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ABSTRACT

The term deep learning is almost on everyone’s lips these days, in the area of computer vision mainly because
of the great advances deep learning approaches have made amongst others in object detection and classification.
For general object localization or classification tasks there do exist several giant databases containing several
millions of labeled images and several thousands of different labels like COCO and ImageNet. In contrast in
industrial applications like quality inspection there do hardly ever exist such training data not only for reasons of
confidentiality of trade secrets. An obvious way to remedy this deficiency is the synthetic creation of image data.
Physically based rendering attempts to achieve photorealistic images by accurately simulating the flow of light
of the real world according to various physical laws. Therefor multiple techniques like Ray Tracing and Path
Tracing have been implemented and are becoming increasingly widespread as hardware performance increases.
The intent of this article is to give a wide but nevertheless preferably comprehensive overview of which approaches
have been pursued in recent literature to generate realistic synthetic training images. The development of
various rendering methods from rasterization to bidirectional monte carlo path tracing is outlined, as well as
their differences and use. Along with the terminology a few mathematical foundations like the Bidirectional
Reflectance Distribution Function (BRDF) are briefly described. Altogether special concern is given to industrial
data and quality control, comparing literature and the practical application of its results.

Keywords: literature review, synthetic image generation, physically based rendering, deep learning, computer
vision, machine learning

1. INTRODUCTION

The term deep learning is almost on everyone’s lips these days, in the area of computer vision manly because
of the great advances deep learning approaches have made amongst others in object detection and classification,
since Alex Krizhevsky’s deep neural network achieved a tremendously better result in ImageNet LSVRC-2010
contest than any other ”classic” machine learning approach.1

Since then the research in the direction of deep learning to solve diverse computer vision tasks accelerated
enormously. Successes have been achieved in numerous areas including Object detection, Image Classification,
Instance Segmentation and even artificial Image generation.Today deep neural networks are slowed down mainly
by the amount and quality of the available data. For this reason the focus of current research lies on the
generation of data on the one hand to increase the data quantity and on the other hand to bypass the manual
labeling necessity.

This review paper shall make a contribution to current research by providing a comprehensive overview
which approaches have been pursued in recent literature to generate realistic synthetic training images and
which successes therewith could have been achieved. Thereby the focus is on the area of application of industrial
quality assessment.
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2. DEFINITION OF TERMS AND METHODOLOGY OF LITERATURE RESEARCH

Rendering is the process of producing an image from the description of a 3D scene. ”The goal of photorealistic
rendering is to create an image of a 3D scene that is indistinguishable from a photograph of the same scene”.2

To this quote Pharr et al. note that the word ”indistinguishable” itself is inaccurate, because it subjectively
depends on the observer. But the goal is pursued by using natural laws of material-dependent light propagation
reflection and refraction to model the scene appearance in a physically correct way.

Bidirectional Reflectance Distribution Function (BRDF):

fr (p, ω0, ωi) =
dL (p, ω0)

dE (p, ωi)
=

dL (p, ω0)

Li (p, ωi) cos θidωi
(1)

The BRDF is a function for the reflection behavior of surfaces of a material at any angle of incidence. For
each light beam incident on the material at a given angle of incidence, it provides the quotient of radiation
density and radiance for each light beam emitted.
Generally the amount of light that reaches the camera from a point on an object is given by the sum of light
emitted by the object the amount of reflected light and additionally the amount of light emitted by the object,
if it is itself a light source. This idea transformed into a mathematical expression leads to the rendering equation
(also known as light transport equation, which Kajiya first formulated 1986.3

Rendering Equation

L (p, ω0) =

∫
S2

f (p, ω0, ωi)Li (p, ωi) |cos θi| dωi (2)

The outgoing radiance L (p, ω0) from a point p in direction ω0 is equal to the emitted radiance at that point in
that direction, Li (p, ωi) plus the incident radiance from all directions on the sphere S2 around p scaled by the
BSDF∗ f (p, ω0, ωi) and a cosine term.2–4

Figure 1: Computer generated image using physically based rendering like path tracing from Pharr et al.2

