Motion estimation or optic flow computation for automatic navigation and obstacle avoidance programs running on Unmanned Aerial Vehicles (UAVs) is a challenging task. These challenges come from the requirements of real-time processing speed and small light-weight image processing hardware with very limited resources (especially memory space) embedded on the UAVs. Solutions towards both simplifying computation and saving hardware resources have recently received much interest. This paper presents an approach for image registration using binary images which addresses these two requirements. This approach uses translational information between two corresponding patches of binary images to estimate global motion. These low bit-resolution images require a very small amount of memory space to store them and allow simple logic operations such as XOR and AND to be used instead of more complex computations such as subtractions and multiplications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.