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ABSTRACT  

Improving the speed and accuracy of unconventional natural gas production forecasts is the key to scientific and efficient 

development of unconventional resources. The existing prediction methods based on the transmission mechanism make 

assumptions and simplifications on the model, and it is difficult to comprehensively and accurately evaluate the main 

control factors of production capacity, resulting in large production prediction errors. This paper proposes a productivity 

prediction method for unconventional natural gas wells based on artificial intelligence (AI) and data mining 

technologies. We use the Pearson correlation coefficient and grey relational analysis to screen out the main control 

factors, and select the best yield intelligent forecasting model by training and comparing a variety of commonly used 

machine learning methods. This paper takes the Alberta tight gas field in Canada as an example to illustrate the 

effectiveness and practicability of this method.  
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1. INTRODUCTION 

Traditional production modeling and forecasting methods are mostly based on transport mechanisms of shale gas, such 

as through simulation models and theoretical analysis1. These methods are based on certain assumptions and 

simplifications, and based on seepage theory, establish differential equations to solve the productivity formula, and these 

methods have high computational efficiency2. For reservoirs with complex mechanisms and strong heterogeneity, the 

established differential equations cannot be analytically solved, and numerical methods can be used to solve the 

productivity. For reservoirs with complex seepage mechanisms (such as tight gas, shale gas, etc.), the traditional 

productivity prediction methods will deviate from the production prediction results due to incomplete mechanism 
consideration and ideal assumptions of the model3. In addition, when numerical simulations are used to calculate 

production, the models rely heavily on accurate geological models, resulting in prolonged modeling cycles and reduced 

efficiency. 

With the rise of the third wave of AI technology revolution, relevant data mining and intelligent techniques provide new 

avenues for production forecasting of unconventional natural gas4. Compared with the traditional mechanism-driven 

method, the data-driven artificial intelligence method can establish a proxy model related to the production, geological 

reservoir and fracturing operation parameters through deep mining of oilfield data5. The current large-scale drilling and 

fracturing data of unconventional reservoirs provides a possible scenario for the large-scale application of artificial 

intelligence methods6. 

This study first introduces the workflow of the development of intelligence prediction model, and then explains the data 

mining and artificial intelligence methods, technologies and principles behind it, and finally takes the northern Alberta 
tight gas field in Canada as an example to illustrate the artificial intelligence workflow in data processing, feature 

selection, parameter optimization, and model optimization in unconventional natural gas production forecasting. This 

study provides a basis for the popularization and application of artificial intelligence methods in unconventional natural 

gas production forecasting. 
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2. WORKFLOW OF INTELLIGENT FORECASTING MODEL DEVELOPMENTS 

The process of using artificial intelligence technology to build an intelligent production forecast model includes 5 steps, 

as shown below. 

(1) Raw data collection and preprocessing. The original data set includes characteristic parameters and production labels. 

Data preprocessing operations include outlier data removal, data padding, data normalization, and normalization7. 

(2) Feature optimization. We use the Person correlation coefficient to find the correlation of variables, and then using the 

gray correlation to analyze the weight of the main controlling factors affecting the production capacity. 

(3) Data set division. The original dataset is usually divided using the set-out method. According to a set ratio, the 

original dataset is randomly divided into training set and test set. 

(4) Artificial intelligence modeling. Selecting the learner and then training the learner with the training dataset generated 

in the previous step, this study tested a variety of learners for modeling, including decision forests, support vector 

machines, and random forest and so on8. 

(5) Model evaluation. This study input the test set data into the trained model, calculate and analyze the error and 

accuracy of the predicted production. The usual evaluation indicators include the RMSE (the root mean square error), the 

MAE (mean absolute error) and the R2 (coefficient of determination). In this study, RMSE was used to evaluate the 

production forecasting model9. 

3. THE PRINCIPLES AND METHODS OF ARTIFICIAL INTELLIGENCE MODELING 

The methodology and principles of AI agent model development are discussed in detail for workflow. 

3.1 Data set acquisition and preprocessing 

Engineering geological parameters and fracturing construction data were collected from the field and used to construct 

the structured dataset. The original dataset cannot be directly used to train the model, and a series of preprocessing 

operations are required. In the original dataset, when the missing data in the feature variable is greater than the safety 

threshold of 5%, it will not be considered in the modeling. The original data needs to be normalized as different units 

may affect the results10. The Z-Score method is an ideal solution and is often used in data normalization. It represents 

how many standard deviations the measurement data deviates from the mean of the data population, and its expression 

is: 
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where z is the standardized dimensionless data; σ is the sample standard deviation; x is the original value of a sample; μ 

is the mean value of the sample. Assuming the dataset D contains n learning samples, each sample has m feature 

parameters and a feature label, namely: 
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3.2 Feature optimization 

There are many methods for feature optimization. Commonly used methods include multiple regression method, gray 

correlation method, Lasso method, covariance and so on11. The Pearson correlation coefficient characterizes the 

similarity between variables, and its output ranges from -1 to +1, among them, 0 means that the vectors are independent 

of each other, and the closer the absolute value is to 1, the stronger the correlation12. The formula for calculating the 

Pearson correlation coefficient is as follows: 
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where cov is the covariance and σ is the standard deviation. Compared with covariance, Pearson’s correlation coefficient 

removes the effect of variable dimension.  
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This study uses the Grey Relation Analysis (GRA) method to study the influence of the selected features, and the grey 

relational analysis of the main controlling factors helps to enhance the interpretability of the model. The GRA method is 

a multivariate statistical analysis research tool. Simply put, in a gray system, we want to know how strongly a variable is 

affected by other variables or factors13. Grey relational degree analysis has low requirements on data and calculation, and 

its calculation formula is as follows: 

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

0 0

0 0

min min max max

   1,2,...,
max max

i i
i k ki

i

i i
ki

x k x k x k x k

k k m
x k x k x k x k






− + −

= =
− + −

 (4) 

where i is the serial number of a sample; k represents the serial number of a feature; ρ is the resolution coefficient, 

ranging from 0 to 1. The smaller the ρ, the more obvious the difference between samples, and usually ρ is taken as 0.5. 

x0(k) is selected by user and regarded as the reference sequence. According to the calculated correlation coefficient, the 

influence of each factor on the production can be analyzed. The correlation order can be further calculated based on the 

correlation coefficient, and the formula is: 
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The degree of influence of each factor can be obtained by sorting the correlation degree. 