∗Pharr et al. the BRDF generalized to all sorts of scattering Bidirectional Scattering Distribution Function (BSDF)
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Ray Tracing
In ray tracing a ray is sent out from the virtual camera into the scene and traced until it intersects with a solid
body. At this point a ray is cast to each of the light sources in the scene to calculate illumination and surface
shading for the intersection point. Only if the surface is transparent the ray is sent out further into the scene,
at the angle of refraction. If the surface is reflective a ray is radiated at the corresponding angle of reflection
away from the object. Consequentially ray tracing comes closer to reality than triangle rasterization, but is no
simulation of reality.2,5

Figure 2: Representation of Monte Carlo Path Tracing with spatiotemporal variance-guided filtering to improve
performance and rendering time from Schied et al.6†

Path Tracing
A path tracer sends out hundreds or several thousands of rays for each pixel to be rendered. When it hits
a surface it doesn’ t trace a path to every light source, instead it bounces the ray off the surface and keeps
bouncing it until it hits a light source or exhausts some bounce limit. Depending on the surfaces it refractured,
the energy of the ray can be considered close to zero then. It then calculates the amount of light transferred
all the way to the pixel, including any color information gathered from surfaces along the way. The values
calculated from all the paths that were traced into the scene are considered (added up and averaged) to get
the final pixel color value. If this approach uses a random draw to calculate the direction the ray has to go,
when it hits a surface and is reflected, this technique is called Monte Carlo Path Tracing. ‡ To sum it all up,
path tracing can produce the most realistic rendered images possible with soft shadows, caustics and global illu-
mination, but is kind of a brute force approach that consequently needs lots of calculation time and performance.5

In practical application, like the unreal engine 4 game engine, there is a hybrid Ray Tracer that couples
ray tracing capabilities with existing rasterization effect and a Path Tracer for generating reference renders
offline. Thus the Ray Tracer can provide results for shadows, ambient occlusion (AO), reflections, interactive
global illumination, and translucency in real-time by using a low number of samples couples with a denoising

‡It also requires light sources to have actual sizes, a bit of a departure from traditional point light sources that have a
position but are treated like an infinitely small point in space (which works fine for ray tracing and rasterization because
they only care about where the light is in space, but a path tracer needs to be able to intersect the light source).
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algorithm, to mitigate the shortcomings of ray tracing like hard shadows. The Path Tracer, on the other hand,
gathers samples over time and generates ground truth renders.§ For this purposes it is useful to be able to set
the maximum bounces that rays should travel and the number of samples per pixel that should be used for
convergence.7,8

3. METHODOLOGY

The literature review is divided in the following Research Questions:

1. How useful is photo-realistic rendering for visual learning?

2. Which research areas are the main objectives of the training of AI with synthetic image data?

3. How is the synthetic training data generated?

4. What are the findings with regard to industrial applications, in particular quality testing?

Search Terms
Searching online scientific databases¶, predominantly google scholar yielded nearly 100 results published since
2016. Most of them have quite different titles than each other like ”Deep generative adversarial neural networks
for realistic prostate lesion MRI synthesis”, ”FaceForensics++: Learning to Detect Manipulated Facial Images”
and ”Deep Underwater Image Enhancement”. On the basis of these titles it can at least be concluded that the
fields of application in which research is being conducted on combining synthetic data and deep learning are very
numerous and diverse. As soon as the term quality inspection is added ‖ the results decrease immensely.

4. FINDINGS - ANSWERING THE RESEARCH QUESTIONS

4.1 How useful is photo-realistic rendering for visual learning

On of the former works that used the idea of training AI with synthetic data is from 2014 by Sun and Saenko.
Therein domain adaption was performed on 3D models, rendering 2D images for the task of object detection.
Sun and Saenko performed domain adaptation∗∗ ”based on decorrelated features” and found that detectors
trained on virtual data and adapted to real-image statistics perform comparably to detectors trained on real
image datasets, including ImageNet. The results showed that non-photorealistic data works just as well as
attempts to render more realistic images.9

Instead of domain adaptation Tobin et. al10 attempted domain randomization, a fundamental different
approach to surpass the great obstacle they named the reality gap. They understood this to mean the im-
possibility of including all physical effects in current simulators, as well as the inability of simulated sensors to
reproduce noise behavior in as much detail as their real-world counterparts.

