i•rI !1E
V1

drI 1gGĪ ~rI ,rI 1!•EĪ ~rI 1!

1E
V2

drI 2gGĪ ~rI ,rI 2!•EĪ ~rI 2!, (2)

where

g5
k0

2

4p
~e21 !, (3)

k0 is the suspending medium propagation constant,
1Ī is the unit dyadic,

JĪl51Ī2kÎ lkÎ l for any subscript l , (4)

kÎ l is a unit vector along kI l ,

GĪ ~rI ,rI m!5~1Ī1k0
22¹¹!G~rI ,rI m!, m51,2 (5)

and

G~rI ,rI m!5
exp~ ik0urI2rI mu!

urI2rI mu
. (6)

In order to obtain the plane plus scattered wave for
an incident wave ê iE0 exp(ikIi•rI), both sides of (2)
should be multiplied by ê iE0 .
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If the vectors jI 1 and jI 2 (Figure 1) are expressed in
the local coordinate systems x1y1z1 and x2y2z2 re-
spectively, the following relations hold

rI 15dI 11AĪ 1•jI 1 , (7)

drI 15djI 1 , (8)

rI 25dI 21AĪ 2•jI 2 (9)

and
drI25djI2 . (10)

The xyz coordinate system may be considered as
originating from either the x1y1z1 or the x2y2z2 lo-
V2
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cal system by rotation and translation as follows.
The x1y1z1 system is rotated (counterclockwise)
about its original z1 axis by the c1 angle
(0<c1<2p); the transformed system is rotated
about its new y1 axis by the u1 angle
(2p/2<q1<p/2), and the latter system is rotated
about its new x1 axis by the v1 angle
(0<v1<2p). The emerged system is translated by
the vector 2dI 1 so that the xyz coordinate system is
obtained. Similarly, the absolute xyz system may
be obtained from the local x2y2z2 coordinate system
(Euler angles c2 , q2 and v2 , translation vector
2dI 2) . Then the matrix AĪ 1 is given by9
AĪ 15F cos(c1)cos(u1) sin(c1)cos(q1) 2sin(q1)

[2sin(c1)cos(v1)
1cos(c1)sin(u1)sin(v1)]

@cos~c1!cos~v1!

1sin~c1!sin~q1!sin~v1!]
cos~q1!sin~v1!

@sin~c1!sin~v1!

1cos~c1!sin~q1!cos~v1!]
@2cos~c1!sin~v1!

1sin~c1!sin~q1!cos~v1!]
cos~q1!cos~v1!

G . (11)
The matrix AĪ 2 is given by Eq. (11) if all 1 subscripts
are substituted for by 2 subscripts.

The dyadic scattering amplitude fĪ(kI s ,kI i) for scat-

tering in the direction of kI s5k0kÎ s is defined by10

EĪ ~rI ! ——→
r→`

JĪ i exp~ ikI i•rI !1
exp~ ik0r !

r
fĪ~kI s ,kI i!

10S 1
r2D , (12)

where r5urI u.
Considering the asymptotic form of (2) as r→`

gives

lim
urI u→`

EĪ ~rI !5JĪ i exp~ ikI i•rI !1
exp~ ik0r !

r

3JI
¯
s•F E

V1

g exp~2ikI s•rI1!EĪ ~rI1!drI1

1E
V2

g exp~2ikI s•rI2!EĪ ~rI2!drI2G . (13)

Therefore, the dyadic scattering amplitude is ex-
pressed as

fĪ~kI s ,kI i!5JĪs•F E
V1

g exp~2ikI s•rI 1!EĪ ~rI 1!drI 1

1E g exp~2ikI s•rI 2!EĪ ~rI 2!drI 2G , (14)
and the vector scattering amplitude for incident
wave polarization ê i is given by

fI~kI s ,kI i ,ei!5fĪ~kI s ,kI i!• ê i . (15)

2.2 METHOD OF SOLUTION

The field equation (2) is an integral equation with
two singular kernels. In what follows, a method is
applied that deals with the singularity analytically,
leaving two integral equations with nonsingular
kernels. Multiplying (2) by (g/k0

2)exp(2ikI1•rI)
(where kI 15k1kÎ 1 is at present an arbitrary vector)
and integrating throughout the volume of the scat-
terer V1 gives

1
k0

2 E
V1

g exp~2ikI 1•rI !EĪ ~rI !drI

5JĪ i
1
k0

2 E
V1

g exp@~kI i2kI 1!•rI #drI1
1
k0

2 E
V1

drIg

3exp~2ikI 1•rI !E
V1

drI 1gGĪ ~rI ,rI 1!•EĪ ~rI 1!1
1
k0

2

3E
V1

drIg exp~2ikI 1•rI !E
V2

drI 2gGĪ ~rI ,rI 2!•EĪ ~rI 2!.

