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ABSTRACT
Over the past 20 years, many problems in Bayesian inference that were previously intractable can now be fairly
routinely dealt with using a computationally intensive technique for exploring the posterior distribution called Markov
chain Monte Carlo (MCMC). Primarily because of insufficient computing capabilities, most MCMC applications have
been limited to rather standard statistical models. However, with the computing power of modern workstations, a
fully Bayesian approach, with MCMC, is now possible for many imaging applications. Such an approach can be quite
useful because it leads not only to "point" estimates of an underlying image or emission source, but it also gives a
means for quantifying uncertainties regarding the image. This paper gives an overview of Bayesian image analysis
and focuses on applications relevant to medical imaging. Particular focus is on prior image models and outlining
MCMC methods for these models.
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1. INTRODUCTION
Bayesian image analysis finds its beginnings in papers by Grenander' and Geman and Geman.2 In a fairly typical
problem, there exists some true, but unknown scene x, particular features of which must be estimated from observed
data y. The data, which may come from more than a single source, provide only partial information about x. In the
Bayesian paradigm, one's prior beliefs about plausible scenes x are represented with a probability distribution r(xIO),
which typically depends on additional hyperparameters 9. The data y is then used to update the prior through the
likelihood function L(ylx), producing a posterior density

ir(xly,O) O( L(ylx)ir(x(O)

from which inferences about the true scene x are based. Often, the prior r(xJO) is constructed to ensure the presence
of local regularities that are expected in the true scene, as with simple Markov random fields. Such priors primarily
serve to massage the likelihood into a more acceptable form. More recently, priors have been developed which more
explicitly capture features of the known scene (Refs. 3, 4, 5, 6); such priors often involve anatomical templates or
landmarks.

Until recently, the typical end result of a Bayesian formulation is a point estimate of the true scene x, usually
taken to be the mode of the posterior distribution

a = argmaxL(yx)ir(x9),

with depending on estimates 0 of the hyperparameters. However, the resulting posterior distribution can give
point estimates — which are not conditional on an estimated value for the hyperparameters 6 — as well as give
uncertainty estimates regarding the true scene x, while accounting for uncertainty in the hyperparameter vector 9.
In this fully Bayesian approach, a prior distribution r(9) must be specified for 9 as well. In such applications, the
posterior density is usually sufficiently complicated so that it cannot be dealt with analytically. However, samples
can often be drawn from the posterior density using Markov chain Monte Carlo (MCMC), giving a straightforward
method for exploring the joint posterior distribution r(x, 91y).

The following section outlines methodology for image analysis under the Bayesian paradigm and also shows
how MCMC can be used to draw samples from the resulting posterior distribution. A very simple example is first
considered to demonstrate basic methodology. Next, applications to more realistic imaging problems demonstrate the
usefulness of this methodology, as well as some limitations. The paper ends with a brief discussion of the potential
of such methodology in medical imaging.
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2. BASIC METHODOLOGY
This section describes and demonstrates the Bayesian approach to image analysis and shows how MCMC can be used
to sample from the resulting posterior distribution. A rather general recipe for constructing the posterior distribution
is as follows:

. Specify the likelihood model for the records y given the underlying scene x: L(yjx).

. Specify a prior distribution for the underlying scene x. Typically this will involve additional parameters 0,
often called hyperparameters: ir(xf6).

. Specify a prior density for 0: ir(0).

. Form the posterior distribution, which is proportional to the product of the likelihood and the priors

ir(x,OIy) O( L(yIx)r(xl0)r(0).

. Obtain draws (x, 6)1 , . . . , (x, 0)T from rr(x, 0y) via MCMC and base posterior inference on this sample.

The above recipe is demonstrated in Section 2.2. But first a few brief details on MCMC are given.

2.1. Markov Chain Monte Carlo
Since analytical determination of posterior quantities such as posterior probabilities and credible intervals are difficult
to obtain through standard numerical routines, we use MCMC to estimate these quantities numerically. Detailed
descriptions of the underlying methodology for MCMC can be found in Refs.: 7, 8,9, 10,11, and 12, including the
accompanying discussions.

