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ABSTRACT 

Currently, more and more people are suffering from depression with the increase of social pressure, which has become 

one of the most severe health issues worldwide. Therefore, timely diagonosis of depression is very important. In this 

paper, a deep feature fusion network is proposed for multimodal depression detection. Firstly, an unsupervised 

autoencoder based on transformer is applied to derive the sentence-level embedding for the frame-level audiovisual 

features; then a deep feature fusion network based on a cross-modal transformer is proposed to fuse the text, audio and 

video features. The experimental results show that the proposed method achieves superior performance compared to 

state-of-the-art methods on the English database DAIC-WOZ. 
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1. INTRODUCTION 

Depression, also known as depressive disorder, is a major type of mood disorders. Currently, the main depression detection 

methods rely on specific questionnaires, such as the clinician-administered Hamilton Rating Scale for Depression 

(HAMD)1. These methods are time-consuming and labor-intensive. With the rise of deep learning, many studies use deep 

neural networks to process multimodal features for depression assessment. Yang et al.2 fed the features of text, audio, and 

video into a DCNN network to obtain regression results respectively. Then outputs of the three networks were passed into 

a DNN network for decision fusion. Alhanai et al.3 deployed a LSTM model to capture the temporal relationship between 

audio features and text features for depression detection. Lin et al.4 used the LSTM and CNN to process text features and 

audio features respectively. Then the outputs of the two models were combined for late fusion. 

In the field of automatic depression detection, current research has certain limitations. Firstly, the features extracted from 

audio and video are frame-level, and the existing methods to encode frame-level features into sentence-level use statistical 

functions which lead to the loss of the temporal relationship between frames. Secondly, most current network structures 

for multimodal fusion use decision fusion or late fusion which have limited ability to capture the complementarity of 

features between different modalities. In this work, we tried to overcome the aforementioned drawbacks. Our main 

contributions can be summarized as follow. 

(1) An unsupervised autoencoder network is proposed to obtain sentence-level vector of frame-level audio and video 

features for depression detection. 

(2) We propose a cross-modal transformer based deep fusion network for multimodal features to detect depression. 

2. METHOD 

2.1 Model overview 

The overall structure of our proposed method is shown in Figure 1. 

Firstly, the feature representation module is used to obtain sentence-level vectors of audio, text, and video. Then the feature 

fusion module based on cross-modal Transformer is adopted to combine three modalities. Next, a Bi-LSTM with self-

attention is used to capture the temporal relationship of each single modality. Finally, the outputs of the self-attention 

module are fed into the low-rank fusion module for further late fusion to get the final regression result. 
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Figure 1. An overview of the proposed model. 

2.2 Feature extraction 

The dataset consists of three modalities, namely text, video and audio features. For the text data, we use a pre-trained 1024-
dimensional Elmo5 sentence embedding to encode the transcribed subjects’ responses for each question. For the audio data, 

39-dimensional frame-level MFCC features are extracted for each audio segment. For the video data, 20-dimensional 

frame-level AU features are extracted for each video segment. 

2.3 Unsupervised autoencoder 

The extracted video and audio features are both frame-level. Temporal aggregations are needed to compress sentence-level 

vectors before feature fusion. Most previous methods encode the frame-level features into sentence-level with statistical 

functions which may lead to the loss of the temporal information between frames. To solve this problem, we propose an 

unsupervised autoencoder based on Transformer6. The overall structure of the autoencoder is shown in Figure 2. 

The frame-level features are fed into the frame-sentence encoder to obtain the sentence-level vector of multi-frame features. 

The frame-sentence encoder consists of three layers transformer encoding units. The transformer encoding unit is 

illustrated in Figure 3. 

The Positional Encoding module is used to add positional information to the frame-level features 𝑋. The specific calculation 

formula of positional embedding can be expressed by equations (1) and (2). 

 𝑃𝐸(𝑝𝑜𝑠,2𝑖) = 𝑠𝑖𝑛(𝑝𝑜𝑠/100002𝑖/𝐹) (1) 

 𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = 𝑐𝑜𝑠(𝑝𝑜𝑠/100002𝑖/𝐹) (2) 

Here 𝑝𝑜𝑠 is the frame number, 𝐹 is the dimension of the frame-level feature, 𝐼 is the index of the features, and 2𝑖 
represents the even index while 2𝑖 + 1 represents the odd index. 