(16)

The electric field inside each scatterer
Vm , m51,2 is expressed as the Fourier transform
(in the xyz coordinate system)
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EĪ ~rI m!5E dkI 2CĪ m~kI 2!exp~ ikI 2•rI m! m51,2,

(17)

where

kI 25k2k̂2 . (18)

Substituting (17) into (16) gives

E dkI 2~KĪ aa~kI 1 ,kI 2! KĪ ab~kI 1 ,kI 2!!S CĪ 1~kI 2!

CĪ 2~kI 2!
D

5JĪ iUV1
~kI 1 ,kI i! for any kI 1 , (19)

where

UV1
~kI 1 ,kI 2!5

1
k0

2 E
V1

g exp@2i~kI 12kI 2!

•rI 1#drI 1 for any kI 1 ,kI 2 (20)

KĪ aa~kI 1 ,kI 2!51ĪUV1
~kI 1 ,kI 2!2

1
k0

2 E
V1

drI81E
V1

drI 1g

3exp~2ikI 1•rI81!GĪ ~rI81 ,rI 1!g

3exp~ ikI 2•rI 1!, (21)

and

KĪ ab~kI 1 ,kI 2!52
1
k0

2 E
V1

drI 1E
V2

drI 2g exp~2ikI 1•rI 1!

3GĪ ~rI 1 ,rI 2!g exp~ ikI 2•rI 2!. (22)

Now multiplying (2) by (g/k0
2)exp(2ikI1•rI), inte-

grating throughout the volume of the second scat-
terer V2 , and substituting (17) into the resulting
equation gives

E dkI 2@KĪ ba~kI 1 ,kI 2!KĪ bb~kI 1 ,kI 2!#FCĪ 1~kI 2!

CĪ 2~kI 2!
G

5JĪ iUV2
~kI 1 ,kI i! for any kI 1 , (23)

where

UV2
~kI 1 ,kI 2!5

1
k0

2 E
V2

g exp@2i~kI 12kI 2!•rI 2#drI 2 ,

(24)

KĪ ba~kI 1 ,kI 2!52
1
k0

2 E
V2

drI 2E
V1

drI 1g

3exp~2ikI 1•rI 2!GĪ ~rI 2 ,rI 1!g exp~ ikI 2•rI 1!

(25)

and
KĪ bb~kI 1 ,kI 2!51ĪUV2
~kI 1 ,kI 2!2

1
k0

2 E
V2

drI82E
V2

drI 2g

3exp~2ikI 1•rI82!GĪ ~rI82 ,rI 2!g

3exp~ ikI 2•rI 2!. (26)

Combining (19) and (23) gives

E dkI 2FKĪ aa~kI 1 ,kI 2! KĪ ab~kI 1 ,kI 2!

KĪ ba~kI 1 ,kI 2! KĪ bb~kI 1 ,kI 2!
G FCĪ 1~kI 2!

CĪ 2~kI 2!
G

5F JĪ iUV1
~kI 1 ,kI i!

JĪ iUV2
~kI 1 ,kI i!

G for any kI 1 . (27)

Using the transform

exp~ ik0urI2rI8u!
urI2rI8u

5
1

2p2 lim
e8→01

E dpI
p22k0

22ie8
exp@ ipI •~rI2rI8!#

(28)

and the dyadic relations

k0
2GĪ ~rI ,rI8!521Ī4pd~rI2rI 8!1¹

3H ¹31Ī
exp~ ik0urI2rI 8u!

urI2rI8u J (29)

and

¹3¹31ĪG~rI ,rI8!5~¹¹2¹21Ī !G~rI ,rI8!, (30)

Eq. (21) gives

KĪ aa~kI 1 ,kI 2!5e1ĪUV1
~kI 1 ,kI 2!

2
1

2p2 lim
e8→01

E dpI
p22k0

22ie8
p2~1Ī2 p̂ p̂ !

3UV1
~kI 1 ,pI !UV1

~pI ,kI 2!. (31)

Substituting Eqs. (7) and (8) into (20) gives

UV1
~kI 1 ,kI 2!5exp@2i~kI 12kI 2!•dI 1#UV1

8 ~KI 11 ,KI 21!,
(32)

where

UV1
8 ~KI 11 ,KI 21!5E

V1

djI 1
g

k0
2 exp@2i~KI 112KI 21!•jI 1# ,

(33)

KI 115kI 1•AĪ 1 (34)

and

KI 215kI 2•AĪ 1 . (35)

Similarly,
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UV1
~kI 1 ,pI !5exp@2i~kI 12pI !•dI 1#UV1

8 ~KI 11 ,PI 1!,
(36)

where

UV1
8 ~KI 11 ,PI 1!5E

V1

djI 1
g

k0
2 exp@2i~KI 112PI 1!•jI 1# ,

(37)

PI 15pI •AĪ 1 (38)

and

UV1
~pI ,kI 2!5exp@2i~pI 2kI 2!•dI 1#UV1

8 ~PI 1 ,KI 21!, (39)

where

UV1
8 ~PI 1 ,KI 21!5E

V1

djI 1
g

k0
2 exp@2i~PI 12KI 21!•jI 1# .