Generally let ir(z) denote the multivariate density of the random variable Z = (Z1 ,. . . , Zm)T, with it(Zk) the cor-
responding marginal density of Zk and rr(ZkJZk) the conditional density for Zk given Z_k = (Z1 ,. . . , Z1 , Zk+1 , . ..,
Zm). In practice, each Z is often, but not always, univariate. MCMC gives a means for constructing a partial realiza-
tion z1 ,z2, , zM from a Markov chain with limit distribution ir(z). From this, functionals of r, T(ir), are estimated
by T(*M), the functional applied to the resulting empirical distribution. The partial realization can be constructed
by stepping through each site k in turn, and updating the value Zk, while leaving the remaining components Z_k
unchanged.

Updating Zk depends on its full conditional distribution ir(zkzk). There are a number of ways to update each
component, with Gibbs'3 or Hastings'4 steps being the most commonly used. Updating the kth component with a
Gibbs step simply consists of replacing zk by z drawn from its full conditional distribution. Clearly, if z is a draw
from the stationary distribution rr, then so to is z', which is identical to z except that its kth component is now

. Hastings steps are more general and do not require draws from the full conditional. In updating component
k, a proposal value z is drawn from an arbitrary density qk (Iz) which may depend on the current state of the
chain z. The ratio of the full conditional posterior densities rr(z,1z_k)/ir(zklz_k) is computed, as well as the ratio

where z is identical to z except that the kth component is replaced by z. The updated value
for zk becomes z7 with probability

r = mm (,
r(zkIz_k)q(zIz)

otherwise Zk takes on its previous value. The special case where q(zz*) q(zz) corresponds to a Metropolis'5
update; here the acceptance probability i does not depend on q(). For example, proposals for which z '-N(zk, 2)
orz U{zk _T, Zk + r] , where a and r are constants, satisfy this property. There is no need to use the same updating
method for each site. In fact, the simple MRF example below uses both Gibbs and Metropolis updates.

Because one usually cannot start with a value z0 from the prescribed distribution ir(z), an initial point is chosen
and the Markov chain is generated from that point. The chain is allowed to "burn-in" until the stationary distribution
is reached. Also, due to limitations of computing space, one may only wish to save every 10th or 100th realization
for constructing the empirical distribution . The Monte Carlo standard errors of estimates T() may be estimated
using standard time series methods or with other techniques (See Refs. 14, 10, 8, 16).
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2.2. Simple application
As a simple example, we consider a computer simulation of a one-dimensional object which is discretized into an array
of n = 40 sites or pixels indexed by i = 1, . . . , n. The emission intensity for sites i = 10, . . . , 30 is elevated relative
to the background emission rates of the remaining sites. Over the observation period, the number of emissions from
each site i follows a Poisson distribution with mean x2 where x1 = 20 counts for the "hot" interior sites, and x = 10
counts for the background exterior sites as shown by the solid line in Figure 1.
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Figure 1. Simulated counts from a one-dimensional emission source; the true emission intensity is given by the solid line.

Hence the likelihood for the data y given the underlying count intensities x is given by

L(yjx) O( lle_xjx, all x > 0.

where
— f 20 iflO<i<30

x2— ifi<l0ori>30
Since the purpose of this data is to demonstrate basic methodology, more realistic features such as blurring are not
considered here. Under the Bayesian paradigm, specification of the prior distribution of the object intensities x is
required. Two different formulations are given below: one using a simple MRF prior; and the other which uses a
template for the emission object.

MRF based prior Template based prior

A MRF based prior serves to inject regularity in ob- We construct a template prior to correspond to our
ject intensity x by requiring nearby pixel intensities belief that the emitting source consists of a "hot" re-
to be similar. Perhaps the simplest such model is a gion and a background region, each with it's own con-
Gaussian random walk with stant intensity. This template may be parameterized

by the 4 variables:
xi,xi_1 N(x1, 1/6)

S Xh the emission intensity of the hot region;
where 6 controls the scale of the random walk in-
crements. In this case, the full conditional for any • Xb the emission intensity of the background

interior x has the form region;

(xi+1 + xjl 1 '\ • Ze leftmost site of the hot region;
xiIx_i ]V j , — j\ 2 26 j • r rightmost site of the hot region.

for the two edge sites, the full conditional is centered Hence the emission intensity of the object is a de-
at its one neighboring value, with variance 1/6. Mul- terministic function of these 4 parameters, with the
tivariately, the prior for x has the form intensity at site i given by

(1)

Specifying a uniform prior for (xh,xb, i,i) subject
to the above conditions gives the joint prior density
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7r(x,6y) xfle xr x 62±a_lx

exp{—6 (x — — b6},
i= 1

all x2 � 0, 6> 0.

