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ABSTRACT

There is a strong push to develop intelligent unmanned autonomy that complements human reasoning for appli-
cations as diverse as wilderness search and rescue, military surveillance, and robotic space exploration. More than
just replacing humans for ‘dull, dirty and dangerous’ work, autonomous agents are expected to cope with a whole
host of uncertainties while working closely together with humans in new situations. The robotics revolution firmly
established the primacy of Bayesian algorithms for tackling challenging perception, learning and decision-making
problems. Since the next frontier of autonomy demands the ability to gather information across stretches of time
and space that are beyond the reach of a single autonomous agent, the next generation of Bayesian algorithms
must capitalize on opportunities to draw upon the sensing and perception abilities of humans-in/on-the-loop.
This work summarizes our recent research toward harnessing ‘human sensors’ for information gathering tasks.
The basic idea behind is to allow human end users (i.e. non-experts in robotics, statistics, machine learning, etc.)
to directly ‘talk to’ the information fusion engine and perceptual processes aboard any autonomous agent. Our
approach is grounded in rigorous Bayesian modeling and fusion of flexible semantic information derived from
user-friendly interfaces, such as natural language chat and locative hand-drawn sketches. This naturally enables
‘plug and play’ human sensing with existing probabilistic algorithms for planning and perception, and has been
successfully demonstrated with human-robot teams in target localization applications.

Keywords: Human-machine systems, collaborative sensing, Bayesian methods, machine learning, sensor fusion,
estimation, robotics

1. INTRODUCTION

From self-driving cars1 and storm-chasing aircraft,2 to robots exploring icy Jovian moons3 and patrolling large
swaths of open space,4 the future of unmanned autonomous systems looks very promising. Thanks to their ability
to gather, process, share, and act on vast amounts of information, autonomous systems are transforming how
society thinks about many complex activities that were once considered beyond machine reasoning. Alongside
improvements in computing, communication, and sensing hardware, a key technological factor in this develop-
ment has been the accelerated sophistication of perception, learning and decision making algorithms that can
nearly match (or, in some cases, clearly surpass) human reasoning.5 Machines are no longer confined to routine
automation tasks focused on low-level control and signal processing – they are being given license to make sense
of the larger world and make decisions on their own.

However, many hurdles stand in the way of ‘set and forget’ autonomy. Autonomous systems are products
of imperfect human engineering, and thus will never operate perfectly out of the box, i.e. knowing everything
they will ever need to know to behave exactly as needed. With the widespread adoption of non-deterministic
perception, learning, and planning algorithms to cover these gaps, there is still no way yet to guarantee that
autonomous systems will behave as intended in all circumstances.6,7 The space exploration domain highlights
these challenges: how should an autonomous robot explorer reason about what to do and expect on an icy
Jovian moon, if it is gathering detailed data about conditions there for the very first time? Prior knowledge from
coarse remote sensing data, human expertise, etc. will be vital to designing the autonomy beforehand, but are not
enough to ensure that the robot will be completely self-sufficient. The robot will encounter unexpected situations
during the mission that require reasoning beyond its designed capabilities, and which will be impractical to handle
via the traditional means of teleoperation or extremely detailed planning from the ground.8
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Hence, the old adage ‘no man is an island’ applies to unmanned autonomy as well. Intelligent autonomy
should not just be defined by the ability to gather, process, and act on information completely on its own.
Rather, it should also include the ability to seek out and exploit other autonomous agents (including humans)
for help when needed. This view naturally follows from the under-appreciated fact that ‘autonomy’ represents a
relationship, in which a machine is delegated by a user to perform certain tasks.9 As such, it should be kept in
mind that an autonomous system (or, any intelligent reasoning machine) represents a deliberate complementary
extension of human reasoning – not merely a wholesale replacement of it.

Human-machine interaction should therefore be considered an essential component of unmanned autonomy,
alongside perception, planning, learning, etc. Autonomy should enable stakeholders and users (soldiers, pilots,
scientists, astronauts, farmers, etc.) to stay in/on the loop to delegate, assess and help improve operations, while
also keeping them at a safe distance from dull, dirty and dangerous tasks (especially ones they cannot perform
well). This in turn raises issues of managing trust for human-machine interaction. If machines and humans are
to trust (i.e. willingly depend on) each other, then each must be able to communicate and form useful mental
models of the other’s abilities, goals, percepts and actions.10

Yet, effective human-machine interaction is difficult to realize in practice, and is often only considered after
systems are already designed. Indeed, human-machine interaction is sometimes viewed as a ‘necessary evil’: a post
hoc band aid for corner cases where planning and perception haven’t caught up yet. Such thinking opens the door
to poorly designed human-machine interfaces, which can lead to many unintended (yet avoidable) consequences
such as loss of situational awareness, user distrust, system misuse and abuse.11 This also prematurely shuts
out novel pathways to exploiting collaborative human and machine reasoning from the outset. Sophisticated
strategies for integrated human-autonomy interaction have begun to develop along these lines. For instance,
there is much research nowadays on human-assisted robot planning using multi-modal commands, e.g. natural
language speech, sketches or physical gestures.12–16 However, there are also many important implications for
reliable sensing, data fusion and perception, which are still major choke points for unmanned systems.17

This work summarizes our recent and ongoing research toward harnessing ‘human sensors’ for autonomous
information gathering tasks. The basic idea behind is to allow human end users of autonomous systems (i.e.
non-experts in robotics, statistics, machine learning, etc.) to directly ‘talk to’ the information fusion engine and
perceptual processes aboard any autonomous agent. Our approach is grounded in rigorous Bayesian modeling and
fusion of flexible semantic information derived from user-friendly interfaces, such as natural language chat and
locative hand-drawn sketches. This naturally enables ‘plug and play’ human sensing with existing probabilistic
planning and perception algorithms; that is, human sensors can freely provide information to autonomy without
undermining its ability to reason, or forcing undesirable dependencies on human inputs. We have successfully
demonstrated our fusion methods and interfaces with real human-robot teams in target localization applications.
Section 2 provides some background for probabilistic modeling and reasoning. Sections 3 and 4, respectively,
describe our work on Bayesian fusion of soft data provided via semantic natural language and locative hand
drawn sketching for target search.