(40)

The KI 11 , KI 21 , and PI 1 vectors are expressed in the
local coordinate system x1y1z1 . Using (32), (36),
and (39), Eq. (31) becomes

KĪ aa~kI 1 ,kI 2!5e1Ī exp@2i~kI 12kI 2!•dI 1#UV1
8 ~KI 11 ,KI 21!

2
1

2p2 lim
e8→01

E dpI p2

p22k0
22ie8

3~1Ī2 p̂ p̂ !exp@2i~kI 12pI !

•dI 1#UV1
8 ~KI 11 ,PI 1!exp@2i~pI 2kI 2!

•dI 1#UV1
8 ~PI 1 ,KI 21!. (41)

Recall that the ellipsoid V1 is defined by (1) in the
local coordinate system x1y1z1 . The evaluation of
UV1

8 (KI 11 ,KI 21) (otherwise known as the first Born
term) is straightforward and we give the result
only:

UV1
8 ~KI 11 ,KI 21!5a1b1c1~e21 !

j1~ uK= 112K= 21uc!

uK= 112K= 21uc
, (42)

for any free vectors KI 11 and KI 21 , where

KI 115k1~A12xk1

2 cos wk1
,A12xk1

2 sin wk1
,xk1

!•AĪ 1

[k1~Hx ,Hy ,Hz!, (43)

(k1 can take complex values),

xa5cos~qa! for any subscript a , (44)

K= 115k1~a1Hx ,b1Hy ,c1Hz!, (45)

KI 215k2~A12xk2

2 cos wk2
,A12xk2

2 sin wk2
,xk2

!•AĪ 1

[k2~Lx ,Ly ,Lz! (46)

and
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K=̂ 215k2~a1Lx ,b1Ly ,c1Lz!, (47)

(k2 can take complex values). For homogeneous
scatterers

k15k25k0n0 . (48)

The symbol u uc is defined by the relation

uAI 2BI uc5AA21B222AI •BI , (49)

where

AI 5AÂ (50)

and

BI 5BB̂ (51)

(A ,B are generally complex numbers). The symbol
Az5@r exp(iw)#1/2 denotes the complex square root
r1/2 exp(i w/2) and jn(z) is the complex spherical
Bessel function of order n .

Thus, (41) takes the form

KĪ aa~kI 1 ,kI 2!5exp@2i~kI 12kI 2!•dI 1#F e1Īa1b1c1~e21 !

3
j1~ uK= 112K= 21uc!

uK= 112K= 21uc

2
1

2p2 ~a1b1c1!2~e21 !2

3 lim
e8→01

E dpI p2

p22k0
22ie8

~1Ī2 p̂ p̂ !

3
j1~ uK= 112P= 1uc!

uK= 112P= 1uc

j1~ uP= 12K= 21uc!

uP= 12K= 21uc G , (52)

where

PI 15p~A12xp
2 cos wp ,A12xp

2 sin wp ,xp!•AĪ 1

[p~Zx ,Zy ,Zz! (53)

and

P= 15p~a1Zx ,b1Zy ,c1Zz!. (54)

We use the expansion11

j1~ urI 12rI 2uc!

urI 12rI 2uc
5 (

n50

1`

~2n13 !

3
jn11~ urI 1uc!

urI 1uc

jn11~ urI 2uc!

urI 2uc
Tn

1~rÎ 1•rÎ 2!,

(55)

where Tn
1(x) is the Gegenbauer function and
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rÎ i5
rI i

urI iuc
for i51,2, (56)

and the integral12

lim
e8→01

E
0

1`

Jn~ap !Jm~ap !
pdp

p22k0
22ie8

5
pi
2

Jm~ak0!Hn
~1 !~ak0!, (57)

where m>n , m2n is an even integer and a.0, to
reduce (52) to the form

KĪ aa~kI 1 ,kI 2!5exp@2i~kI 12kI 2!•dI 1#F 1Īe~e21 !a1b1c1

3
j1~ uK= 112K= 21uc!

uK= 112K= 21uc
2

~e21 !2

2p2 ~a1b1c1!2

3pik0E
0

1
dxpE

0

2p

dwp~1Ī2 p̂ p̂ !

3 (
n50

n1m5

`

(
m50
even

`

~2n13 !~2m13 !

3
jn11~ uK= 11uc!

uK= 11uc

jm11~ uK= 21uc!

uK= 21uc

3
jm.11~k0Yaa!hm,11~k0Yaa!

~Yaa!2
3Tn
1~P=̂ 1•K=̂̂ 11!Tm

1 ~P=̂ 1•K=̂̂ 21!G , (58)

where

m.5max$m ,n%, m,5min$m ,n% (59)

hn~x !5S p

2x D 1/2

Hn11/2
~1 ! ~x !

