Significance: Our study introduces an application of deep learning to virtually generate fluorescence images to reduce the burdens of cost and time from considerable effort in sample preparation related to chemical fixation and staining.
Aim: The objective of our work was to determine how successfully deep learning methods perform on fluorescence prediction that depends on structural and/or a functional relationship between input labels and output labels.
Approach: We present a virtual-fluorescence-staining method based on deep neural networks (VirFluoNet) to transform co-registered images of cells into subcellular compartment-specific molecular fluorescence labels in the same field-of-view. An algorithm based on conditional generative adversarial networks was developed and trained on microscopy datasets from breast-cancer and bone-osteosarcoma cell lines: MDA-MB-231 and U2OS, respectively. Several established performance metrics—the mean absolute error (MAE), peak-signal-to-noise ratio (PSNR), and structural-similarity-index (SSIM)—as well as a novel performance metric, the tolerance level, were measured and compared for the same algorithm and input data.
Results: For the MDA-MB-231 cells, F-actin signal performed the fluorescent antibody staining of vinculin prediction better than phase-contrast as an input. For the U2OS cells, satisfactory metrics of performance were archieved in comparison with ground truth. MAE is <0.005, 0.017, 0.012; PSNR is >40 / 34 / 33 dB; and SSIM is >0.925 / 0.926 / 0.925 for 4′,6-diamidino-2-phenylindole/hoechst, endoplasmic reticulum, and mitochondria prediction, respectively, from channels of nucleoli and cytoplasmic RNA, Golgi plasma membrane, and F-actin.
Conclusions: These findings contribute to the understanding of the utility and limitations of deep learning image-regression to predict fluorescence microscopy datasets of biological cells. We infer that predicted image labels must have either a structural and/or a functional relationship to input labels. Furthermore, the approach introduced here holds promise for modeling the internal spatial relationships between organelles and biomolecules within living cells, leading to detection and quantification of alterations from a standard training dataset.
In this paper, we present detail analysis and a step-by-step implementation of an optimized fringe projection profilometry (FPP) based 3D shape measurement system. First, we propose a multi-frequency and multi-phase shifting sinusoidal fringe pattern reconstruction approach to increase accuracy and sensitivity of the system. Second, phase error compensation caused by the nonlinear transfer function of the projector and camera is performed through polynomial approximation. Third, phase unwrapping is performed using spatial and temporal techniques and the tradeoff between processing speed and high accuracy is discussed in details. Fourth, generalized camera and system calibration are developed for phase to real world coordinate transformation. The calibration coefficients are estimated accurately using a reference plane and several gauge blocks with precisely known heights and by employing a nonlinear least square fitting method. Fifth, a texture will be attached to the height profile by registering a 2D real photo to the 3D height map. The last step is to perform 3D image fusion and registration using an iterative closest point (ICP) algorithm for a full field of view reconstruction. The system is experimentally constructed using compact, portable, and low cost off-the-shelf components. A MATLAB® based GUI is developed to control and synchronize the whole system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.