2. PROBABILISTIC AND BAYESIAN REASONING FOR AUTONOMY

Perception and decision making architectures for unmanned autonomous systems can be described in terms of
the classical closed-loop ‘observe-orient-decide-act’ (OODA) process.18 The ‘decide’ and ‘act’ portions (planning
and control) are typically designed to maximize some set of performance optimality criteria, whereas the ‘observe’
and ‘orient’ portions (sensing and perception) are designed to extract maximum information from environmental
signals to support decision making and execution. Modern state space and optimal control theory underscores
the importance of accounting for both model and state uncertainties in such closed-loop processes. Such uncer-
tainties directly govern how an agent would best decide to gather more information (acting to observe) and what
information it should prioritize gathering (observing for action).

Due to their highly flexible nature and ease of use for describing stochastic uncertainties, probabilistic models
have been adopted as the lingua franca in modern robotics and autonomy.19 The development of probabilistic
graphical model (PGM) theory in particular provides a powerful unified formal framework for combining these
techniques in a scalable way.20 PGMs enable efficient embedding and reasoning over complex probabilistic
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Figure 1. Generic PGM for soft-hard sensor fusion problem in a human-autonomous robot team.

dependencies, and thus make it trivial to model high-dimensional joint probability distributions. PGMs can
also integrate deterministic information and constraints, e.g. based on causal and logical reasoning, and permit
hierarchical reasoning on uncertain model structures.

With these properties, PGMs make it relatively easy to perform Bayesian inference to update probabilistic
knowledge in light of new information. The basic premise of Bayesian inference is simple: given some unknown
set of random variables X and some observed data in random variables Y that obey some joint probability
distribution P (X,Y ), Bayes’ rule computes an updated posterior probability distribution P (X|Y ) that reflects
how much the probability of obtaining any possible value of X is affected by the evidence Y . Large ‘forward
models’ for autonomous perception and planning problems can be represented by PGMs that decompose P (X,Y )
into an easily obtainable set of prior distribution P (X) and likelihood (or evidence) functions P (Y |X). This
decomposition greatly simplifies the operations involved in Bayesian inference to find P (X|Y ). Then P (X|Y )
(the ‘inverse’ of the joint P (X) and P (Y |X) forward model) can be subsequently analyzed to get a single ‘best’
estimate value X̂, e.g. as done sequentially in the Kalman filter, or in batch form for maximum a posteriori
(MAP) estimates in robotic pose graphs.21 The posterior P (X|Y ) can also passed directly to some other reasoning
algorithm for decision making and planning, e.g. a policy function for a probabilistic planner.19

2.1 Bayesian Soft-Hard Data Fusion

Probabilistic models and Bayesian reasoning provide a powerful general framework for augmenting robotic per-
ception systems with ‘human sensors’, which can provide soft data to complement ‘hard data’ from conventional
sensors such as lidar, cameras, sonars, etc. in partially observable environments. ‘Soft data’ is any set of obser-
vations that originates from human sources.22 For instance, human pilots and payload specialists in wilderness
search and rescue (WiSAR) missions can interpret video feeds and electro-optical/IR data streams provided
by small fixed-wing UAVs, and can spot important clues that help narrow down probable lost victim locations
and movements.23 Likewise, in large-scale surveillance for defense applications, dismounted soldiers can provide
evidence on the whereabouts and behaviors of potential intruders moving across unsecure areas; it is desirable
to directly fuse such soft data with hard data from UAV patrols to improve intruder detection and tracking
performance. Combined hard-soft sensing can also help cope with design limitations in UXV systems, where
autonomous vehicles are subject to hardware constraints that restrict onboard sensing, processing and com-
munication abilities. Soft data integration also lets humans stay ‘in the loop’ without overloading them with
cognitively demanding planning/navigation tasks.24

A key problem then is: how should soft sensor data be formally integrated with hard data to augment robotic
estimation and perception algorithms? Figure 1 shows the corresponding PGM for the generic human-robot
sensor fusion problem, where sensor model parameters Θ for both hard and soft sensors may also be unknown,
and thus may have to be estimated along with the state of interest X. Soft data can be broadly related to either
‘abstract’ phenomena that cannot be measured by robotic sensors (e.g. labels for object categories and behaviors)
or measurable dynamical physical states that must be monitored constantly (object position, velocity, attitude,
temperature, size, mass, etc.)22 Our work focuses on the latter, under the key assumption that humans are not
oracles: as with any other sensor data, human observations are subject to errors, limitations and ambiguities that
must be modeled properly. We aim to adapt widely used statistical sensor fusion and robotic state estimation
algorithms, e.g. Bayes filters and the like, so that soft data can be exploited with minimal effort on the part of
the robot or the human sensor.
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3. BAYESIAN FUSION OF SOFT LANGUAGE OBSERVATIONS

Refs. 25–27 were among the first to develop Bayesian fusion techniques allowing human sensors to directly ‘plug
into’ robotic state estimation and perception algorithms. However, these works assume that humans report data
the same way robots do, and thus greatly limit the flexibility of human-robot communication. In the context of
target tracking with extended Kalman filters, for instance, ref. 25 assumes that humans provide numerical range
and bearing measurement reports (‘The target is at range 10 m, bearing 45 degrees’).

Ref. 28 showed how to model and fuse flexible semantic natural language soft data to provide a broad range
of positive/negative information for Bayesian state estimation, e.g. ‘The target is parked near the tree in front of
you’, ‘Nothing is next to the truck heading North’. One nice theoretical property of the resulting fusion algorithm
is its ability to directly plug into Gaussian mixture (GM) filters for state estimation. GM filters can accurately
represent complex posterior pdfs, while avoiding the curse of dimensionality encountered by grid or particle filter
methods.25,29,30 We briefly summarize the cooperative human-robot state estimation method developed in ref.
28 and discuss several recent extensions to address the issues of semantic likelihood sensor modeling, natural
language processing, and optimal querying for active semantic sensing.