(spherical Hankel function), (60)

Yaa5~a1
2Zx

21b1
2Zy

21c1
2Zz

2!1/2, (61)

P=̂ 15
1

Yaa ~a1Zx ,b1Zy ,c1Zz!, (62)

uK= 11uc5n0k0~a1
2Hx

21b1
2Hy

21c1
2Hz

2!1/2, (63)

K=̂̂ 115
1

~a1
2Hx

21b1
2Hy

21c1
2Hz

2!1/2 ~a1Hx ,b1Hy ,c1Hz!,

(64)

uK= 21uc5n0k0~a1
2Lx

21b1
2Ly

21c1
2Lz

2!1/2, (65)

and

K=̂̂ 215
1

~a1
2Lx

21b1
2Ly

21c1
2Lz

2!1/2 ~a1Lx ,b1Ly ,c1Lz!.

(66)

The dyadic 1Ī2 p̂ p̂ has the representation
1Ī2 p̂ p̂5F 12y2 cos2 wp 2y2 cos wp sin wp 2xy cos wp

2y2 cos wp sin wp 12y2 sin2 wp 2xy sin wp

2xy cos wp 2xy sin wp y2 G , (67)
where y2512x2 and x5cos qp .
The expression for the matrix element

KĪ bb(kI 1 ,kI 2) is similar and is given in Appendix A.
Now, substituting (28), (29), and (30) into (22)

gives

KĪ ab~kI 1 ,kI 2!52
1

2p2 lim
e8→01

E dpI p2

p22k0
22ie8

3~1Ī2 p̂ p̂ !UV1
~kI 1 ,pI !UV2

~pI ,kI 2!.

(68)

Applying (7), (8), (9), and (10), Eq. (68) becomes

KĪ ab~kI 1 ,kI 2!52
1

2p2 lim
e8→01

E dpI p2

p22k0
22ie8
3~1Ī2 p̂ p̂ !exp@2i~kI 12pI !

•dI 1#UV1
8 ~KI 11 ,PI 1!exp@2i~pI 2kI 2!

•dI 2#UV2
8 ~PI 2 ,KI 22!, (69)

where

UV1
8 ~KI 11 ,PI 1!5E

V1

djI 1
g

k0
2 exp@2i~KI 112PI 1!•jI 1# ,

(70)

UV2
8 ~PI 2 ,KI 22!5E

V2

djI 2
g

k0
2 exp@2i~PI 22KI 22!•jI 2# ,

(71)

KI 225kI 2•AĪ 2 (72)
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and

PI 25pI •AĪ 2 . (73)

The KI 22 and PI 2 vectors are expressed in the local
coordinate system x2y2z2 . The first Born term
UV2

8 (KI 12 ,KI 22) is given by

UV2
8 ~KI 12 ,KI 22!5a2b2c2~e21 !

j1~ uK= 122K= 22uc!

uK= 122K= 22uc
,

(74)

for any free vectors KI 12 and KI 22 . The new symbols
used are defined as follows.

KI 125n0k0~A12xk1

2 cos wk1
,A12xk1

2 sin wk1
,xk1

!•AĪ 2

[n0k0~Mx ,My ,Mz!, (75)

K= 125n0k0~a2Mx ,b2My ,c2Mz!, (76)

KI 225n0k0~A12xk2

2 cos wk2
,A12xk2

2 sin wk2
,xk2

!•AĪ 2

[n0k0~Tx ,Ty ,Tz! (77)

and

K= 225n0k0~a2Tx ,b2Ty ,c2Tz!. (78)

Using (74), Eq. (69) becomes
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KĪ ab~kI 1 ,kI 2!52
1

2p2 a1b1c1a2b2c2~e21 !2

3exp@2i~kI 1•dI 12kI 2•dI 2!#

3E
21

11
dxpE

0

2p

dwp

3 lim
e8→01

E
0

1` p4dp

p22k0
22ie8

~1Ī2 p̂ p̂ !

3exp@2i~dI 22dI 1!•pp̂#

3
j1~ uK= 112P= 1uc!

uK= 112P= 1uc

j1~ uP= 22K= 22uc!

uP= 22K= 22uc
, (79)

where

PI 25p~A12xp
2 cos wp ,A12xp

2 sin wp ,xp!•AĪ 2

[p~Jx ,Jy ,Jz! (80)

and

P= 25p~a2Jx ,b2Jy ,c2Jz!. (81)

In order to perform the p-integration, we apply
Cauchy’s integral formula11 and then carry out nu-
merical integration.13 The final form of (79) is the
following
KĪ ab~kI 1 ,kI 2!52
1

2p2 a1b1c1a2b2c2~e21 !2 exp@2i~kI 1•dI 12kI 2•dI 2!#F E
21

11
dxpE

0

2p

dwppi
k0

3

2
~1Ī2 p̂ p̂ !

