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ABSTRACT 

LiDAR-based SLAM Systems are widely applied in robotics for their accuracy and robustness. However, accurate 

localization in small-scale indoor scenes is challenging since the point cloud features of the sparse line scan LiDAR 

cannot always provide sufficient space constraints. In our experiments, even state-of-the-art methods have heavy 

odometry drift. In this paper, to address this problem, we propose a method that can improve the performance of existing 

algorithms in small-scale indoor scenes. By installing a LiDAR perpendicular to the existing LiDAR, our method 

enhances the constraint in the vertical direction. We test our method on LOAM and FAST-LIO2, and the results show 

significant improvements on our own collected datasets. In addition, to accurately merge the two LiDAR’s cloud points, 

we propose a high-accuracy dual-LiDAR calibration method with rotation and translation errors less than 0.005 rad and 

0.01 m respectively. 
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1. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is the process where the robot estimates the position and builds a map 

of the environment without a priori information, using only its equipped sensors, and is a prerequisite for many robotic 

applications, such as autonomous navigation, path planning and 3D scene reconstruction etc. In comparison with visual 

SLAM, LiDAR-based SLAM can obtain accurate distances directly and is not susceptible to illumination changes. 

Therefore, LiDAR SLAM is usually more stable and accurate. In the past decades, the problem of LiDAR SLAM has 

received a lot of attention, and some advanced algorithms have achieved excellent performance. LiDAR Odometry and 

Mapping (LOAM) is a well-known LiDAR SLAM system. Based on LOAM, many methods with better performance 

have been proposed subsequently. 

However, in small indoor scenes, for horizontally installed LiDAR with small viewing angles, it cannot scan the ceiling 

or the floor, only by the point cloud of the walls. The extracted feature points are matched without good constraints in 

the vertical direction, and most of the existing algorithms will have the problem that the odometry drifts in the z-axis 

direction of the LiDAR coordinate system. To tackle the above issues, based on previous methods, we propose a vertical 

constraint-enhanced indoor mapping and localization method based on dual-LiDAR system. By installing a vertically 

posed LiDAR in the system, which is able to scan to the ceiling and the floor, the vertical constraint is enhanced and the 

odometry drift in the vertical direction is optimized. Figure 1 shows the setup, the data collection and the performance of 

our method. Furthermore, to accurately merge the cloud points of the two LiDARs, we do some work on dual-LiDAR 

extrinsics calibration. Our contributions are concluded as follows: 

• We propose a dual-LiDAR-based vertical constraint enhanced method that can improve the performance of existing

SLAM algorithms in small-scale indoor scenes.

• We propose a 3D scanner based dual-LiDAR extrinsic calibration method with high accuracy.
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Figure 1. Data collection scene and map building performance. 

2. RELATED WORK

2.1 LiDAR SLAM 

Zhang et al.1,2 proposed the LOAM algorithm in 2014, which divides the SLAM problem into a high-frequency, low-

accuracy odometry problem and a high-accuracy, low-frequency map-building problem. The LOAM algorithm has better 
localization accuracy and real-time performance, and although it was proposed in 2014, it still ranks well in the KITTI 

Odometry Benchmark3. 

In recent years, based on LOAM, some improved algorithms have been proposed. Shan et al.4 proposed a LeGO-LOAM 

(lightweight and Ground-Optimized LOAM), which optimizes the ground points by applying point cloud segmentation 

and filters out a large number of noise points, and divides the poses into two categories for pose estimation. Ji et al.5 

proposed the LLOAM (Lidar Odometry and Mapping with Loop closure Detection), which includes a back-end based on 

factor graph optimization and a front-end with a point clouds segmentation matching based loop-closure detection. 

Incorporating IMU can significantly improve the performance of LiDAR odometry and the high frequency of IMU 

measurements can compensate very well for the motion distortion. LIO-SAM6 is a tightly-coupled LiDAR-based 

odometry framework built on a factor graph, whose odometry measurements require a 9-axis IMU to provide pose 

estimation for scan registration within a small size local map. Instead of the optimization-based method like LIO-SAM, 
FAST-LIO7 and FAST-LIO28 are filtering-based methods with iterative Kalman filtering. In addition, FAST-LIO2 

proposes a new data structure ikd-Tree that can directly register the raw points to the map without extracting features, 

which makes the algorithm work more efficiently.  