The goal of their work was to localize objects on a table for the purpose of robotic control (to grab one object
form a table) only from single monocular camera image from an uncalibrated camera. They used a randomly
chosen number and shape of distractor objects on the table. Furthermore drawing from a random distribution
was performed on position and texture of all objects on the table (also of the table, floor, skybox and robot),
position orientation and field of view of the camera, number, position, orientation and specular characteristics
of lights in the scene and type and amount fo random noise added to the images. Randomizing the camera

§For artists and programmers, the unbiased nature of the Path Tracer’s ground truth image makes it invaluable to
have built right into the Engine for comparison. It also removes the need for additional third-party software or plug-ins
to generate these comparison results. For artists, it means being able to fine-tune materials and lighting setups more
quickly. For programmers, it improves workflow and iteration times when tuning and validating the look of their real-time
algorithms for techniques like denoising.
¶with the exact term ”deep learning” AND ”synthetic image generation”
‖more accurately ”(quality control OR quality testing OR quality inspection)”
∗∗Domain adaptation tries to replicate the statistical distributions of the source domain (the classifier is trained in) in

the target domain (the objects it is tested and supposed to work with)
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Figure 3: Various non-realistic training images and a real
test image.

Figure 4: Robot grasping real objects on a table

characteristics included the placement of the camera ”randomly within a (10x5x10)cm box around its initial
point” from the front of the table. From the assembled scene, not photorealistic images were rendered with
MuJoCo Physics Engine and used for training a deep neural network. Cartesian coordinates of the center of
the object in the world frame were used as labels. The trained model was evaluated in the real world with 480
webcam images of one or more geometric objects on a table at a distance of 70cm to 105cm from the camera.
Further parameters were constant camera position, no control for lighting conditions. The 3D coordinates defined
by the neural network were fed into a motion planning program which controlled the robot’s grasp.

Tobin et al. found that the method is at least some what sensitive to the following factors: number of
training images, unique textures, presence of distractors in training data, randomization of camera position and
pre-trained weights in the detection model. Only the amount of random noise had no significant impact on the
model, as adding a small amount of random noise at training time improves convergence and makes the network
less susceptible to local minima. Randomizing the position of the camera also consistently provides a slight
accuracy boost. The author’s hypothesis that pre-training would be essential to generalizing to the real world
proved to be false. It only took more training samples to archive similar small average errors. At around 5000
training samples the average error (in cm) of the network trained from scratch has significant decreased and
is nearly as small as the pre-trained one. At around 16000 training samples, the network trained from scratch
surpasses the pre-trained one.

The domain randomization technique was transferred to object detection and further investigated by Trem-
blay et al.11 They placed a random number of synthetic cars in a 3D scene at random positions and orientations
and added a random number of geometric shapes are added to the scene (flying distractors).A random number
of lights of different types are inserted at random locations, and the scene is rendered from a random camera
viewpoint, after which the result is composed over a random background image. The resulting images, with
automatically generated ground truth labels (e.g., bounding boxes), are used for training the neural network.
More accurate transfer learning was performed with diverse pre-trained common obj. detection networks: Faster
R-CNN, R-FCN , SSD. The approach is evaluated on bounding box detection of cars on the KITTI dataset.
Tremblay et al. claim that their domain randomization based car detector achieves better results on the KITTI
dataset than the same architecture trained on virtual KITTI, even though the latter dataset is highly correlated
with the test set. Furthermore, augmenting synthetic DR data by fine-tuning on real data yields better results
than training on real KITTI data alone.