The frame-level features 𝑋 are then added to the positional embedding 𝑃𝐸 to generate the input vector 𝐼. Then the Multi-

Head Attention module is used to calculate the temporal relationship between frames. The relationship between vector 𝐴 

and input vector 𝐼 can be expressed by  
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𝑄 = 𝐼 ×𝑊𝑄 (3) 

𝐾 = 𝐼 ×𝑊𝐾  (4) 

𝑉 = 𝐼 ×𝑊𝑉  (5) 

𝐴 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 (6) 

where 𝑊𝑄 , 𝑊𝐾 , 𝑊𝑉  denote linear matrixes,𝑄,𝐾, 𝑉 denote the query vector, key vector, and value vector, respectively, and 

𝑑𝑘 is the normalization coefficient. 

 

 

 
Figure 2. The structure of autoencoder.  Figure 3. The structure of transformer. 

Then vector 𝐴 passes through residual connections and forward neural networks to obtain the output vector 𝑂. 𝑂 is fused 

with the temporal and attention relationship between multi-frame features. The vector 𝑂 of the last time step is the output 

of the frame-sentence encoder. After self-filling, a vector 𝑋′ is passed through the sentence-frame decoder to reconstruct 

the frame-level features. The decoder is also composed of 3-layer Transformer coding units. The output vector 𝑌 of the 

decoder has the same dimension as the frame-level features 𝑋. The loss function of the unsupervised autoencoder is mean 

square error, and the difference between 𝑋 and 𝑌 is calculated to update weights of the unsupervised autoencoder. When 

the model is converged, the output of the encoder is stored as a sentence-level vector representation of frame-level features. 

So far, we have obtained three sentence-level vectors 𝑋𝑡 , 𝑋𝑎 , 𝑋𝑣 of text, audio, and video modality respectively. Before the 

feature fusion module for deep fusion, three one-dimensional convolutional layers are utilized to compress the dimensions 

of the three sentence-level vectors. Then, 𝑋𝑇 ∈ 𝑅𝑆×30, 𝑋𝐴 ∈ 𝑅
𝑆×30, 𝑋𝑉 ∈ 𝑅

𝑆×30 are fed into the feature fusion module for 

deep fusion, where 𝑆 is the question number of each subject and 30 is the dimension of compressed features. 

2.4 Feature fusion 

Six cross-modal transformers7 are adopted to achieve a deep fusion of three modalities. We take 𝐴  𝑇 cross-modal 

transformer as an example to introduce the application of cross-modal transformer in the feature fusion module. The structure 

of 𝐴  𝑇 cross-modal transformer can be seen in Figure 4. 
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Figure 4. The structure of cross-modal transformer. 

The relationship between the output of the 𝑖𝑡ℎ 𝐴  𝑇 cross-modal transformer 𝑍𝐴 𝑇
[𝑖] and the input vector 𝑋𝑇 , 𝑋𝐴 can 

be represented by 

𝑋∗
𝑇 = 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔(𝑋𝑇) (7) 

𝑋∗
𝐴 = 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔(𝑋𝐴) (8) 

𝐼𝑇 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑋∗
𝑇 + 𝑍𝐴 𝑇

[𝑖−1]) (9) 

𝐼𝐴 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑋∗
𝐴) (10) 

𝑄𝑇 = 𝐼𝑇𝑊𝑄𝑇
 (11) 

𝐾𝐴 = 𝐼𝐴𝑊𝐾𝐴
 (12) 

𝑉𝐴 = 𝐼𝐴𝑊𝑉𝐴
 (13) 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑇𝐾𝐴

𝑇

√𝑑𝑘
)𝑉𝐴 (14) 

𝑂′ = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 + 𝐼𝑇 (15) 

𝑍𝐴 𝑇
[𝑖] = 𝑂′ + 𝐹𝐹𝑁(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑂′)) (16) 

where Positional Encoding is used to add positional information to 𝑋𝑇  and 𝑋𝐴. The specific relationship can be obtained 

from equations (1) and (2). LayerNorm is the layer normalization operation. 𝑍𝐴 𝑇
[𝑖−1] is the output of (𝑖 − 1)𝑡ℎ layer 

cross-modal transformer. 𝑊𝑄𝑇
, 𝑊𝐾𝐴

, 𝑊𝑉𝐴
denote linear matrixes. And 𝑄𝑇 , 𝐾𝐴, 𝑉𝐴 denote query vector of text modality, 

key vector, and value vector of audio modality. 𝑑𝑘 is the normalization coefficient. 𝐹𝐹𝑁 is the forward neural network 

which is composed of linear layers. 
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The outputs of the cross-modal transformer are concatenated to generate 𝑍𝑇 ∈ 𝑅𝑆×60 , 𝑍𝐴 ∈ 𝑅𝑆×60 , 𝑍𝑉 ∈ 𝑅𝑆×60 . 