This leads to the posterior distribution

71(Xh,Xb,Z,ZrIY)

ex X '{1<i<i<n;xb>O;xh>Oj

where the intensities x2 are determined by (1).

The resulting full conditionals are then

o Hexr 1{>o]

O( • 1[>]

ir(irl•..) cx fJex '[i<i<n]

After initializing x at (y + ), and 6 with a draw
from its full conditional, each parameter was updated
in turn according to its full conditional distribution.
Metropolis updates were used for each x; the can-
didate was drawn from a uniform distribution over
(x2 3). The hyperparameter 6 was updated with
a Gibbs step (ie. a draw from its full conditional).
Several realizations of x from the MCMC output are
shown in Figure 2a. The MCMC chain was run
for 1,000 burn-in cycles, and then realizations were
recorded for the next 10,000 cycles. The collected re-
alizations can be used, for example, to obtain point-
wise 90% credible regions for the true image x as
shown below in Figure 3a.

After initializing (Xh, Xb, €, r) at (20, 10, 10, 30), each
parameter was updated in turn according to its full
conditional distribution. Metropolis updates were
used for each of the parameters: the candidate value
for Xh was drawn uniformly over the range (Xh 2);
the candidate value for Xb was drawn uniformly over
the range (Xb 2); the candidate value for i was
drawn uniformly over the six points {it 3, i 2, e
1}; and the candidate value for r was drawn uni-
formly over the six points {r 3r 2,r 1}. The
MCMC chain was run for 1,000 burn-in cycles, and
then realizations were recorded for the next 10,000 cy-
cles. Several realizations of x from the MCMC output
are shown below in Figure 2b. The collected realiza-
tions can be used, for example, to obtain pointwise
90% credible regions for the true image x as shown
below in Figure 3b.
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(xl6) cx 0 exp{—6(x —

A gamma prior is specified for the hyperparameter 0
so that

'ir(O) cx 9a_1 exp{—bO}, 0 0.

This leads to the posterior distribution

n

(Xh, Xb, Z, r) cx

The resulting full conditionals are then

ir(xf •.) cx exr x
exp{—6[(x — x1)2 + (x —
xi � 0

7r(Oj .) cx

exp{—(xj —x+1)2 —bO},6 >0
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Figure 2a. Posterior realizations of the emission Figure 2b. Posterior realizations of the emission
intensities. intensities.
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Figure 3a. Posterior mean estimate (solid line) and 90% Figure 3b. Posterior mean estimate (solid line) and 90%
credible region for the emission intensities (shaded area). credible region for the emission intensities (shaded area).

Because the two formulations above use rather different priors for x, the nature of the resulting posterior distributions
for x differs a fair bit. This simple example also shows that even rather uninformative data can lead to a sharp
posterior for x if sufficient information is built into the prior, as with the template formulation.

3. APPLICATIONS
3.1. 2—d SPECT and PET Reconstructions
This section considers two examples of 2-dimensional ECT reconstructions: one SPECT; and the other PET. A
standard Poisson model for the ECT data is assumed. Following Vardi, Shepp and Kaufman,'7 let p denote the
probability that a positron or photon emitted from pixel i results in a registration at detector or tube t. In the case
of PET, let x denote the mean intensity of emission of positrons from pixel i over the course of the study; in the
case of single photon emission computed tomography (SPECT) let this variable denote the mean emission rate of
photons from pixel i. Let Yt denote the observed number of registrations in tube or detector t. Assuming that the
probabilities {p} are known, the likelihood function L() may be expressed

L(ylx) flexp (_PXi) . (2)

First a reconstruction of a cylindrical physical SPECT phantom is considered. As a prior for the emission
intensities of a cross section of the phantom we use a 2-dimensional extension of the Gaussian MRF prior given in



the previous example
rr(xIO) O( 02 exp{—8(x — x)2} (3)

where the sum is over each vertical and horizontal adjacency in the 2-dimensional lattice of sites in x. A gamma
prior is used for the hyperparameter £1: rr(9) cx 8le_bO. The values a = 1 and b = .005 are used here, though the
resulting posterior is rather insensitive to a fairly wide range of sensible choices for a and b.