Hinterstoisser et al.12 investigated the advantages of transfer learning combined with synthetic training
data. Their papers goal is to exploit a large amount of available data in the source domain (synthetic) for

Proc. of SPIE Vol. 11144  111440J-5



training of a neural network to transfer the classification competence of the network to the target domain (real).
The generation pipeline starts with placing the object at a random location in a randomly selected highly
cluttered real background image using a uniform distribution. More randomness was introduced by swapping
the three background image channels and randomly flipping and rotating the images in 90 degree steps. Attempts
to use monochrome backgrounds of one randomly chosen color were abandoned after a few tests, as this lead
to unsatisfying results. Random Gaussian noise was added to the rendered object and to better integrate
the rendering with the background blurring with a Gaussian kernel was applied to the object inclusive its
boundaries with the adjacent background image pixels. Hinterstoisser et al. make use of the fact that many
object detectors like Faster-RCNN Mask-RCNN and R-FCN can be decoupled as a ”meta-architecture” and a
feature extractor such as VGG, Resnet, or InceptionResnet. The weights of this feature extractor, meaning the
first layers (cut at some selected intermediate convolutional level) of Faster-RCNN architecture pre-learned on
real images were ”frozen”. The remaining part of the architecture that can be used as part of the multi-way
classification+localization of the object detector was trained on synthetic images only. The results of the Object
localization and classification (semantic segmentation) task in cluttered environments come close (up to 95% of
the performance) to detectors trained purely on real world data.

Hinterstoisser et al. state that images from different cameras lead to different results and that object detectors
re-trained on synthetic data lead to poor performances, but contrary freezing the feature extractor always gives a
huge performance boost. Moreover they claim that the results of their experiments suggest that simple rendering
is sufficient to achieve good performances and that complicated scene composition does not seem necessary.12

Movshovitz-Attias13 utilized large database of highly detailed, 3D models to create a large number of
synthetic images. To diversify the generated data vary many of the rendering parameters were heavily varied.
Among them the most important: randomization of light position, intensity, and temperature. Moreover F-
stop and exposure time of the simulated Camera were sampled from a random distribution and occlusion was
created by randomly sampling rectangles between 0.2 and 0.6 of the render size. A deep convolutional network
whose architecture is based on AlexNet was trained with the rendered images of cars using a loss function that
is optimized for viewpoint estimation. For evaluation viewpoint estimation was performed on CMU-Car and
Pascal 3D+ datasets (containing real cars) labeled with the ground truth data.
Movshovitz-Attias et al. note that as the rendering process becomes more sophisticated the error decreases.
They investigated the combination of synthetic and real data for training and found that when using low quality
renders the error increases once the number of renders dominate the train set. But contrary this phenomenon is
not observed with higher quality renders. Overall it is remarkable that there is an improvement when replacing
up to 50% of the images with rendered data. One possible explanation the authors provide is the lack of balancing
of the angle distribution the real training datasets have, as the cars are mainly photographed from two directions.
The drop in performance when most data is rendered may probably be due to the circumstance that the overall
image variability is smaller for renderings than for real images.
It is deduced that ”generalizing from synthetic data is not harder than the domain adaptation required between
two real-image datasets”13 and that combining synthetic images with a certain amount of real data improves
estimation accuracy. Moreover using complex materials and lighting is an important aspect of synthetic datasets.

Hodan at al.14 did more in depth research on the use of highly photorealistic synthetic images generated
via physically-based rendering for training a convolutional neural network (CNN)-based object detector. The
datasets include 3D object models and real test RGB-D images of VGA resolution (only RGB channels). The
images were annotated with ground-truth 6D object poses from which 2D bounding boxes where calculated and
used for evaluation of the 2D object detection task. One the one hand physically based rendering with low
medium and high rendering quality settings with commercial Autodesk MAYA and MAX software were used for
rendering, on the other hand the synthetic data generation pipeline from Hinterstoisser et al. (4.1), for ”baseline”
image creation. With regard to AI Hodan et al. experimented with two underlying network architectures (Faster
R-CNN: ResNet-101 and Inception-ResNet-v2). The networks were pre-trained on Microsoft COCO and fine-
tuned on synthetic images for 100K iterations. To virtually increase diversity of the training set, the images were
augmented by randomly adjusting brightness, contrast, hue, and saturation and by applying random Gaussian
noise and blur.
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Hodan at al. came to better results training on PBR images (following their three key aspects) than on
the reference approach based on Hinterstoisser et al.s data generation pipeline, called Baseline rendering. The
magnitude of the improvement varies over all combinations between 11% and around 35% (absolute improvement
on five object classes and overall achieve a better performance on 12 out of 14 object classes). It stands out that
the more complex the scene and lighting situation (complex reflections and not mostly materials with Lambertian
surfaces), the better results the high quality PBR rendering yields over the low quality one. It is suggested that
for scenes with simpler illumination and materials low quality rendering is sufficient, indicating to abandon PBR
quality in favor of speed. However, even low-quality, physically based rendered images perform significantly
better than their non-PBR counterparts.