3.1 Bayesian Fusion of Semantic Data

Let X be a continuous random vector representing the dynamic state of interest (e.g. target location, velocity,
heading) with prior pdf p(X) (which may already be conditioned on hard data), and D be a discrete random
variable representing a human-generated semantic observation related to X (e.g. ‘The target is on the bridge’,
‘The target is heading over the bridge and slowing down’, etc.). Given the likelihood function P (D|X), Bayes’
rule gives the posterior pdf

p(X|D) =
p(X)P (D|X)∫
p(X)p(D|X)dx

. (1)

where P (D|X) models the human’s ‘semantic classification error’ as a function of X. If D = l corresponds to
one of m exclusive semantic categories for a known dictionary, then a softmax function can be used to model
P (D = l|X),

P (D|X) =
exp(wT

l x+ bl)∑m
c=1 exp(wT

c x+ bc)
. (2)

Fig. 2 (a) shows an example softmax model for semantic spatial range and bearing observations in 2D. An
important feature of this likelihood model is that, for a given parameter set of class weights and biases Θ =
{wc, bc}mc=1, the state space X is divided into m convex ‘ε-probability polytopes’, i.e. convex subsets in X where
certain semantic categories occur with a probability P (D|X) ≥ ε.31 Label classes in a softmax model can also be
internally grouped together as ‘subclasses’ within larger semantic classes. This yields the generalized multimodal
softmax (MMS) likelihood model,32 which can represent arbitrary non-convex probabilistic polytopes in X via
piecewise-convex subclasses. For instance, as shown in Fig. 2 (b), a range-only semantic MMS model can be
obtained from Fig. 2 (a) by grouping together range labels. The parameters Θ of both softmax and MMS
models can be learned from human-generated calibration data using standard parameter estimation techniques,
as shown in Fig. 2 (c)-(d) for two different human sensors.

To perform recursive Bayesian data fusion with softmax or MMS likelihoods, eq. (1) must be approximated,
since the exact posterior pdf p(X|D) cannot be obtained in closed-form for any prior p(X). Ref. 28 showed that,
if P (D = i|X) is generally given by an MMS model with qi subclasses for observation label i and the prior is
given by a finite Gaussian mixture (GM) with mp prior components,

p(X) =

mp∑
p=1

wpNX(µp,Σp)

(where wp, µp ∈ Rn, and Σp ∈ Rn×n are the weights, mean vector and covariance matrix for mixand p), then
p(X|D = i) can be well-approximated by a qimp component GM,

p(X|D = i) ≈
qimp∑
q=1

wqNX(µq,Σq). (3)
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Figure 2. (a) Probability surfaces for example softmax likelihood model, where class labels take on a discrete range in ‘Next
To’,‘Nearby’,‘Far From’ and a canonical bearing ‘N’,‘NE’,‘E’,‘SE’,...,‘NW’; (b) MMS model for semantic range derived
from softmax model in (a), using 1 subclass for ‘next to’, 8 subclasses for ‘nearby’ and 8 subclasses for ‘far’; (c)-(d)
‘Nearby’ label probabilities in estimated MMS range-only models for two different human sensors.

The weights, means and covariances of posterior component q can be determined by fast numerical quadrature
techniques such as likelihood weighted importance sampling (LWIS) or variational Bayesian importance sampling
(VBIS).28 These techniques exploit the fact that the exact product of an MMS likelihood function and GM prior
is a mixture of non-Gaussian component pdfs, where each component is guaranteed to be unimodal and thus
can be well-approximated by a moment-matched Gaussian. To manage the growth of mixture terms from mp to
qimp, mixture compression methods such as Runnalls’ joining algorithm33 can used to find a GM with mf < qimp

components that minimizes an information loss with respect to (3). This allows semantic human sensor data to
plug seamlessly into existing GM Bayes filters for hard robot sensor data fusion.25,30

Figure 3 illustrates the semantic data fusion process for an indoor target localization application, discussed
in refs. 28, 34 and 35. In this example, a ground robot and a remote human supervisor perform a time critical
search for static targets (red traffic cones) using a Bayesian search algorithm with GM prior distributions on the
target locations. The robot autonomously plans optimal search paths using negative information gathered from
an onboard visual detector, which has a very limited range and field of view. The human supervisor can confirm
possible target detections (confirming true detections or false alarms), but can also voluntarily provide semantic
observations about the environment based on a live (grainy and delayed) video feed. In this application, the
human’s semantic observations are selected from a pre-defined dictionary, which filled in templated observations
of the form ‘[Something/Nothing] is [preposition][reference object]’.

As shown in the bottom right of Fig. 3, soft semantic data fusion leads to a massive injection of information
and hence a significant shift in the robot’s beliefs about the target locations. This allows the robot to plan
and execute more efficient search paths. The soft semantic data fusion process does not require the human to
engage in cognitively demanding planning or control activities: the robot simply responds to new human sensor
information by updating its beliefs about the target state and executing corresponding optimal search actions.
Experiments with 16 different human participants acting as supervisors35 showed that targets well outside the
robot’s field of view could be localized to sub-meter accuracy, using only semantic data fusion updates provided
by the human (which included both positive and positive observations, i.e. ‘Something is in front of the door’ vs.
‘Nothing is in front of the door’). In these experiments, human supervisors were also allowed to view a live heat
map representing the robot’s beliefs about the target locations. As such, soft data fusion can be particularly
useful as a ‘coarse sensing’ input for both priming and correcting robotic perception in complex dynamic settings.
For example, many human supervisors were able to use soft data to correctively/preepmtively ‘nudge’ the robot’s
beliefs whenever its detector encountered false negatives, thus preventing the robot from wandering away from
the true target locations. The fusion of negative semantic information (e.g. ‘There is nothing in this room’) also
allowed the robot to quickly narrow down search regions, thus saving considerable time and energy.