The above formulation leads to the posterior distribution

T Yt

(x,8Jy) O( Hexp (_ PXi) (PXi) x & exp{—8(xi — x)2} x 6a_le_bo

and yields the full conditionals

(xx,O,y) O( flexp (_PXi) .exp{—n6(x —

r(8Ix,y) cx 9a+_lexp{b+ >(xj —x)2}

where n is 4 the number of sites horizontally or vertically adjacent to i — and is the average of these four
neighboring sites.

Hastings updates are used for x drawing the canditate value x from a gamma distribution with mean and
variance both equal to x so that

x* S — 1 e X
q(xxj) =

F(x2)

The candidate x is then accepted with probability

mm iit , ir(xix_i,9,y)q(xflxi)

Though this choice of gamma distribution works well in this application, the candidate distribution may require
additional tuning depending on the spread in the full conditional for x . An alternative might be to use a gamma
distribution rjth mean x and variance fix, where /3 is a constant chosen so that the candidate draw is accepted
roughly half the time. The parameter 8 may be updated using a Gibbs step, sampling directly from a gamma
distribution with shape parameter a+ and scale parameter 1/(b+ —x3)2). Additional details on MCMC
sampling in PET and SPECT applications may be found in Refs. 18 and 19. For the SPECT application, the
posterior mode and mean for x are shown in Figure 4. The rightmost frame shows a 90% credible interval for a
cross-section of x.

Since the prior in (3) sometimes yields overly smooth reconstructions, other MRF priors have been proposed that
allow large intensity differences between adjacent pixels. One such prior was proposed by Geman and McClure2°
which has the form

(xI9) ° 9 exp
[(xi x)/a]2 }

' < < M, for all i,

where a and M are specified constants. Since the value of each x is constrained to lie between 0 and M, this is
a proper prior distribution. However, because the density does not go to 0 as x —x3 goes to oc the prior allows
occasional large intensity "jumps" in x. Such priors can yield very satisfactory point estimates obtained from a
posterior mode, however the resulting posterior distribution may be so spread out as to give useless information
regarding uncertainty. The posterior realizations shown in Figure 5 were obtained by using the prior of Geman and
McClure in a PET application. That the posterior realizations of x are so noisy and irregular suggests that the prior
information, when combined with the data, is not insufficiently strong to give sensible realizations.
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Figure 4. Posterior sliriiixiarv of a SPECT re(oristructiorl of a physical phantom. fhie right niost triune gives a poiitwise 9t%
(re( Ii file interval for a slice along the row of pixels corresponding t a v= 64.

In hindsight this isn't surprising since the MRF gives rather ('rude and lo('al inforniatiori regarding the true scene
.r. In t lie case of relatively low count SPECT and PET imaging. there is insufficient information in the data to
overcome the shortcomings iii the prior. Hence for such imaging iriodalities more informative prior information is
required before tire posterior distribution can be trusted to realistically quantify uncertainty. High-level priors .such
as those given in Refs. 21. 4, 3. 22 and 5 may fare much better Another alternative is to use additional information
from (it liar imaging iriodirlit ies as shown ui final example below.

3.2. Combining information from two sources
This final example is a computer smiulation study which ('ombimles information from MRI and PET. Tire MIII
pliamitomn. shown in the left-hand frame of Figure 6. was obtained from the Hoffman brain phantoru by iddiiig a
lark sphere re>resentimig surgically resected tissue amid by adduig a surrounding shell representing high gadolinium
uptake and a breakdown in the blood brain barrier. The PET phantom is the sanie as the MRI phantom except
hat t he upper left portion of the shell ha.s an activity 5OVc above that of gray matter, as might occur in PET—FDG

imniitginig with a fairly high grade tumor. The lower right portion of the shell has the sanmie activit as white matter.

Figure 5. Posterior realizations of a PET reconstruction using a insufficiently restrictive prior. The final frame shows the
posterior muean estmmnat e.