3.3 Data set division 

The original dataset is usually divided using the set-out method and setting a ratio. When the amount of data is relatively 

small, a ratio of 7:3 to 9:1 can usually be used to divide training data and test data. Commonly used partitioning methods 

for datasets include hand-out method and cross-validation method. The hand-out method is to use a portion of the total 

samples as test set. The proportion is usually 10%-30%, and generally the capacity of the test set is at least more than 30. 

To ensure that the model’s predictions are reliable, this study performed 300 samplings, divided the training and test sets, 

and trained and evaluated the selected machine learning models accordingly14. 

3.4 Intelligent algorithm model selection 

Commonly used intelligent algorithms are compared in this study, including gradient boosting, random forests, support 
vectors, and neural networks. The training set data is used to train the intelligent model, and the performance of the 

model is evaluated by using the test set15-17. 

For regression problems, commonly model prediction evaluation indicators include mean square error, root mean square 

error, mean absolute error, coefficient of determination, etc. In this study, RMSE (Root Mean Square Error) is used as a 

key indicator to compare the performance of different models, and its expression is as follows: 
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Accuracy is also used as a key indicator to compare the performance of different models, and its expression is as follows: 

 (7) 

4. APPLICATION CASE 

4.1 Data collection and preprocessing 

This paper takes the W tight gas reservoir in Alberta, Canada as a case study. The depth of the W reservoir is 2000 

meters. The research target is located in the RT21 block, with an area of 2500 km2 and an average reservoir thickness of 

200 meters. The samples of 1091 wells in the study area were de-noised, cleaned and screened, and there were 1071 

available data sample wells, and each sample contained 12 dimension features and 1 set of production label. After 

missing vale pre-processing, the feature dimension of the model is changed from 12 to 10. 
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4.2 Feature optimization 

If the feature parameters of the model input are strongly correlated, it will not only increase the model training time, but 

also affect the interpretability of the model. Figure 1 shows the Pearson correlation coefficient matrix of the 

characteristic variables. Total Proppant Pumped dose has a strong linear positive correlation with Proppant Pumped Per 

Stimulated Length (Pearson’s coefficient is 0.92). Total Fluid also has a strong linear positive correlation with Fluid Per 
Stimulated Length (Pearson’s coefficient is 0.86). After removing the linear correlation variables Proppant Pumped Per 

Stimulated Length and Fluid Per Stimulated Length, the dimension of the feature variable is reduced from 10 dimensions 

to 8 dimensions. 

 

Figure 1. Variable correlation analysis matrix. 

The grey correlation method can be used to calculate the correlation between the 8 control factors and the production. As 
shown in figure 2, it can be seen that Fluid Per Stage has the greatest impact on the Production and Total Proppant 

Pumped has the least impact on the production. 

 

Figure 2. Tornado chart of controlling factors by grey correlation method. 
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4.3 AI model optimization and analysis 

In order to select the optimal model, this study evaluates gradient boosting, decision tree, random forest, support vector 

machine and neural network respectively. The evaluation results are shown in table 1 below.  

Table 1. Intelligent model predictive evaluation. 

Models RMSE Test set accuracy Running time Train: Test Training times 

Gradient boosting 21.3 82.08 % 2.78 s 8:2 300 

Decision tree 30.24 77.23 % 1.35 s 8:2 300 

Random forest 10.9 85.25 % 12.63 s 8:2 300 

Support vector machine 25.68 83.99 % 88.58 8:2 300 

Neural networks 28.32 81.2% 72.68 8:2 300 

From the table 1, we can acknowledge that the performance of the random forest model is the best, the test set accuracy 

can reach more than 85%, and the model training time is about 12.63 s, which is relatively short. Therefore, the random 

forest is chosen as the intelligence model in this research area. 

5. CONCLUSIONS 

This study proposes a productivity prediction method and workflow for unconventional natural gas wells based on data 

mining and artificial intelligence technology. Through automated data pre-processing, sample sampling, feature analysis, 

and model screening, the rapid and efficient prediction of unconventional natural gas productivity is achieved. The paper 

takes the Canadian gas field as an example to demonstrate the specific application and effect of artificial intelligence 

technology in unconventional natural gas production forecasting. The following conclusions can be drawn from the 

intelligent model study for unconventional natural gas: 

(1) The artificial intelligence prediction method is an effective supplement to the existing mechanism-driven prediction 

method. It has comprehensive analysis capabilities and can quickly and efficiently predict production. 

(2) Grey relational analysis helps to enhance the interpretability of the model, and it is clear that the main controlling 

factor affecting the study area are Fluid Per Stage, Total Fluid etc. 

(3) The Pearson correlation coefficient matrix can analyze the correlation of sample features, effectively reduce the 

dimension of data set features, and reasonably simplify the model. 

(4) Using the RMSE, test accuracy and training time indicators, the optimal intelligent model in the study area can be 

effectively selected as the random forest model. 
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