While promising, these initial results were obtained with significant design constraints on the semantic data
fusion system and human-machine interface. For instance, a highly restrictive semantic dictionary and set of
softmax/MMS likelihoods were used to model human sensor semantics in order to avoid the up front difficulties
of natural language processing. This approach also assumes that it is possible to construct the entire dictionary
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Figure 3. Static target localization application from refs. 28, 35. The surveillance area consist of mapped obstacles and landmarks, and

targets (orange traffice cones) with unknown locations X given by a Gaussian mixture (GM) prior p(X). An autonomous UGV robot

performs Bayesian fusion of prior beliefs with detection/no detection reports from a vision sensor and semantic observations provided by a

human supervisor, producing updated GM posteriors for X. The updated GMs are then used by autonomous path planning algorithms to

navigate towards likely target positions, i.e. the human only provides sensor observations, and never directly commands or steers the robot.

and set of semantics ahead of time, which is prohibitive for many applications (e.g. mapping and tracking targets
in unknown environments). Furthermore, a strictly passive data fusion process was used: the human supervisor
would only voluntarily provide inputs if he/she deemed them necessary. The following subsections describe recent
advances that address these issues.

3.2 Semantic Likelihood Synthesis and Compression

Softmax and MMS likelihood models are theoretically convenient for recursive data fusion via (3), but it is not
immediately obvious how to physically interpret or manipulate these sensor models in different settings. Refs.
36 and 37 established several key properties of general softmax and MMS model geometry to address this issue,
and provide the basis for novel solutions to two related problems: semantic likelihood model synthesis, and batch
semantic likelihood compression.

Likelihood model synthesis: How should softmax/MMS models be constructed ‘from scratch’ and/or dynamically
modified in general state spaces X? For instance, we may wish to model likelihood functions in complex
2D/3D spatial domains and beyond to include velocities, angles, etc. Or we may wish to build likelihood
models ‘on the fly’ to exploit spatial semantics for newly perceived objects or environments that are mapped
in real time. It is thus practically necessary to translate known geometric constraints in X directly into prior
specifications/constraints for Θ. This is especially important for learning with sparse human sensor calibration
data, and for adapting Θ online to enforce expected geometric properties of likelihood function polytopes in X
space. For instance, meaningful spatial invariances can be enforced at different scales and for different reference
geometries, e.g. ‘near the table’ vs. ‘near the house’. In Fig. 2 (a), Θ was obtained via maximum liklihood
optimization on manually generated ‘prototypical’ training data, which was tuned to produce the desired polytope
geometries via trial and error. This brute force approach is computationally expensive: it requires non-convex
optimization, and is not suitable for higher dimensional settings.

To solve these problems, we can recall and exploit the important fact that the softmax function (2) describes
a set of probabilistic polytopes in X space. In particular, the set of log-odds functions between classes i and j
define the linear hyperplane boundaries of their corresponding polytopes at different relative probability levels;
for equal probabilities ε, we have

log
P (D = j|X)

P (D = i|X)
= (wj − wi)

Tx+ (bj − bi) = 0. (4)
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Thus, if we are given normal vectors ~β that describe a desired set of polytopes that should exist between
semantic classes (or constraints/invariants on those class boundaries), it is easy to show that eq. (4) leads to a
system of linear difference equations for Θ,

M~θ = ~β, (5)

where ~θ represents a vectorized version of Θ and M is a relative difference operator that encodes the appropriate
differencing operations on ~θ via (4) to produce the neighboring class polytopes defined by ~β. Hence, the set of Θ

that produce a desired convex semantic decomposition of X (as encoded by M and ~β) form the solution space
of (5). Once established, these parameters Θ and their relationships can be further manipulated to alter the
likelihood model’s embedded probabilistic polytopes as needed. Note that (5) does not require training data, but

also does not guarantee that a (unique) solution ~θ will be found. Even then, (5) allows imposes useful constraints
that greatly improve the efficiency of learning Θ from (highly sparse) calibration data.

Fig. 4 shows a simple example of synthesizing a semantic MMS likelihood model that describes the space
‘inside’ and ‘outside’ an arbitrary irregular 2D polygon. This specification of 5 polytope face boundaries for
m = 6 softmax subclasses (5 softmax subclasses describe ‘outside’, while one describes ‘inside’) leads to a system
of NS(n + 1) = 15 linear equations in m(n + 1) = 18 unknown softmax parameters. Since one set of subclass
parameters can always be set the zero vector, assuming wi = 0 and bi = 0 for i =‘inside’, gives 15 unknown
softmax parameters in 15 difference equations. Thus, in eq. (5) , M = I (the identity matrix), and so ~θ = ~β,
i.e. the softmax model parameters for the 5 ‘outside’ subclasses come directly from the corresponding polygon
edge specifications in ~β. In general, such simple solutions will not always be obtained, since ~β can represent a
more complex set of semantic constraints derived from given maps and natural language processing models that
restrict the meaning of certain human observations. The key point here, however, is that such constraints can
be embedded into the likelihood and exploited by the fusion process in a mathematically sound way.
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Figure 4. (a) Polytope specification; (b) resulting subclass regions; (c) subclass probability surfaces with unit normals nji; (d) desired
normals magnifed by 80; (e) non-convex likelihood for ‘outside’.

Likelihood model compression: The GM fusion approximation assumes that P (D = i|X) captures all information
contained within a semantic human observation D. However, D can contain mixed information about different
parts of X, e.g. target position and speed, but not heading. P (D = i|X) could be decomposed into more basic
likelihoods that model relevant semantic information after D is parsed (e.g. by a natural language processing
front-end, as discussed later). For instance, if Da = i and Db = j correspond to the observations ‘target
near building’ and ‘target moving quickly away from building’, then the likelihood for the joint observation
D = ([Da = i]∧ [Db = j]) can be modeled as the product of the corresponding softmax/MMS models (assuming
both are conditionally independent given X),

P (D|X) = P (Da|X)P (Db|X).

