1 March 1997 Application of self-organizing neural networks to multi-radar data fusion
Chin-Der D. Wann, Stelios C.A. Thomopoulos
Author Affiliations +
The self-organizing neural network Dignet is used in the design of a two-stage parallel data fusion system. The data fusion is applied to target detection problems in a multichannel moving target indication (MTI) system. Features of the received data from three different radar channels are extracted via digital signal processing techniques. Pulse compression, clutter canceling, and the fast Fourier transform (FFT) are used to transform data from the time-range domain to the range-Doppler domain for feature processing. A first-stage Dignet module on each channel is used for feature clustering and prefiltering. The clustering results from each channel Dignet module are passed on to the fusion Dignet for the second-stage clustering. Map regularization, circular metric, and contrast enhancement are used to resolve the misalignment problem of features on the range-Doppler maps from sensors on different channels. Each first-stage Dignet module performs feature extraction and clustering as a filter-upon-demand module that generates adaptiveness as it is required by the data clustering. Experimental results on field data have shown that a Dignet-based multiradar data fusion system successfully detects a moving target embedded in clutter.
Chin-Der D. Wann and Stelios C.A. Thomopoulos "Application of self-organizing neural networks to multi-radar data fusion," Optical Engineering 36(3), (1 March 1997). https://doi.org/10.1117/1.601276
Published: 1 March 1997
Lens.org Logo
CITATIONS
Cited by 4 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Data fusion

Target detection

Sensors

Doppler effect

Radar

Neural networks

Filtering (signal processing)

RELATED CONTENT

Knowledge-based tracking algorithm
Proceedings of SPIE (October 01 1990)
GMTI-tracking and information fusion for ground surveillance
Proceedings of SPIE (November 26 2001)
Neural networks for sensor data fusion
Proceedings of SPIE (September 03 1993)
Target classification using radar data: a comparative study
Proceedings of SPIE (September 16 1992)

Back to Top