2.2 Calibration for Dual-LiDAR systems  

The multi-LiDAR extrinsic calibration is usually classified into two types: target-based and motion-based. 

The target-based method uses feature information such as points, lines, and planes in the environment. Gong9 proposes to 

build a point cloud map using a benchmark LiDAR based on the assumption of geometric consistency (i.e., assuming a 

consistent local 3D model for different LiDAR scans) and then use the ICP algorithm to align other LiDARs on the built 

map. This method works for multi-LiDARs, but depends heavily on the initial poses. Xie10 proposes to jointly calibrate 

multiple cameras and LiDAR in a pre-built environment with apriltags, but this method requires a large number of high-

accuracy measurements, which is costly to implement. 

The motion-based method uses motion information to calculate the hand-eye calibration equation. Jiao11 proposed to 
estimate the motion and use the hand-eye calibration method to obtain the initial extrinsics, and then use the point-to-

plane distance method to optimize the results. The Baidu apollo team12 proposed calibration with the aid of GNSS 

(Global Navigation Satellite System) auxiliary measurements, which has been applied to autonomous vehicles. 

3. METHODOLOGY

3.1 Dual-LiDAR extrinsic calibration 

The calibration scene is a structured hall that includes three nonlinearly correlated planes to be scanned simultaneously 

by two LiDARs. Figure 2 shows a typical scene consisting of two walls and a floor. 
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Figure 2. Method overview. 

The method consists of two parts, the calibration of the dual LiDAR and the merged point cloud, where the former 

supports the latter. The calibration first acquires the point clouds of the LiDARs and scanner, extracts the three linearly 

independent planes and matches them to obtain the initial values, and then optimizes them with ICP to get the accurate 
values. Merging the point clouds requires frame (timestamp) alignment of the data and then transforms the point clouds 

to unify them into a same coordinate system. The merged point cloud is input to the LiDAR SLAM framework. 

We set Lp as the point cloud acquired by LiDAR, sp as the point cloud acquired by 3D scanner. In this work, LiDAR 

extrinsic calibration is converted into the point cloud registration problem that can be described as 
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Usually, we use ICP (Iterative Closest Point) algorithm to estimate the LiDAR pose. However, directly applying the ICP 

algorithm to estimate the LiDAR pose, will result in low accuracy. It is necessary to firstly obtain the initial extrinsic 

between LiDAR and the 3D scanner, and then iterate the optimization by the ICP algorithm. 

In this work, we obtain the initial extrinsic based on the normal vectors of the three linearly independent planes in the 

scene. We set the i-th plane as 
i , the coefficients of its plane equation as 

( ,0) ( ,1) ( ,2) ( ,3)[ , , , ]Ti i i i i    = .

The distance from a point [ , , ]Tn n n np x y z=  in the point cloud to the plane 
i is denoted as

( ,0) ( ,1) ( ,2) ( ,3)( ) | |i n i n i n i m if p x y z   = + + + . 

The coefficients of each of the three plane equations obtained are denoted as 1 , 2 and 3 . The three planes of 

intersection point [ , , ]Tx y zo o o o=
r

, can be solved by equation 
1 2 3[ ] [ 0] 0T T To   =

r
. 

Further, the normal vector 
( ,0) ( ,1) ( ,2)[ , , ]Ti i i    of the plane of the 3D scanner is denoted as 

s

in , and the normal vector 

of the LiDAR is denoted as 
L

in , then the rotation matrix can be solved by equation 
1 2 3 1 2 3[ , , ] [ , , ]s s s L L L TR n n n n n n=  . 

The translation vector can be solved by equation s Lt o R o= −  . 

3.2 LiDAR SLAM 

Our proposed method can be plugged into a different lidar slam framework. For two LiDAR data streams, to accurately 

merge the point clouds, we need to align the frames or timestamps first, which can be done either by hardware triggering 

or by using the ROS timestamp alignment at post-processing. After alignment, merge the point clouds collected at the 

same time, remove the distortion and input them into the existing SLAM framework.  
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Merging point clouds means unifying two points clouds into the same coordinate system, which requires the extrinsic 

calibrated by the previous method. The unified coordinate system could be the coordinate system of a LiDAR, so that 

only one of the point clouds needs to be transformed, saving the computation and providing better real-time performance, 

or it could be unified into another sensor or an agreed coordinate system, so that the point clouds of both LiDARs need 

to be transformed. 