For No observations Do, o ∈ {1, ..., No}, sequential processing via repeated application of the GM fusion and
merging approximations could be very expensive and inefficient. Instead, we seek to extend the GM fusion
method of28 to handle the general case of ‘batch’ semantic measurement updates for fast online data fusion,

p(X|D1:No) ∝ p(X)

No∏
i=1

P (Do = io|X) ∝ p(X)L(D1:No |X). (6)

where a single ‘compressed’ softmax/MMS likelihood L(D1:No |X) captures all information from the product

P (D1:No |X) =
∏No

i=1 P (Do = io|X), so that GM fusion and merging methods only need to be applied once. We
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exploit the fact that a product of No softmax/MMS models can be expressed as another softmax/MMS model
for No conditionally independent semantic measurements,

P (D1:No |X) =

No∏
i=1

P (Do = io|X) =
ew

T
I x+bI

No∏
l=1

ml∑
cl=1

ew
T
cl
x+bcl

=
ew

T
I x+bI

m̄∑
t=1

ew
T
t xk+bt

= L(D1:No |X) (7)

where I = {i1, i2, . . . , iNo
} is the set of No class observations taken from the No softmax models, where

io ∈ {1, ...,mo} and mo is the number of classes for the oth softmax model. Assuming that the class labels

are ordered within each softmax model, the product model parameters are defined as wI =
∑No

o=1 wio and

bI =
∑No

o=1 bio . Each measurement io ∈ I comes from a different consituent softmax model of the product.
Thus, P (D1:No |X) can be exactly described as a single softmax likelihood over m1×m2×· · ·×mn = m̄ ‘product
classes’, which appear in the denominator. The wt and bt terms cover all m̄ combinations for the sum of the
weights from the product of No softmax models.

Eq. (7) is computationally expensive to compute for online fusion for large No and m̄. As with GM com-
pression algorithms, this motivates approximation of (7) via parameter compression techniques,

L(D1:No |X) ≈ P (D̃ = i∗|X) =
ew̃

T
i∗x+b̃i∗∑m∗

c=1 e
w̃T

c x+b̃c
(8)

where m∗ � m̄, and the parameters Θ̃ =
{
w̃c, b̃c

}m∗

c=1
, are based on some approximation technique. Ref. 37

presents two approximation techniques, geometric compression and neighborhood compression, that are based
on the softmax model synthesis approach presented earlier. Geometric compression attempts to extract the
relevant information in L(D1:No

k |xk) according to minimal set of log-odds boundaries needed to specify the
resulting ‘product class’ polytope that appears in the numerator of (7). Neighborhood compression extends
geometric compression by retaining additional ‘2nd order’ information about the polytopes for the neighboring
classes of each observed class io ∈ I (where the neighboring polytopes of a given class in any softmax model
can be determined offline). Both compression methods use linear programming to identify which class polytope
boundaries should be kept in (8), and trade speed for accuracy in online GM fusion.

Fig. 5 shows results for compressing a product of three MMS models corresponding to the observation: ‘The
target is inside the front yard, near the garage and the front porch’. The likelihoods for the single ‘inside’ and
two ‘near’ observations are shifted/scaled from a base MMS model describing the ‘inside’ and ‘outside’ of the
gray rectangular region in the upper left of Fig. 5. These results show a great speedup in computation for
geometric compression (0.3 secs) over either the exact product or neighborhood fusion method (20 mins and 10
mins for GM fusion, respectively), for a fairly small and acceptable sacrifice in fusion accuracy.

3.3 Natural Language Chat Interfaces

A human could report soft data by composing structured observations from a list of available statements, as
shown upper left in Fig. 6. This ‘direct selection’ interface bypasses the difficulties of natural language processing
(NLP), but leads to several major limitations. Firstly, it restricts the human to a rigid pre-defined dictionary
and message structure, which may not provide an intuitive or sufficiently rich set of semantics to convey desired
information. Secondly, it is very inconvenient to select items one-by-one from a list for structured messaging;
especially as the dictionary size m grows, this quickly becomes infeasible and time-consuming enough to render
data irrelevant in dynamic settings. Furthermore, this approach does not scale well with environment/problem

Figure 5. Comparison of MMS likelihood compression methods for three measurements: ‘Near the porch’, ‘Near the garage’, and ‘Inside
the front yard’, shown by the grey area in the first plot.
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Figure 6. Soft data fusion PGMs for direct selection and natural language chat interfaces in target localization application.

complexity and lexical richness for soft data reporting. In particular, it is often desirable to provide observations
that activate multiple semantic D terms, e.g. ‘Roy is by the table, heading slowly to the kitchen’ simultaneously
provides location, orientation and velocity information.

We are developing an unstructured natural language chat interface to support fast and highly flexible ‘free-
form’ soft data reporting. The chat interface should ideally support a wide range of semantics. However, it is
highly non-trivial to deriving meaningful and contextually relevant dynamic state information from free-form
chat observations O. Unlike structured messages, it is infeasible to explicitly construct likelihood functions
p(O|X) in advance to find the Bayes posterior p(X|O). Many different chat messages can also convey similar
kinds of information, leading to additional uncertainties in lexical meaning (i.e. possible translation errors) in
addition to intrinsic semantic (state spatial meaning) uncertainty. For example, the phrases ‘That guy’s moving
past the books’, ‘Roy next to the bookcase going to kitchen’, and ‘He’s nearby shelf heading left’ all overlap
in the sense that they could all to essentially refer to a structured set of atomic phrases: ‘Target is near the
bookcase; and Target is moving toward the kitchen’. Our approach to handle free-form chat inputs separately
accounts for lexical/translation uncertainties (using off-the-shelf NLP components, e.g. probabilistic syntactic
parsers and sense-matchers) and semantic/meaning uncertainties (via state filtering) in a statistically consistent
way that avoids joint reasoning over a large set of latent variables. The main idea is to translate a given Ok at
time k into a reasonable ‘on the fly’ estimate of the likelihood p(Ok|Xk) via a very large (possibly expandable)
dictionary of latent Di

