6 February 2012 Recognition of human activities using a multiclass relevance vector machine
Weihua He, Yongcai Guo, Kin Choong Yow
Author Affiliations +
Funded by: Chinese Ministry of Education, Chongqing Municipal Natural Science Foundation of China
Abstract
We address the issue of human activity recognition by introducing the multiclass relevance vector machine (mRVM), the current state-of-the-art kernel machine learning technology given the multiclass classification problems (actually, activity recognition can commonly be viewed as a multiclass classification problem). Under our proposed recognition framework, the required procedure consists of three functional cascade modules: a. detecting the human silhouette blobs from the image sequence by the background subtraction method; b. extracting the shape and the motion features from the variation energy image (VEI); and c. sending the obtained features to the mRVM and recognizing the human activity. There are two types of mRVM: the constructive mRVM1 and the top-down mRVM2. We performed 10 times three-fold cross-validation on the Weizmann benchmark data set to examine the effectiveness of the proposed method. We also compared our method with other existing approaches, and the experimental results show that the proposed method offers superior performance. In summary, the mRVM, especially the mRVM2, has advantages both in terms of recognition rate and sparsity, along with a simple feature extraction process. The mRVM also significantly simplifies the classification process, by comparison with traditional binary-tree style multiclass classifiers.
© 2012 Society of Photo-Optical Instrumentation Engineers (SPIE) 0091-3286/2012/$25.00 © 2012 SPIE
Weihua He, Yongcai Guo, and Kin Choong Yow "Recognition of human activities using a multiclass relevance vector machine," Optical Engineering 51(1), 017202 (6 February 2012). https://doi.org/10.1117/1.OE.51.1.017202
Published: 6 February 2012
Lens.org Logo
CITATIONS
Cited by 8 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Feature extraction

3D modeling

Binary data

Optical engineering

Motion models

Data modeling

Image processing

RELATED CONTENT


Back to Top