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ABSTRACT 

After the invention of DNA-surfactant films and the proposal of dye doping into them by Ogata, many applications were 
demonstrated. Among them tunable thin film laser is one of the most attractive functional devices. Development and 
progress in DNA based lasers after the first observation of amplified spontaneous emission (ASE) by us has been re-
viewed in a former paper published in 2011.1 In this proceeding, progresses in the subsequent half a decade are described. 
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1. INTRODUCTION  
Exotic structure of DNA is considered to be a good template for the incorporation of functional dyes through specific 
interaction modes between them. Among a lot of possible applications proposed by Ogata, dye lasers are very promising 
because it would make it possible to realize a small-sized tunable laser sources which will be useful in vast areas of prac-
tical uses including industrial, medical and environmental studies. The first demonstration of amplified spontaneous 
emission (ASE) which meant a laser action without cavity was made by us in 2000.2 While the dye employed at that time 
was Rhodamine 6G (Rh6G) which was very popular as laser medium, the optical amplification was also observed in 
another type of dye, a hemicyanine of which result triggered the investigation on various classes of dyes including 
rhodamines, sulforhodamine, cyanines, and spiropyrans.3 Since these results were summarized in our previous review 
published in 2011, the progresses after the year will be presented in this proceeding.1 
 

2. MATERIALS INCORPORATED IN DNA-COMPLEXES 
Considering that uncountable organic dyes could be incorporated in DNA or DNA-complexes by various simple routes, 
numbers of compounds under studies until now were still quite limited. Several newly examined dyes, however, took 
advantages of their characteristics, showing promising features. In this section, newly developed materials are briefly 
described followed by a summary in Table 1. 
 
Nonlinear microcrystallites: Organic nonlinear optical (NLO) materials which were widely studied in the past were 
found to sometimes show luminescence in solutions, in polymer matrices and even in crystalline states. A pyrazole 
called DCNP known as a NLO crystal was mixed into DNA-cetyltrimethylammonium (CTMA) in several configurations 
as molecular dispersion and microcrystallites, showing ASE and also lasing with a feedback grating formed in adjacent 
azo-polymer layer.4,5 Microcrystallite dispersion in the matrix was found to be effective for random lasing which would 
be a promising alternative for light source devices.6  
 
Biomedical fluorophores: There are a lot of types of dyes used to stain cell or cell organelle, and many of them show 
fluorescence enhancement when binding to specific parts in the cells. These dyes are utilized widely for analysis or diag-
nosis of living organization. A large number of cyanines and hemicyanine have been developed for such purposes. 
Recentely, Pradeep et al. employed PicoGreen as a dopant in DNA-CTMA, finding ASE under pumping above 2 or 
3mJ/cm2.7 Since so many dyes with special binding characteristics to biomaterials are available for molecular labelling, 
these are candidates for dye laser application. Characteristics of stimulated emission will provide a novel technique for 
biological imaging. 
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Blue or UV light emitter: Most of dyes used in DNA laser have emission color from green to red regions. Therefore, 
blue light laser will be important to widen the tuning ranges of biomaterial lasers. One example of UV light ASE was 
reported by Zhao et al.8 A fluorene derivative was doped into DNA-CTMA to observe ASE peaking at 380nm. To our 
knowledge, that was the shortest wavelength made with these classes of materials. 
 
Laser dyes: Even well-known laser dyes sometimes show new features in exotic environments. The study on 
Rhodamine 610 (always denoted as Rhodamine B) mixed up with DNA-CTMA in solution was such an example. Bazaru 
Rujoiu el al. observed lasing from concentrated the solution contained in a thin quartz cell with a feedback by two paral-
lel cuvette walls.9 They confirmed an improvement of laser coherence with Michelson interferometry, which fact might 
indicate that there are some roles of organic materials in the basic researches of quantum electronics. 
 
Rare earth chelates: In 2009, Ogata et al. reported that fluorescence from some organic europium complexes were en-
hanced in DNA-CTMA and that the luminescence from trivalent rare earth ions Eu3+, Tb3+ and Nd3+ were also intensified 
when they were mixed with DNA in aqueous solutions.10 Recently, Tsang et al. fabricated a Eu(TTFA)3 doped DNA-
CTMA fiber waveguide in a quartz tube, observing amplification of 612nm light originating from f-f transition in Eu3+ 
under cw pumping at 351nm.11 
 

Table 1. List of compounds incorporated in DNA-complex laser devices 
 

Molecular structure Device configuration Results References 
DCNP 

 

a. DNA-CTMA-dye 
(0.5wt%) 

b. DNA-CTMA-dye 
(1.0wt%) 

a. laser at 630nm  
(Ith = 11mJ/cm2) 

b. random laser at ~ 615nm 
(Ith = 3mJ/cm2) 

[4-6] 

PicoGreen 

 

DNA-CTMA-dye ASE at 560nm 
(Ith = 2~3mJ/cm2) [7] 

BPF 

 

DNA-CTMA-dye 
(0.25~1.0wt%) 

ASE at 380nm 
(Ith = 3mJ/cm2) [8] 

Rhodamine 610 (Rhodamine B) 

 

DNA-CTMA-dye (5~15wt%) 
in butanol solutions 

lasing at 575~595nm 
(Ith = 14mJ/cm2) [9] 

Eu(TTFA)3 

 

DNA-CTMA-chelate 
(2~6wt%) amplification at 612nm [11] 
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lasing was also induced by surface roughness as given with Rh6G doped in DNA-CTMA or pure DNA in which the 
threshold values were 30mJ/cm2 and 5mJ/cm2, respectively.26,27 
 
Dynamic grating: Although wavelength tunability is the most important advantage of dye lasers, implementation into 
miniature sized systems requires a lot of efforts. In most of studies for DNA-based systems, wavelength tuning has been 
realized by dynamic gratings formed by interfering beams. In our case, tuning was made in the range of 600-630nm with 
Hemi22, while tuning in 570-610nm and 670-710nm were performed with two types of cyanine dyes (DiQC2(1), 
DiQC2(3)).28-30 In these cases, grating might be formed by the modulation of gain, giving threshold values around 
5mJ/cm2. Second layer of azo-containing polymer was implemented on Py1/DNA-CTMA layer for the tuning, to show 
laser emission in red region. However, threshold value was as high as 10mJ/cm2, because grating must have been kept 
far away from the active region in order to prevent strong loss of azo dyes.31 Optimized combination of two dyes is de-
sired to fabricate single layer devices. 
 
Aggregation: Some recent researches reported the influences of dye aggregation on ASE in DNA systems. Since some 
molecular glasses or crystals show strong photoluminescence as observed in organic LED devices, molecular aggrega-
tion will more or less contribute to light emission. Lasing from crystalline DCNP was considered to be an example for 
such aggregation enhanced luminescence.6 The idea was extended to molecular cases, when Rh6G in DNA complexes 
gave random lasing and wavelength change was attributed to aggregation due to molecular concentration.32 The control 
of molecular states will give another possibility for DNA-based lasers. 
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