k semantic observations, which have known generalized softmax likelihoods p(Di
k|Xk). As

illustrated in the bottom of Figure 6, given the expansion

p(Xk|Ok) ∝ p(Xk)

m∑
i=1

mi∑
j=1

p(Ok|Di
k = j)p(Di

k = j|Xk),

(where Ok is conditionally independent of Xk given Di
k), we can generally approximate p(Ok|Di

k) as the second
summation term on the RHS, where p(Ok|Di

k = j) accounts for the lexical uncertainty and p(Di
k = j|Xk)

accounts for the semantic uncertainty. Since Ok may also point to multiple soft observations (i.e. target position
and velocity), the Di

k likelihoods on the RHS generally could correspond to unique products of independent
dictionary terms, e.g. as in eq. (7). The general problem, then, is to identify how Di likelihoods (or sets of soft
observations) should be ‘activated’ for a given O input by identifying the scalars p(O|Di = j). Since p(X)p(D|X)
can generally be approximated as a GM, it follows then that the LHS p(X|O) generally leads to a ‘mixture of
GMs’.

Ref. 38 details one approach for estimating p(Ok|Di
k) from chat inputs using off-the-shelf NLP tools. We

focus here on the problems of phrase parsing and sense matching, i.e. matching human-generated synonyms and
phrases from input chat messages Ok to corresponding words that lead to valid sets of semantic observations
Dk in a fixed dictionary. Phrase parsing classifies raw input chat messages Ok into recognizable clusters of word
tokens according into a set of predefined Target Description Clauses (TDCs) Tk. TDCs are conceptually similar
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Figure 7. Labeled indoor map, target location GM prior, and resulting GM posteriors for sense matching, with unstructured input phrases
and corresponding template dictionary scores.

to Spatial Description Clauses (SDCs) used in39 for natural language control of robots, and allow the fusion
engine to construct base templates for acceptable message types in terms of expected parts of speech and topical
content. This allows the fusion engine to reject unhelpful semantic observations, e.g. ‘It is a nice day outside’.
Then, the key issue for word sense matching (for each part of a given TDC) becomes deriving the relationship
between the estimated 13 million tokens in the English language and the comparatively minuscule number of
tokens in a set of predefined template semantic soft data observations. Recent efforts, particularly by Mikolov et
al.,40 introduced a negative sampling-based approach to efficiently learn multi-dimensional vector representations
of all tokens in a vocabulary. Using their word2vec tool, we can develop a mapping between a set of tokens
contained within an unstructured utterance and a set of tokens contained within a structured semantic template
from the dictionary. Conditional probabilities from the parsing and word sense matching tools can be combined
to form a score s(Dk, Tk) for each possible latent template statement Dk and parsed TDC Tk.

Figure 7 shows initial proof-of-concept results, using arg maxDk
s(Dk, Tk) to select template sensor statements

that are most similar to the input tokenization for four correctly tokenized test phrases. In this example, 2682
possible template statements are considered, which covers 79.81% of the 208 input sentences collected in a
pilot experiment with 12 human participants. From left-to-right, the four columns demonstrate the effects of
increasing dissimilarity with template statements: the first input sentence is exactly a sensor statement template;
the second input sentences replaces a spatial relation template token, ‘near’, with a non-template token, ‘next
to’; the third input sentence replaces the grounding and changes the positivity; and the fourth is an imprecise
reformulation of the first sentence. The results are promising, as the top-scoring statements are all qualitatively
similar to the original phrase and produce sensible fusion results.

3.4 Optimal Value of Information Querying for Active Soft Data Fusion

We have thus far only considered passive data fusion strategies, where human sensors voluntarily provide obser-
vations as they see fit. However, semantic data fusion can also be extended to incorporate active soft sensing,
i.e. intelligent ‘closed-loop’ querying of human sensors to gather information that would be most beneficial for
complex machine planning and perception tasks. Active sensing problems have a rich tradition in target track-
ing and controls communities, but have focused on hard data sources such as radar, lidar, cameras, etc. One
particularly relevant issue is the sensor scheduling problem, which seeks optimal selection of sensing assets given
constraints on how many can be tasked to deliver quality data at any given instant. This problem also applies
to scheduling of interactions between human sensors and autonomous agents: what is the most valuable soft
information to request from humans, and when/how should such soft information be obtained? These issues
can be tackled within formal planning frameworks that seek to maximize the value of information (VOI) under
uncertainty.27

Considering the target localization problem, suppose Dk ∈
{
d1
k, ..., d

ns

k

}
, where djk ∈ [0, 1] denotes a specific

kind of binary soft observation report at time k. For instance, djk could represent a detection/no detection event
for camera j, or a binary true/false response to a semantic query j from a large list of possible queries generated
by a fixed map and dictionary (e.g. ‘yes/no’ queries such as ‘Is something by the door?’, ‘Is something behind
the table?’,..., etc.). Given a utility function U(Dk, Xk) representing the expected long-term benefit of taking
some discrete action Ak while the target is in state Xk, the VOI for receiving a single noisy report djk in response
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to a soft data query is

VOI(djk) = E
[
max
Ak

U(Ak, Xk)

]
(dj

k,Xk)

−max
Ak

E [U(Ak, Xk)](Xk) ,

=
∑
dj
k

p(djk|D1:k−1)

[
max
Ak

∫
xk

p(Xk|D1:k−1, D
j
k)U(Ak, Xk)