While with some constraint Hinterstoisser et al where able to train state-of-the-art object detectors on
synthetic data only, with results are close to approaches trained on real data only, the majority of researchers
get improved results from extending the existing data with synthetically generated images.

4.2 Which research areas are the main objectives of the training of AI with synthetic
image data

The purposes as well as the practical applications deep learning with synthetic data is researched, applied and
used for are very diverse. In the following, some papers are briefly presented according to application areas.

Viewpoint estimation
Movshovitz et al. modified AlexNet DNN to investigate the usefulness of photo-realistic rendering for the
means of camera viewpoint estimation. Performing various experiments on the effects varied data generation
parameters like render quality, lighting and the mixture of synthetic and real training data have on estimation
performance, they found that combining real images with synthetically generated ones improves performance
and also concluded that using complex materials and lighting is an important aspect of synthetic datasets. It was
reasoned that generalizing from synthetic data is not harder than the domain adaptation required between two
real-image datasets and that combining synthetic images with a small amount of real data improves estimation
accuracy and models trained on a combination of synthetic and real data outperform ones trained on natural
images (see Chapter 4.1).13

Su et. al also did research on viewpoint estimation by overlaying images rendered from large 3D model
collections on top of real images. Their findings lead to the conclusion that viewpoint estimation with the
artificial images rendered ”by carefully designing the data synthesis process” can significantly outperform state-
of-the-art methods on PASCAL 3D+∗ benchmark. Furthermore it is claimed that the proposed ”Render for
CNN” pipeline can be extended to many tasks beyond viewpoint estimation.15

Pose Estimation
Pose estimation to obtain the coordinates of a desired object from only a single image of a 2D camera is a much
desired research question. Especially in the industrial application the location of a real object obtained by a AI
can be fed to a robot to perform grasping or other work processes without the need of a 3D imaging system.
The already presented papers from Tobin et al. (see Chapter 4.1) and Mitash et al. (see Chapter 4.4) describe
application examples in this context. Another form of pose estimation has been investigated by Chen et al,16

who trained a cnn (AlexNet and VGG) on synthetic images of humans for the task of 3D pose estimation. The
data generation is done with a sampled 3D pose model (SCAPE model) on which one of variaous clothes textures
is mapped. After deforming the textured model, it is rendered using a variety of viewpoints and light sources,
and finally composited over real image backgrounds. Their results show that the CNNs trained on this synthetic
data with the aid of domain adaptation out-perform those trained with real photos on 3D pose estimation tasks.

Semantic Segmentation
Tsirikoglou et al.17 claim ”when analyzing the quality of a synthetic dataset, it is in general most telling
to perform training on synthetic data alone, without any augmentation in the form of fine-tuning or weight
initialization.” They also conclude that a focus on maximizing variation and realism is well worth the effort.
They estimate that their time investment in creating the dataset is at least three to four orders of magnitude
smaller than the much larger virtual world from Richter et al., while still yielding state-of-the-art performance.

∗http://cvgl.stanford.edu/projects/pascal3d.html
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This was accomplished by ”ensuring that each image is highly varied as well as realistic, both in terms of low-level
features such as anti-aliasing and motion blur, as well as higher-level features where realistic geometric models
and light transport comes into play.”17

Concering segmentation of indoor scenes Zhang et al.18 found that physically based rendering with realistic
lighting and soft shadows is superior to other rendering methods. In addition they claim that pre-training on
data obtained with physically based rendering with realistic lighting boosts the performance of indoor scene
understanding tasks upon the state of the art methods. On the same subject McCormac et al.? show that a
RGB-CNN pre-trained from scratch on synthetic RGB images can outperform an identical network initialized
with the real-world VGG-16 ImageNet weights on a real-world indoor semantic labeling dataset, after fine-tuning.
They concluded from this that large-scale high-quality synthetic RGB datasets with task-specific labels can be
more useful for pre-training than real-world generic pre-training such as ImageNet.