3exp@2i~dI 22dI 1!•k0p̂#
j1@ uK= 112P= 1~k0!uc#

uK= 112P= 1~k0!uc

j1@ uP= 2~k0!2K= 22uc#

uP= 2~k0!2K= 22uc

1E
21

11
dxpE

0

2p

dwpE
0

k02d p4dp

p22k0
2 ~1Ī2 p̂ p̂ !exp@2i~dI 22dI 1!•pp̂#

j1~ uK= 112P= 1uc!

uK= 112P= 1uc

j1~ uP= 22K= 22uc!

uP= 22K= 22uc

1E
21

11
dxpE

0

2p

dwpE
k01d

1` p4dp

p22k0
2 ~1Ī2 p̂ p̂ !exp@2i~dI 22dI 1!•pp̂#

j1~ uK= 112P= 1uc!

uK= 112P= 1uc

j1~ uP= 22K= 22uc!

uP= 22K= 22uc
G .

(82)
The real quantity d used in the p-integration is posi-
tive and d→01. The expression for KĪ ba(kI 1 ,kI 2) is
obtained in a similar way and is given in Appendix
A.

The element JĪ iUV1
(kI 1 ,kI i) of the right part of the

matrix equation (27) takes the form

JĪ iUV1
~kI 1 ,kI i!5~1Ī2 k̂ ik̂ i!exp@2i~kI 12kI i!•dI 1#a1b1c1~e

21 !
j1~ uK= 112K= i1uc!

uK= 112K= i1uc
, (83)
where

KI i15kI i•AĪ 15k0~A12xki

2 cos wki
,A12xki

2 sin wki
,xki

!

•AĪ 1[k0~Sx ,Sy ,Sz! (84)

and

K= i15k0~a1Sx ,b1Sy ,c1Sz!. (85)
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The expression for JĪ iUV2
(kI 1 ,kI i) is given in Appen-

dix B.
Substituting (17) into (14) gives

fĪ~kI s ,kI i!5k0
2JĪs•E UV1

~kI s ,kI 2!CĪ 1~kI 2!dkI 2

1k0
2JĪs•E UV2

~kI s ,kI 2!CĪ 2~kI 2!dkI 2 . (86)

The integral equation (27) is reduced by quadrature
into a set of linear equations (a matrix equation). If
we choose the kI 2 pivots and weights to be the set

S5$kI j ,wjuj51, . . . ,n8%, (87)

the arbitrary kI 1 is restricted to a maximum of n8
arbitrary values. We choose these to be those of set
S. Then (27) and (86) reduce to the equations

(
l51

n8

wlFKĪ aa~kI j ,kI l! KĪ ab~kI j ,kI l!

KĪ ba~kI j ,kI l! KĪ bb~kI j ,kI l!
G •FCĪ 1~kI l!

CĪ 2~kI l!
G

5F JĪ iUV1
~kI j ,kI i!

JĪ iUV2
~kI j ,kI i!

G j51,2, . . . ,n8. (88)

and

fĪ~kI s ,kI i!5k0
2 JĪs•F(

l51

n8

wlCĪ 1~kI l!UV1
~kI s ,kI l!

1(
l51

n8

wlCĪ 2~kI l!UV2
~kI s ,kI l!G . (89)

The matrix equation (88) is solved by applying
the lower-upper matrix (LU) decomposition algo-
rithm.14 Then the values of CĪ 1(kI l) and CĪ 2(kI l) are
substituted into (89) and the scattering amplitude is
obtained.

3 COMPUTATION AND CONVERGENCE

3.1 COMPUTATIONAL ASPECTS

Irradiation of an RBC rouleau model, consisting of
two oblate spheroidal erythrocytes, by a plane
wave of l50.633 mm (in vacuum) was considered
in all numerical computations. Spheroids instead of
triaxial ellipsoids (with three different semiaxes)
were chosen only for ease of future comparison of
FIEM with methods pertaining to axisymmetric
scatterers. Such a choice does not necessarily affect
the computational demands of the program. The in-
dex of refraction of the suspending medium was
taken as np51.33,15 whereas the relative (to the sus-
pending medium) complex index of refraction of
each RBC was taken as n05Ae51.041i 1024.16

Therefore the equivolumetric radius of each RBC
was a52.780 mm and the size parameter k0a
>36.7.
Serial and parallel Fortran 77 computer codes
were developed and run on the following shared-
memory parallel systems: SGI Power Series 4D/
480S (83R3000 processors, 70 Mflops), SGI Chal-
lenge XL (163R4400 processors, 320 Mflops) and
SGI Power Challenge XL (143R8000 processors,
4200 Mflops). Double-precision arithmetic was used
throughout the computation. It was noticed that ap-
proximately 99% of the total computing time was
spent on the calculation of the final matrix ele-
ments. Furthermore, the calculation of every matrix
element could be performed independently of the
calculation of any other matrix element. Thus, par-
allel processing of the final matrix elements led to a
dramatic decrease in the total computing time
needed. The speedup achieved depended on both
the number of processors used and the overall load
of the system during the calculation.