]
−max

Ak

∫
xk

p(Xk|D1:k−1)U(Ak, Xk), (9)

where E [f ](v) is the expected value of f over v. Assuming cost c(djk) for requesting djk, the human sensor should

be queried for djk if VOI(djk) > c(djk). Thus, (9) gives a formal way to assess whether asking for djk is worth

the cost, regardless of the outcome. All ns alternatives for djk can thus be compared to select the one with the

highest VOI at each time k. Such myopic querying strategies do not consider all possible combinations of djk that
could be taken together at time k, but are practically implementable and still capture the bulk of information
to be gained from querying. For human sensors, c(djk) can be related to the expected cognitive cost of re-tasking

human sensors.27 For now, c(djk) is ignored for simplicity, so only the utility defined by expected information
gain for sensing actions is considered. Here, Ak is related only to the choice of j ∈ {1, ..., ns} and we seek to
minimize the entropy of p(Xk|D1:k−1, d

j
k), so that U(djk, Xk) = log p(Xk|D1:k−1, d

j
k). Thus, the VOI for djk in

(9) is the expected decrease in posterior entropy,

VOI(djk) = E
[
H[p(Xk|D1:k−1, d

j
k)]
]

(dj
k)
−H[p(Xk|D1:k−1)], where H[p(Xk|D1:k)] = E [− log p(Xk|D1:k−1)](Xk) .

This means that soft data djk will be (myopically) requested to minimize the entropy of p(Xk|D1:k). Entropy
minimization is also widely used for tasking of hard sensors in target localization applications,41 and so provides
a useful common objective for combined hard-soft sensor scheduling. However, VOI calculations are compu-
tationally expensive and lead to NP-hard Bayesian inference calculations for marginal observation likelihoods
p(djk|D1:k−1). The comparison of VOI for various djk reports also becomes expensive when ns is large for large
semantic dictionaries. Hence, even with simplifications such as myopic reasoning, optimal soft data querying
remains challenging.

To address this, ref. 42 describes a novel querying policy approximation based on deep learning. This
approach produces a multi-layer convolutional neural net (CNN) classification model to select among the ns
possible semantic queries djk to maximize the VOI eq. (9) given p(Xk|D1:k−1). The CNN learning process uses

training data labels for pairs of p(Xk|D1:k−1) and djk, which are generated from brute force VOI optimizations
obtained on simulated runs of the active sensing problem. The key advantage of this approach is that the major
computational expense for generating a query is moved offline and can be implemented very quickly online once
the CNN is learned. This is very useful for in problems where ns is large (i.e. large semantic dictionaries and
sets of possible semantic observations). Furthermore, the CNN deep learning approach can exploit non-obvious
features of p(Xk|D1:k−1) that lead to highly accurate predictions of VOI-optimal djk in complex scenarios.

Figure 8 shows an application of the CNN query policy approximation approach to a dynamic version of
the target localization problem. The target moves with random walk dynamics in a 2D grid world, which is
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incompletely covered by 6 static cameras that can be accessed serially by a human supervisor. In this case,
ns = 6, and the problem here is to determine which camera j the human should look through at each time k
for the best binary measurement (‘detection’ or ‘no detection’, with known false alarm and missed detection
rates). The right plots show the resulting localization errors based on maximum a posteriori (MAP) estimates
of the target location obtained from the post-fusion Bayesian posteriors p(Xk|D1:k) at each time. The first
histogram shows results using an alternative baseline sensor querying policy based on a partially observable
Markov decision process (POMDP) model,43 solved using the feature-based infinite horizon augmented MDP
(AMDP) approximation.19 The results here show that, despite the highly limited coverage area of the cameras,
the CNN VOI approximation does a much better job of using querying sensors than AMDP, since it leads to
much better tracking of the true target location. However, the CNN policy clearly rests on having adequate
training data and an accurate model of the search environment; it is more brittle than the AMDP policy
approximation to changes in camera layout or subtle changes in target dynamics (both of which are easily
encoded as explicit POMDP parameter variations). A promising research direction to overcome such issues is
to combine the strengths of AMDP and CNN policy approximations in a structured manner. To overcome the
curse of dimensionality, we are also developing GM adaptations of these policy approximations.44

4. FUSION OF FREE-FORM LOCATIVE SKETCH DATA

Natural language data fusion can be easily implemented with predictable verbal communication patterns (e.g. for
human operators in specialized operational settings such as soldiers, pilots, WiSAR incident commanders, first
responders, etc.) and also tends to work well in structured environments for autonomous perception. However,
it can be difficult to adequately capture the intended meaning of ‘off nominal’ or unexpected verbal human
sensor observations. Language-based observations may also be difficult to interpret in large unstructured or
featureless environments, e.g. outdoor spaces with many non-distinct features (‘near those rocks’, ‘behind the
tree’). Furthermore, the soft data fusion techniques discussed so far assume that human sensor models are
perfectly known and obtainable via offline calibration, which can be very time-consuming and is not robust
to unanticipated semantic context shifts. A priori calibration is also infeasible for large-scale spatial sensing
operations with ad hoc human elements that can opportunistically join or leave a sensing network at any time,
e.g. hikers and volunteers who provide sporadic reports during a WiSAR mission.

To address these issues in the context of outdoor target search, ref. 45 proposed a novel sketch-based interface
and probabilistic model for fusing human-generated positive/negative target location observations. This sketch
interface allows in situ human search agents to quickly convey binary observations in different regions of the
search space X via free-form encirclements drawn directly on known map M, as shown in Fig. 9.

Figure 9. Example search map with ‘inside’ and ‘outside’ region free-form human sketches; (left and right) discretization of sketches on
search space grid for X to form binary observation grids Sin and Sout, where filled red/blue cells corresponding to observations are assigned
value ‘1’ and empty/unobserved cells are assigned ‘0’.