Object Detection
Object detection or more precisely one of its multiple kinds is probably the most pursued topic of recent research
in the area of training an artificial intelligence on synthetic data. Works in this direction includes Hinterstoisser
4.1, Hodan 4.1, Peng 4.3 and Mitash 4.4 to list just a few.

Rajpura et al.19 use Blender and Cyles to generate synthetic image data for the purpose of object detection
by transfer learning online 3D models from ShapeNet database (with everyday items like bottles, tins, cans
and food items) and Archive3D database. They also encounter domain gap problem Jabbar et al. conducted
experiments to detect drinking glasses in realistically rendered images compared to real images.20

Disparity and Optical Flow Estimation
Mayer et al.21 came to the conclusion that for disparity estimation knowing and modeling the distortions
of the camera in the training data largely improves the network’s performance. For optical flow they stress the
importance of domain adaption - a network trained on specialized data generalizes worse to other datasets than a
network trained on diverse data. They claim that ”Realism is overrated”, because ”most of the learning task can
be accomplished via simplistic data and data augmentation.” Even though realistic effects, such as sophisticated
lighting models, induce minor improvements, they are not critical to learn basic optical flow. In the context
of optical flow estimation it was found useful to train with learning schedules that combine multiple different
datasets (simpler and more complex ones) greatly improve the generic performance of the trained networks.21

For optical flow estimation Dosovitskiy et al.22 constructed neural network called FlowNet and tested it
on several data sets. That largest one among these data sets was Flying Chairs. It was generated synthetically
by overlaying random background images from Flickr with segmented images of chairs. Their results showed
that it is possible to train a network to directly predict optical flow from two input images. For this purpose, the
training data doe’s not neet to be realistic. The artificial Flying Chairs data set ”including just affine motions
of synthetic rigid objects, is sufficient to predict the optical flow in natural scenes with competitive accuracy.”22

Mayer et al. (2016)23 extend this work with the intent to train large networks for disparity and scene flow
estimation. ∗ They generated a synthetic dataset containing over 35000 stereo image pairs with ground truth
disparity, optical flow, and scene flow. The main part of this data collection consists of everyday objects flying
along randomized 3D trajectories hence the name ”FlyingThings3D”. In the following examinations they found
the network that was trained for disparity estimation on this data set is ”on par with the state of the art and runs
1000 times faster.”23 This lead to the conclusion that the synthetic dataset can indeed be used to successfully
train large convolutional networks.

Other application areas
Ekbatan et al.24 used synthetic images containing a random set of pedestrians in a walkway to train a DNN.

Their goal was to count the number of people in synthetic images and thereby, accurately predict the number of
pedestrians. The data used for creation consists of low resolution images of groups of people walking towards and
away from the camera extracted from 70 video samples. Their data generation process is quite similar to Dwibedi
et al. and also light conditions were varied and artifacts that came by pasting people into the background image

∗Mayer et al. provide the following definition: ”Estimating scene flow means providing the depth and 3D motion
vectors of all visible points in a stereo video”
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were corrected used morphological erosion. Tested on real images their approach performed similar to traditional
approaches to the counting pedestrian task.

With regard to practical use of research in the last years many papers focused on the process of generating
synthetic data with the intention that a successful generation process or the synthetically generated
data itself can be adapted in diverse practical use cases like autonomous driving. For example Varol et al.25

published the ”SURREAL (Synthetic hUmans foR REAL tasks)” dataset. It contains 6 million synthetically-
generated but realistic images together with ground truth pose, depth maps, and segmentation masks of people
that where rendered from 3D sequences of human motion capture data.
Bhandari et. al26 and the MIT Computer Graphics group presented a ”configurable system to procedural
generate synthetic street scene data”, which they named ”CoSy”. Using 3D geometry of a whole city (.obj file),
vehicles and other additional assets the system generates synthetic images including class level annotations of
street scenes. It is intended to give researchers control over how data is generated, hence the system is designed
to be configurable and extendable.