4. EXPERIMENT

The study of this paper is validated on the self-developed backpack platform in Figure 3, which consists of two Velodyne 

VLP-16 LiDARs installed vertically to each other. The 3D scanner used for the calibration is the Z+F IMAGER 5010C, 

which provides millimeter-level accuracy. 

Figure 3. Calibration scene and hardware platform. 

4.1 Dual-LiDAR extrinsic calibration 

To verify the accuracy of the proposed method, we collected LiDAR point clouds at 5 different locations and scanner 

point clouds at 2 different locations in the scene in Figure 3, where we extracted three linearly independent planes of 

white wall, red wall and ground to calculate the initial extrinsic, and repeated the computation 10 times for each set of 

point clouds, totalling 100 repeated experiments. Figure 4 shows the data statistics of the extrinsic in the repeated 

experiments, the values are well stabilized in a certain range. The precision is evaluated by the standard deviation of the 

dual-LiDAR extrinsic xR , yR , zR , xt , yt  and zt , denoted as 
xR , 

yR , 
zR , 

xt , 
yt  and 

zt . Table 1 shows the

standard deviation of the extrinsic between the two LiDARs in 100 repeated experiments. 

Figure 4. Repeated experiments data statistics.  
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x-axis y-axis z-axis

Rotation (deg) 0.0019 0.0014 0.0016 

Translation (m) 0.0036 0.0044 0.0038 

Repeated experiments verify the accuracy and robustness of our proposed method, which supports accurate fusion of two 

LiDAR point clouds. 

4.2 Vertical constraint enhanced LiDAR SLAM 

We tested the method on our self-developed backpack system based on LOAM and FAST-LIO2. Experiment 1 tests the 
odometry drift of the system in a small room at stationary state and compares it with LOAM. Experiment 2 tests the 

building performance in a corridor with a floor height of 3 m and a staircase with a width of 3 m, and is compared with 

FAST-LIO2.  

Figure 5. Point cloud of LiDAR 
scanning before and after the 

improvement. 

Figure 6. 15-minute trajectory at stationary state. 

Figure 5 shows the Experiment 1 scene and the point cloud of LiDAR scanning before and after the improvement. The 

white points compose the complete point cloud of the scene, and the colored lines indicate the points scanned by LiDAR. 
Figure 6 shows the 15-minute trajectory at stationary state, where the x-axis is the time, the y-axis is the position of the 

trajectory in a certain direction, the red line marks the trajectory of the original LOAM, and the blue line marks the 

trajectory of the vertical constraint enhanced LiDAR SLAM.  

The figure illustrates that the improved method stabilizes within a certain range more quickly in each direction, and has 

smaller shake ranges after stabilization. Moreover, the improvement is noticeable in the z-direction.  

Figure 7 shows the point cloud registration results in the corridor in Experiment 2. The left shows the registration result 

with raw FAST-LIO2, where the registration fails and the odometry drifts heavily in the narrow areas of the corridor, and 

the right shows the enhanced FAST-LIO2, which finishes the whole registrations and has a better resolution. Figure 8 

shows the point cloud registration results for the 3 m wide staircase in Experiment 2. Again as before, the raw method 

fails to register in the staircase, and the enhanced method finishes the registration.  

Table 1. Standard deviation of the extrinsic. 
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Figure 7. Point cloud registration results in the corridor. 

Figure 8. Point cloud registration results in the staircase. 

Both experiments illustrate that our method has a significant improvement in odometry drift problem and registration 

performance in small-scale indoor scenes compared to the original method. 

5. CONCLUSION

In this paper, we present a vertical constraint enhanced method for indoor LiDAR SLAM. We exploit a vertically 

installed LiDAR to improve the performance of existing SLAM algorithms in small-scale indoor scenes and propose a 

method to calibrate the multi-LiDAR extrinsic with the help of a 3D scanner. The experimental results show that our 

method works and the odometry drift problem is improved. Moreover, the experiment results also show that our 

calibration method has high accuracy, with rotation and translation errors less than 0.005 rad and 0.01 m respectively, 

which can merge the point clouds of two LiDARs very accurately. 
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