𝑍𝑇, 𝑍𝐴, 𝑍𝑉 deeply fuse the information of the other two modalities and are then fed into the self-attention module to capture 

the temporal information of each modality. 

2.5 Self-attention 

Bi-LSTM with attention mechanism is utilized to capture the temporal relationship of 𝑍𝑇, 𝑍𝐴, and 𝑍𝑉. Taking 𝑍𝑇 for 

example, the Bi-LSTM model with a hidden size of 30 is used to capture the temporal relationship between each time step 

of  𝑍𝑇. Considering that features at different time steps are of different importance to the final assessment result, an 

attention mechanism is introduced to weight the output of Bi-LSTM at different time steps. The relationship between the 

output of self-attention module 𝑆𝑇  and the output of Bi-LSTM 𝑍°𝑇 can be represented by  

𝑍∗𝑇 = 𝑡𝑎𝑛ℎ × 𝑍°𝑇 (17) 

𝑎𝑙𝑝ℎ𝑎 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤 × 𝑍∗𝑇) (18) 

𝑍′𝑇 = 𝑎𝑙𝑝ℎ𝑎 × 𝑍°𝑇 (19) 

𝑆𝑇 =∑𝑍′𝑇

𝑇

𝑖=1

 (20) 

where 𝑤 is the weighting factor and 𝑇 is the question number. 

Then 𝑆𝑇  is passed through a ReLU layer and a linear layer to obtain the output 𝑂𝑇  of self-attention module. Finally, 

three temporal vectors 𝑂𝑇 ,𝑂𝑉 ,𝑂𝐴  are passed through the late fusion module for further fusion to obtain the final 

assessment result. 

2.6 Late fusion 

The low-rank fusion8 is used to further fuse 𝑂𝑇 , 𝑂𝐴 and 𝑂𝑉. The relationship between the final output 𝐻 and 𝑂𝑇 , 𝑂𝑉, 

and 𝑂𝐴 can be represented by 

                            𝐻 = (∑⊗𝑚=1
𝑀

𝑟

𝑖=1

𝑤𝑚
(𝑖)) ∙ (𝑧𝑙 ⊗𝑧𝑎 ⊗𝑧𝑣) 

(21) 

 =⋀[∑𝑤𝑚
(𝑖) ∙ 𝑧𝑚

𝑟

𝑖=1

]

𝑀

𝑖=1

 

where 𝑧𝑙, 𝑧𝑣, and 𝑧𝑎 are the vectors 𝑂𝑇 , 𝑂𝑉 and 𝑂𝐴 padding with 1, M is the number of modality 3, ⋀𝑖=1
𝑀  denotes the 

element-wise product over a sequence of tensors, and 𝑊 is the weight tensor. And the value of 𝑟 is 17, which is the 

number of rank factors.  

3. EXPERIMENTAL RESULTS AND ANALYSIS 

In the experiment, the evaluation metrics of the classification task are Precision, Recall, and F1. For the regression task, 

the evaluation metrics are MAE and RMSE. Our experiments are conducted on the DAIC-WOZ9 database which has a 

training set (77 depressed, 30 non-depressed) for training the network, validation set (23 depressed, 12 non-depressed) to 

verify network performance during training and testing set (33 depressed, 14 non-depressed) for testing network 

performance. Three baseline models2-4 are compared to our proposed network DDFN, which are introduced in the 

Introduction section. Experimental results are shown in Table 1. 

The proposed deep feature fusion network achieves superior results in both regression and classification tasks. Compared 

to current state-of-the-art methods, the lowest RMSE of 5.35 and the highest Precision of 0.91 and F1 of 0.89 were obtained 

by the proposed deep feature fusion network DDFN. Overall, our proposed deep feature fusion network DDFN can deeply 
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fuse the features of three modalities for depression assessment. Compared with decision fusion and simple feature fusion 

network, better evaluation results are obtained by our deep feature fusion network DDFN. 

Table 1. Experimental results with DAIC-WOZ. 

Methods MAE RMSE PRECISION RECALL F1 

DCNN+DNN2 5.16 5.97 / / / 

LSTM3 5.13 6.50 0.71 0.83 0.77 

LSTM+CNN4 3.75 5.44 0.79 0.92 0.85 

DDFN (proposed) 3.78 5.35 0.91 0.88 0.89 

4. CONCLUSIONS 

In this paper, we propose an unsupervised autoencoder to encode frame-level features into sentence-level. A deep feature 

fusion network is proposed to further fuse features of three modalities for depression detection. The experiment results 

show that our network DDFN achieves improved performance compared to state-of-the-art methods. Considering the 

insufficient samples in the depression database, we will investigate multimodal few-shot learning for depression detection 

in the next step. 
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