Regarding the practical application there are many different application areas in which synthetic data is
used to train deep neural networks, including medicine,27,28 agriculture,29 and satellite or areal image analysis.30

The majority of research papers17,26,28,31,32 however deal with self driving car scenarios.

4.3 How the synthetic training data is generated

The majority of researches generate their training data by rendering images from 3D scenes via more or less
photorealistic rendering.10–12,14 Even simple/crude pasting of 2D objects in front of another background image
and augmentation of the resulting boundaries is still used now and then like Dwibedi et al.33 But besides
common rendering software like Blender and Autodesk 3D Maya/Max with their embedded ray tracing engines
like Octane, V-Ray, Cycles and Mitsuba renderer, more extraordinary methods are used to get to synthetic data.
A few examples are mentioned here.

Richter et al. used commercial video games to generate realistic images that can be used to create ”large-
scale pixel-accurate ground truth data”.34 Expicitly named where Grand Theft Auto, Watch Dogs and Hitman
(2016). Due to the commercial nature of Video games the source code is inaccessible. The key to still getting
the data was to intercept the structured communication between the game and the graphics hardware.∗

In their conclusion Richter et al. claim that their experiments have shown that data created with the presented
approach can increase the performance of semantic segmentation models on real-world images. Furthermore that
using their synthetically generated game data additionally for training yields a 2.6 percentage point improvement
over training without this data.

Shafaei et al.32 like Richter et al. use synthetic data in the form of commercial video games for semantic
segmentation (”dense image classification”) of street scenes. Every second, a sample from the in-game camera was
collected containing. That sample consisted of RGB image, groundtruth semantic segmentation, depth image,
and the surface normals. In comparison with real training data, their experiments showed that a convolution
network trained on synthetic data achieves a similar test error as a network trained on real data for dense image
classification. Furthermore if a simple domain adaptation technique is applied, they claim to get similar or
even better results using synthetically generated RGB images than real data. As video games progress towards
photorealistic environments, Shafaei et al. point out that they get the additional realism ”at no extra cost”.

Peng et al.35 propose using freely available 3D CAD models to automatically generate synthetic 2D
training images. Their comparatively simple generation process consists of non-photorealistic 3D CAD models of
objects collected from the online source 3dwarehouse.sketchup.com. Three to four poses (that best represent
intraclass pro variance for real objects) of the object were sampled and augmented slightly by adding a small
random rotation, texture, color, before adding a background rendering a virtual image. It was found that for
novel object categories, adding synthetic variance to the existing dataset and fine-tuning the layers is useful.
Furthermore Peng et al. marked that the outlined method outperforms detectors trained on real images when
the real training data comes from a different domain. Realistic object texture, pose or background could not be
found beneficial, as they lead to similar performance as training on synthetic images without these.
∗A Software wrapper for the DirectX 9 API and used RenderDoc for wrapping Direct3D 11 was used followed by the

implementation of a Injection method named ”detouring”.
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Figure 5: Scematic of on automated inspection system
for the sorting of glass shards

Figure 6: Rendered image of glass shards using monte
carlo path tracing

4.4 Findings with regard to industrial applications - in particular quality testing

Despite this paper’s intention to focus on the purpose of industrial quality inspection the literature research
brought only sparse results.

In a broader sense, works such as that of Mitash et al.36 can also be counted under ”industrial application”,
since they combine the training of an AI with synthetic data with the concrete field of application, in this case
the control of an industrial robot. Mitash et al. took CAD files, put them in a renderer with different lighting
conditions and employed a physics engine to generate synthetic but physically realistic images. These were fed
into a DNN to do object detection (in clutter) from multiple views and pose estimation. The process is evaluated
with an industrial robotic arm and real objects placed on a table.36

Planche et al.37 also used CAD data and modeled camera properties (distortion, motion blur, lens grain,
noise) as well as motion, illumination, material properties, including micro-geometry. They also modeled the
projector (lens, patterns and motion) and added this together to simulate rgb and depth data of industrial parts.
They used their pipeline called DepthSynth to recognize 3D pose with six degrees of freedom (6-DOF) of one chair
for testing. Also a classification task was done as a test, but only with 3 different chairs as classes and ”taking
as final estimation the class of the nearest neighbor in the database for each extracted image representation.”37

Despite the fact that Planche and his co-authors are from the industrial Company Siemens and have used their
proposed pipeline for industrial parts, the test were only carried out on chairs, but not on industrial parts or
assemblies.