A single human sketch sensor observation in this case specifies ad hoc spatial region boundaries in which
the target could either be present/‘inside’ or absent/‘outside’. This protocol enables coarse classification of the
search space based on independent positive/negative evidence obtained during the search mission, e.g. from
visual terrain sweeps or clues extracted from the search environment (footprints, disturbed features, etc.). For
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instance, the blue sketches in Fig. 9(b) imply ‘target not in these areas’ (e.g. summarizing negative information
obtained by a visual sweep of the areas), while the red sketch region imply ‘target may be around here’ (e.g.
which might collectively summarize positive information gathered from clues in the search environment). Such
sketch observations are qualitatively similar to ‘belief’ sketches used for priority searches in WiSAR,46 and are
intuitively simple to understand and implement on networked mobile devices (e.g. smartphones, tablets). A key
difference is that the sketches here do not directly reflect subjective probabilistic beliefs, but instead indicate
possible constraints on the true target state. Such sketch reports must be interpreted very carefully to account for
various sources of ‘human sensor noise’. For instance, sketches will not always be drawn precisely (especially in
time critical situations) and thus might convey inconsistent observations from the same human at different times
(cf. Fig. 9). Tendencies to report positive/‘inside’ or negative/‘outside’ information can also vary significantly
across different humans. Given a suitable parametric conditional probability distribution model of a human
sensor’s sketch observation accuracy, consistent positive/negative information can be extracted from sketch data
via Bayesian fusion while accounting for possible observation errors. As such, each sketched ‘inside’/‘outside’
region must be parsed into an uncertain observation vector conditioned on the latent target state X, which is then
fused with prior information for X. Ref. 45 describes two key technical contributions to this end: (i) specification
of a likelihood function for each human that correctly accounts for spatially correlated information within each
sketch; and (ii) a fully Bayesian hierarchical inference procedure for fusing sketch data and estimating target
states simultaneously and online in the presence of multiple uncertain human sketch sensor likelihood parameters
(which is especially useful if sparse or no training data are available for offline calibration).

Figure 10. PGM for hierarchical Bayesian human sketch sensor data fusion: arrows denote conditional dependencies; shaded nodes denote
unknown variables, unshaded nodes denote observations; continuous/discrete random variables indicated by round/square nodes. Cj and
Cm denote number of marked cells in the jth ‘inside’ and mth ‘outside’ sketches for human i, respectively (Ni,in and Ni,out are total number
of ‘inside’ and ‘’outside’ sketches for human sensor i). Boxes around nodes denote repeated graph substructures.

Figure 10 shows the resulting PGM used for centralized fusion of sketch reports from multiple human sensors
in a networked static target localization problem. The human sensor i sketch likelihood parameter variables
Θi = (ai, bi, ωi) correspond to true detection rate, false alarm rate, and negative information spatial correlation,
respectively. These can be estimated offline with sufficient training data, or estimated online alongside the
unknown target state X. The variables labeled Sin and Sout denote parsed grid squares on the map M that
take on values of 1 or 0, depending on whether or not human i’s ‘inside’/‘outside’ sketch contained those cells.
The hyperparameters k control Gamma distribution hyperpriors that are assigned to the set of all human sensor
sketch likelihood parameters. The hyperpriors effectively capture ‘population statistics’ for different human
sensors, i.e. reflecting the idea that all human sensors tend to have similar values for Θi. This acts as a ‘soft
constraint’, which allows information obtained during inference about human sensor i’s parameters to indirectly
restrict the values that human j’s parameters can take on via conditional independence (in particular: if j’s
sketches are very similar to i’s, then we can infer that Θj is probably very similar to Θi). As discussed in ref.
45, simultaneous parameter inference on each set of Θi and data fusion to estimate X can be carried out via a
computationally efficient Gibbs Monte Carlo sampler. The Gibbs sampler in this case uses adaptive rejection
techniques to draw samples of each unknown variable according to local posteriors that can be easily obtained
analytically (up to an unknown normalizing constant) from the PGM itself.

Figure 11 (a)-(b) shows typical sketch inputs provided by 2 of 6 mobile human sensors performing an outdoor
static target localization experiment (locating a small key chain buried somewhere on a campus quad, with
a uniform prior p(X) for the target location X). On the other hand, Fig. 11 (c) shows that a sensible target
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Figure 11. (a)-(b) Typical sketch inputs provided by 2 different mobile human sensors for a static target search mission (true target location

shown as asterisk ∗); (c) Bayes posterior for X using hierarchical inference on PGM from Fig. 10; (d) posterior estimates for human sensor

false alarm parameters bi.

location posterior is obtained using the proposed simultaneous Bayesian parameter and state estimation approach
based on the hierarchial PGM in Fig. 10. Fig. 11 (d) shows the resulting posterior false alarm rates obtained
for each human sensor using all the corresponding sketch observations shown in Fig. 11 (c). Human sensors who
report many false positive ‘inside’ sketches are estimated to have high false alarm rates bi (e.g. agents 4 and 6),
whereas humans who report more negative information via ‘outside’ sketches are estimated to be more reliable
(e.g. sensors 1 and 5). The Bayesian inference process automatically accounts for these estimated discrepencies
in human sensor quality, and fuses sketch information to update the posterior over X accordingly. This makes
the proposed sketch fusion method especially useful for applications like WiSAR, where false alarm and missed
detection rates are hard to obtain for human sensors.

5. CONCLUSIONS
Probabilistic models and Bayesian algorithms are firmly established cornerstones for tackling challenging au-
tonomous robotic perception, learning and decision-making problems. Since the next frontier of autonomy
demands the ability to gather information across stretches of time and space that are beyond the reach of a sin-
gle autonomous agent, the next generation of Bayesian algorithms must capitalize on opportunities to draw upon
the sensing and perception abilities of humans-in/on-the-loop. This work summarized our recent and ongoing
research toward harnessing ‘human sensors’ for general information gathering tasks. The approach described
here is grounded in rigorous Bayesian modeling and fusion of flexible semantic information derived from user-
friendly interfaces, such as natural language chat and locative hand-drawn sketches. This allows human users
(i.e. non-experts in robotics, statistics, machine learning, etc.) to directly ‘talk to’ the information fusion engine
and perceptual processes aboard any autonomous agent, while also providing an formal framework for online
adaptive human sensor modeling and optimal human sensor querying. This naturally enables ‘plug and play’
human sensing with existing probabilistic algorithms for planning and perception, which we have successfully
demonstrated with real human-robot teams in target localization applications.
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