Figure 6 Two-dimensional MRI and PET phantoms used for the computer simulation study of Section Cl. The left-hand
image represei1ts an MRI. It inclueles a sphere from whicli tumor has been resected and a surrounding bright shell of high
gadolinium uptake. The right—hand image is the PET phantom. The upper left portion of the MRI—defined shell has an
activity 50% above that of gray niatter, which is characteristic of high grade tumor on a FDG PET scan. The lower right
portion of the shell baa the same activity as white matter.

As a prior (listrihutioll for photon emission for the PET data, an anatomical" prior is used winch is based on an
a priori segmentation of the MRI scan. In the spirit of the "template' prior in Section 2.2, x is a piecewise constant
over A connected regions. In this prior. a: must be a refinement of the partition obtained from segmentilig the MRI
scan - so .r must have at least as many separate regions as i11 the MRI segmentation, and possibly more. The number
of distinct regions is treated here as a parameter. Thus x must contain regions corresponding to anatomical tissue
types and possibly additional regions as determined by the PET data. Of particular importance here is detecting
a separate region within the spherical shell—shaped lesion having high gadolinium uptake which cannot be detected
with the NIRI scan

Conditional on the number of separate regions k. the prior for .r is controlled by an image of region labels r which
ma take on values I k and the region intensity means p . The prior for the labels 'r is uniform subject
to the constraint that the resulting partition must he a refinement of the MRI partition; each of the ILk's are given
independent uniform priors over [0, Al] where Al is fixed And finall . the overall number of levels I- is given a Poisson
prior as is used in non-spatial classification modeling in Ref. 24. Thus gives a prior of the form r(pk) x 7r(1k) x 7r(h);
t lie intensities are then a deterministic function of these parameters with X Pr, . Because the dimension of the
posterior distribution may vary, depending on k, generating posterior realizations is not as straightforward as in the
previous examples. Sanipling from such variable dimension distributions requires more sophisticated techniques such
as the reversible jump metropolis algorithm of Green2524 — no attempt to explain tins methodology is made here.

The resulting posterior favors the formation of a second region within the shell of high gadolinium uptake corre-
sponding to the hugh grade tumor. Posterior draws for the intensity and the nuniber of pixels corresponding to the
high grade tumor region are shown in Figure 7 All posterior realizations obtained after the burn-in cycles contain
at least 12 pixels of tumor region. Figure S shows the actual tumor region and the pixels assigned to this region with
posterior probabihit of 75, 50%. 25%. 10% and 2% from left to right.

4. DISCUSSION
This paper has deimionstrated the use of Bayesian Inference via MCMC iii medical imaging applications. With
recent advances in computing, such an approach is possible in quite a range of applications, only a small sample of
which were considered here. Such advances will likely prove worthwhile in areas where uncertaint plays a key role.
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F'igure 7. The first two traines are \IC\lC estimates of posterior (llstril>tltions for t lie voltinie and ac ivitv of the t moor shown

iii Figure 6. TIe' true volume is 0.32 nil, and the true activity is 9(t (iii thousands of ciiiissioiis per voxel). The local \l.AI'
'st imates were ff13 nil and 1590. The last frainie indicates the estimated joint posterior probability (hstrlhlitioii for tilnilor
voluiiie and activity, wit Ii denser areas indicating higher probability.rrrrrr
Figure 8. The' leftmost franie iiidicate the voxels that are in the t unnor (if the PET phiantoni iii Figure 6. Successisi' franiti's
luglilighit voxels whose prohtihilitv of iiienihership ui the tumor was est iiiiiited to tie at least 75(3 50% 25% 10%. and 2
respectively.

Although tins is a relatively new approach for iniaging related probleitis. inethiodoligv shows pruniiisi' iii i'l;tsiticiltioni.
feat tire recogliti ion, and feat tile location.

Sortie care niitist be tal-ieni iii i'hioosing tie' prior distribution. Priurs winch lead to good pout est iniates (eg.
posterior mode solutions) can give unrealisticall dispersed posterior distributions as iii the second exatiiple of
Sect ion 3. 1. lIt 'ii' any uncertaiitv estimates derived front such a post erioi' will not be reliable. This luglilighit s ii need
to develop realistic priors for such ;opplicitioniS.
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