Maybe closest to industrial quality inspection with Ai trained on synthetic image data are two papers from
Retzlaff et al.38,39 who did research on classification of glass shards. They rendered images of class glass shards
once using monte carlo path tracing. This synthetic image generation method was contrasted with a real one
that took images of different coloured glass shards which move on a slide past a RGB line scan camera that
records the shards as they pass over a broadband illumination behind a diffusor (compare 5). The type of AI
they trained with this data was an Support-Vector-Machine whose hyperparameters were chosen in a randomized
search. They claimed that the classifier trained on synthetic images ”performed on par” with a classifier that was
trained using physically acquired images, despite the synthetic images showing less variation than the physically
acquired ones.38

In the second article of 2017, Retzlaff et al. attached great importance to the simulation of real lens systems
and also took the simulation of (image) sensor properties into consideration. Procedural modeling techniques
were used to generate virtual objects with varying appearance and properties, mimicking real objects and sample
sets and different lenses more closely than before (compare figure 6). Both procedure and testing approach for
Retzlaff et al.’s work match the practical use of automated optical (quality) inspection systems that are frequently
seen in industry
To put it in a nutshell no specific industrial applications are sketched in papers. Closest to industry are (only)
the kind of created data (CAD files for 3D geometry) and the purposes of application (robotic control, detection
of glass shards, autonomous driving).
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5. SUMMARY AND INTERPRETATION

First and foremost, it is undoubtedly possible to successfully solve problems in the ”real world”, i.e. on real
data, with the help of AI trained on synthetic data. Over the majority of papers there is consent that one of
the most important obstacles to overcome is the ”domain gap” it is undoubted from all the listed sources that
domain randomization has a major influence and most sources even emphasize that it has the most impacts on
the effectiveness and success of training with synthetic data. The reason for this can be seen in randomization
in a non-realistic way, which forces the neural network to learn the essential features of the object of interest by
varying important parameters of the simulator such as lighting, pose, object textures etc. in great detail.

Any type of data is used for the training of the AI, mostly 2D images, but also 3D point clouds, depth maps,
data from time-of-flight sensors and 3D CAD data. Analogously at least this diverse data is used to create
the synthetic training data and labels the AI needs for unsupervised learning. Concerning modification and
augmentation of the training data, even the slight changes to the original image like image translations, reflections
and manipulation of color intensity are common techniques even Krizhevsky et al.1 used to prevent overfitting
of the neuronal network. Even more important are the techniques of data modification and augmentation when
working with synthetic training data only. If designed properly even simple data generation approaches like
Dwibedi et al.33 can work. They ”smoothend out” the remaining boundary artifacts after they crudely pasted
objects from a real word image into another background image. At least in this specific case it was possible to
train a network for object recognition without 3D data, although the more common and generalizable approach
includes more or less realistic rendering of 3D scenes.

Comparing all the synthetic generated data to the real one, of course there are still the two most important
benefits that synthetically generation is much faster and the labeling of the data does not need manual work.
With regard to the use of real data only for training, it is advised to mix the training data with a small amount
of real data to boost generalization and to get the ”best cost-to-benefit ratio”.13 On the other hand, for the
purpose of quality analysis of a synthetic data set, it is ”in general most telling to perform training on synthetic
data alone, without any augmentation in the form of fine-tuning or weight initialization.”.17 However, if not
enough real data are available for the training of an AI, the use of exclusively synthetic data is not less promising.
Many of the literature papers focused primarily on the process of data generation rather than on a more or less
practical area of application (compare Bhandari,26 Retzlaff,39 Varol25) .

As the research could barely find specific papers to (practical) applications of training dnns for quality control
purposes it may be beneficial to search for a specific technical area of application like printed circuit board (PCB)
inspection or a specific product group like injection-moulded parts or aluminum bent parts. A plausible reason
for the low number of articles published with focus on industrial quality inspection may be the urge to keep
company secrets.
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