It should be pointed out that scattering in the for-
ward direction and in the near forward angular re-
gion is of particular importance to many diagnostic
applications, such as the optical quantification of
erythrocyte aggregation and sedimentation.17,18 It
has also been experimentally observed that light
scattered by individual RBCs is strongly forward
peaked.19 Therefore, we restricted our calculations
in the forward and near forward scattering direc-
tions. Typical elapsed times for reliable results in
this scattering region ranged between 10 and 48 h
on the SGI Challenge XL system when six proces-
sors were used and the overall load of the machine
was medium.

3.2 CONVERGENCE

In order to obtain the scattering diagram [the rela-
tive scattered intensity I5ufI(wks

5const., qks
,wki

,
qki

,wei
,qei

)u2 versus the scattering angle qks
] in the

near-forward angular interval (up to 6 25 deg
around the direction of incidence), the following
procedure was applied. For the calculation of the
matrix elements KĪ aa(kI 1 ,kI 2) and KĪ bb(kI 1 ,kI 2) given in
Eqs. (58) and (97), the approximation of truncating
the infinite summations at a value n5m5nmax
was applied. The number of kI 2 pivot vectors (equal
to the number of kI 1 vectors), the number of terms
nmax in the summations, and the number of inte-
gration intervals in the dxp , dwp and dp integra-
tions in Eqs. (58), (82), (97), and (104) were in-
creased until convergence was obtained.
Furthermore, the position of the pivot vectors was
changed until convergence, with presumably the
lowest possible computing cost, was achieved. It
was found that pivot vectors forming angles greater
than 5 deg with the direction of incidence were of
little importance to the near forward scattering dia-
gram. Besides, increasing their number led to a
sharp increase in the computing time demands of
the model. Thus, care was taken to restrict the num-
ber of pivot vectors to the smallest possible value
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Fig. 2 (a) Irradiation geometry of a model of a two red blood cell
rouleau. (b) Near-forward scattering diagrams as predicted by
FIEM for coupled scatterers (solid line) and FIEM for the approxi-
mate case with the electromagnetic interaction neglected (dashed
line). Six pivot vectors were used in both cases.
without losing significant accuracy in the angular
region of interest. The values of the above-
mentioned discretization parameters generally var-
ied from case to case.

A list of typical values, which proved sufficient in
order to achieve convergence for the case depicted
in Figure 2(a) (complete analysis), is the following.
Six pivot vectors were used: one in the forward di-
rection, four equally spaced around the forward di-
rection and forming an angle of 0.5 deg with it, and
one in the backward direction. nmax560 for both
KĪ aa(kI 1 ,kI 2) and KĪ bb(kI 1 ,kI 2); d51026k0 . *0

1dxp inte-
gration in KĪ aa(kI 1 ,kI 2) and KĪ bb(kI 1 ,kI 2): 10 equal sub-
intervals were used. A 16-point Gauss integration
was performed on each subinterval.13 The same al-
gorithm was also applied to each subinterval of all
the remaining integrations. *21

11dxp integration in
KĪ ab(kI 1 ,kI 2) and KĪ ba(kI 1 ,kI 2): 15 equal subintervals
were used. *0

2pdwp integration in KĪ aa(kI 1 ,kI 2) and
KĪ bb(kI 1 ,kI 2): 20 equal subintervals were used.
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*0
2pdwp integration in KĪ ab(kI 1 ,kI 2) and KĪ ba(kI 1 ,kI 2): 30

equal subintervals were used. *0
k02ddp integration

in KĪ ab(kI 1 ,kI 2) and KĪ ba(kI 1 ,kI 2): the integration range
@0,k02d# was subdivided into the intervals
@0,k02100d), @k02100d ,k0210d# and
@k0210d ,k02d# . The first interval was further sub-
divided into three equal subintervals, whereas each
one of the last two intervals was considered a single
subinterval. *k01d

1` dp integration in KĪ ab(kI 1 ,kI 2) and

KĪ ba(kI 1 ,kI 2): infinity was satisfactorily replaced by
the value of 10k0 . The resulting integration range
@0,10k0# was subdivided into the intervals
@k01d ,k0110d), @k0110d ,k01100d), and
@k01100d ,10k0# . Each one of the first two intervals
was considered a single subinterval. The last inter-
val was subdivided into 27 equal subintervals.

A variable step-length routine that uses a
Clenshaw–Curtis quadrature and has a built-in es-
timate of the absolute error obtained by comparing
Newton Cotes and Romberg estimates20 was alter-
natively used in some of the previously mentioned
integrations.

