Open Access
26 March 2024 Digital twin modeling and controlling of optical power evolution enabling autonomous-driving optical networks: a Bayesian approach
Xiaomin Liu, Yihao Zhang, Yuli Chen, Yichen Liu, Meng Cai, Qizhi Qiu, Mengfan Fu, Lilin Yi, Weisheng Hu, Qunbi Zhuge
Author Affiliations +
Abstract

Optical networks are evolving toward ultrawide bandwidth and autonomous operation. In this scenario, it is crucial to accurately model and control optical power evolutions (OPEs) through optical amplifiers (OAs), as they directly affect the signal-to-noise ratio and fiber nonlinearities. However, a fundamental contradiction arises between the complex physical phenomena in optical transmission and the required precision in network control. Traditional theoretical methods underperform due to ideal assumptions, while data-driven approaches entail exorbitant costs associated with acquiring massive amounts of data to achieve the desired level of accuracy. In this work, we propose a Bayesian inference framework (BIF) to construct the digital twin of OAs and control OPE in a data-efficient manner. Only the informative data are collected to balance the exploration and exploitation of the data space, thus enabling efficient autonomous-driving optical networks (ADONs). Simulations and experiments demonstrate that the BIF can reduce the data size for modeling erbium-doped fiber amplifiers by 80% and Raman amplifiers by 60%. Within 30 iterations, the optimal controlling performance can be achieved to realize target signal/gain profiles in links with different types of OAs. The results show that the BIF paves the way to accurately model and control OPE for future ADONs.

CC BY: © The Authors. Published by SPIE and CLP under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
Xiaomin Liu, Yihao Zhang, Yuli Chen, Yichen Liu, Meng Cai, Qizhi Qiu, Mengfan Fu, Lilin Yi, Weisheng Hu, and Qunbi Zhuge "Digital twin modeling and controlling of optical power evolution enabling autonomous-driving optical networks: a Bayesian approach," Advanced Photonics 6(2), 026006 (26 March 2024). https://doi.org/10.1117/1.AP.6.2.026006
Received: 16 January 2024; Accepted: 1 February 2024; Published: 26 March 2024
Advertisement
Advertisement
KEYWORDS
Data modeling

Modeling

Education and training

Optical amplifiers

Optical networks

General packet radio service

Simulations

Back to Top