3.3 COMPARISON WITH MIE THEORY

A partial test of the computer program (adequately
modified) was performed by considering the case
of plane electromagnetic wave scattering from a
single spherical RBC. The scattering amplitude was
calculated by applying both the exact Mie theory21

and the FIEM adequately modified so that it could
be used in the single scatterer case. The scattering
diagrams for values of qks

between 0 and 180 deg
are given in Ref 22. Six pivot vectors were used in
FIEM (one in the forward direction or direction of
incidence, four equally spaced around the forward
direction and forming an angle of 0.5 deg with it,
and one in the backward direction). It has been ob-
served that FIEM compares favorably with Mie
theory in the angular interval of up to 625 deg
around the direction of incidence.22

3.4 TEST OF THE PROGRAM FOR THE
APPROXIMATE CASE WITH THE
ELECTROMAGNETIC INTERACTION
NEGLECTED

The program was further tested by considering the
approximate case with the electromagnetic interac-
tion neglected (KĪ ab(kI 1 ,kI 2)5KĪ ba(kI 1 ,kI 2)50Ī) and by
making use of the following remark. Let fI1( ẑ , ẑ) be
the vector scattering amplitude for the single di-
electric ellipsoid shown in Figure 3(a), if the direc-
tion of both incidence and scattering is that of ẑ .
The incident wave polarization is taken as ê i5 x̂ .
Similarly, let fI2( ẑ , ẑ) be the corresponding vector
scattering amplitude for the system of two nonin-
teracting identical ellipsoids shown in Figure 3(b).
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Fig. 3 (a) Irradiation geometry of a single dielectric ellipsoid and
(b) of a system of two identical dielectric ellipsoids, used in order to
test the FIEM algorithm for the approximate case with the electro-
magnetic interaction neglected.
According to Eq. (12), the scattered electric field
at any point on the positive z axis in the far field
and for the first case is given by

EI 1
s ~z !5fI1~ ẑ , ẑ !

exp~ ik0z !

z
, (90)
whereas for the second case, it is given by

EI 2
s ~z !5fI2~ ẑ , ẑ !

exp~ ik0z !

z
. (91)

The EI 2
s (z) field may also be expressed as follows

(noninteracting scatterers)

EI 2
s ~z !5fI1~ ẑ , ẑ !

exp~ ik0uz2z0u!
uz2z0u

exp~ ik0z0!

1fI1~ ẑ , ẑ !
exp~ ik0uz1z0u!

uz1z0u
exp~2ik0z0!.

(92)

In the far field, it holds that

z@z0 . (93)

Therefore,

EI 2
s ~z !>fI1~ ẑ , ẑ !Fexp@ ik0~z2z0!#

z
exp~ ik0z0!

1
exp@ ik0~z1z0!#

z
exp~2ik0z0!G . (94)

Consequently,

EI 2
s ~z !>2 fI1~ ẑ , ẑ !

exp~ ik0z !

z
. (95)

Comparing (91) with (95) gives

fI2~ ẑ , ẑ !52 fI1~ ẑ , ẑ !. (96)

The vector scattering amplitudes 2 fI1( ẑ , ẑ) and
fI2( ẑ , ẑ) were calculated for the case of the oblate
spheroidal RBCs of Figure 2(a). The differences be-
tween the corresponding vector elements were less
than 0.2% when only six pivot vectors were used.
Hence, an additional partial check of the program
has been provided.

4 NUMERICAL RESULTS

The effect of electromagnetic coupling between two
adjacent oblate spheroidal erythrocytes simulating
a two red blood cell rouleau is illustrated in Figures
2 and 4. The value of the separation distance be-
tween the erythrocytes is a typical value of the dis-
tance between the (actually parallel) surfaces of the
aggregated cells.23 It may be noticed that although
coupling is substantial when the direction of the
wave incidence is parallel to the axis of the aggre-
gate, it is practically insignificant for incidence per-
pendicular to the axis of the aggregate. This may be
attributed to the fact that scattering of red light by
erythrocytes is basically forward oriented.19

Figures 5 and 6 demonstrate the differences
between the near-forward scattering patterns of
a single erythrocyte and of a two red blood
cell rouleau. Two angles of incidence have been
291JOURNAL OF BIOMEDICAL OPTICS d JULY 1997 d VOL. 2 NO. 3
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Fig. 4 (a) Irradiation geometry of a model of a two red blood cell
rouleau. (b) Comparison between FIEM for coupled scatterers
(solid line) and FIEM for the approximate case with the electromag-
netic interaction neglected (dashed line). Six pivot vectors were
used in both cases.
considered. It is evident that easy discrimination
between the two cases can be achieved in diagnos-
tic techniques such as flow cytometry,24 if the near-
forward scattering pattern is adequately processed.

5 CONCLUSIONS

A Fredholm integral equation solution to the scat-
tering of a plane electromagnetic wave by a system
of two interacting triaxial ellipsoids of complex in-
dex of refraction has been developed. Both the po-
sition and the orientation of the scatterers are in
principle arbitrary. The analysis developed has
been tested for certain special configurations of the
scatterer system. It has been subsequently applied
to the case of plane wave scattering (l50.633mm in
vacuum) from a two red blood cell rouleau, im-
mersed in either plasma or an isotonic and optically
equivalent suspending medium.

The effect of electromagnetic coupling between
adjacent scatterers as well as the effect of the num-
ber of scatterers (a single RBC or a RBC doublet) to
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the near-forward scattering pattern have been
quantified and illustrated.

The drawback of the analysis, when applied to
large scatterers, is its relatively high computing
cost. However, the computing time demands of the
model have been substantially decreased partly by
adequate selection of the plane waves (pivot vec-
tors) that represent the electric field inside each
scatterer, and partly by parallel processing. A par-
ticularly interesting application seems to be the
modeling of light scattering by rouleaux of tri-

Fig. 5 (a) Irradiation geometry of a single erythrocyte model and
(b) of a model of a two red blood cell rouleau. (c) Comparison
between their near-forward scattering patterns. Solid line, case (a);
dashed line, case (b). Six pivot vectors were used in both cases.
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Fig. 6 (a) Irradiation geometry of a single erythrocyte model and
(b) of a model of a two red blood cell rouleau. (c) Comparison
between their near-forward scattering patterns. Solid line, case (a);
dashed line; case (b). Six pivot vectors were used in both cases.
axial elliptocytes, which abound in certain forms of
anemia (e.g., elliptocytosis).

6 APPENDIX A

Expressions for the KĪ bb(kI 1 ,kI 2) and KĪ ba(kI 1 ,kI 2) ma-
trix elements are as follows:

The matrix element KĪ bb(kI 1 ,kI 2) has the following
expression
KĪ bb~kI 1 ,kI 2!5exp@2i~kI 12kI 2!•dI 2#F 1Īe~e21 !a2b2c2

3
j1~ uK= 122K= 22uc!

uK= 122K= 22uc
2

~e21 !2

2p2

3~a2b2c2!2pik0E
0

1
dxpE

0

2p

dwp@1Ī2 p̂ p̂#

3 (
n50

n1m5

`

(
m50
even

`

~2n13 !~2m13 !

3
jn11~ uK= 12uc!

uK= 12uc

jm11~ uK= 22uc!

uK= 22uc

3
jm.11~k0Ybb!hm,11~k0Ybb!

~Ybb!2

3 Tn
1~P=̂ 2•K=̂ 12!Tm

1 ~P=̂ 2•K=̂ 22!G , (97)

where, by using the symbols introduced in Eqs.
(80), (75), and (77),

Ybb5~a2
2Jx

21b2
2Jy

21c2
2Jz

2!1/2, (98)

P=̂ 25
1

Ybb ~a2Jx ,b2Jy ,c2Jz!, (99)

uK= 12uc5n0k0~a2
2Mx

21b2
2My

21c2
2Mz

2!1/2, (100)

K=̂ 125
1

~a2
2Mx

21b2
2My

21c2
2Mz

2!1/2

3~a2Mx ,b2My ,c2Mz!, (101)

K= u22uc5n0k0~a2
2Tx

21b2
2Ty

21c2
2Tz

2!1/2 (102)

and

K=̂ 225
1

~a2
2Tx

21b2
2Ty

21c2
2Tz

2!1/2 ~a2Tx ,b2Ty ,c2Tz!.

(103)

The expression for the matrix element
KĪ ba(kI 1 ,kI 2) is the following
293JOURNAL OF BIOMEDICAL OPTICS d JULY 1997 d VOL. 2 NO. 3



STAMATAKOS, UZUNOGLU, AND YOVA
KĪ ba~kI 1 ,kI 2!52
1

2p2 a1b1c1a2b2c2~e21 !2 exp@2i~kI 1•dI 22kI 2•dI 1!#F E
21

11
dxpE

0

2p

dwppi
k0

3

2
~1Ī2 p̂ p̂ !

3exp@ i~dI 22dI 1!•k0p̂#
j1~ uK= 122P= 2~k0!uc!

uK= 122P= 2~k0!uc

j1~ uP= 1~k0!2K= 21uc!

uP= 1~k0!2K= 21uc
1E

21

11
dxpE

0

2p

dwpE
0

k02d p4dp

p22k0
2

3~1Ī2 p̂ p̂ !exp@ i~dI 22dI 1!•pp̂#
j1~ uK= 122P= 2uc!

uK= 122P= 2uc

j1~ uP= 12K= 21uc!

uP= 12K= 21uc
1E

21

11
dxpE

0

2p

dwpE
k01d

1` p4dp

p22k0
2

3~1Ī2 p̂ p̂ !exp@ i~dI 22dI 1!•pp̂#
j1~ uK= 122P= 2uc!

uK= 122P= 2uc

j1~ uP= 12K= 21uc!

uP= 12K= 21uc
G . (104)
7 APPENDIX B

The final expression for the JĪ iUV2
(kI 1 ,kI i) element of

the right part of (27) is

JĪ iUV2
~kI 1 ,kI i!5~1Ī2 k̂ ik̂ i!exp@2i~kI 12kI i!•dI 2#a2b2c2~e

21 !
j1~ uK= 122K= i2uc!

uK= 122K= i2uc
, (105)

where

KI i25kI i•AĪ 25k0~A12xki

2 cos wki
,A12xki

2 sin wki
,xki

!

•AĪ 2[k0~Vx ,Vy ,Vz! (106)

and

K= i25k0~a2Vx ,b2Vy ,c2Vz!. (107)
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