Fluorescent nanodiamonds made from high-pressure high-temperature diamond are increasingly used in biological imaging and sensing applications. To date, only red and green fluorescent nanodiamonds are widely available, severely limiting nanodiamond-based multiplexed imaging. Here, we report on recent progress in the fabrication and characterization of fluorescent nanodiamonds with fluorescence colors from 450 nm to 900 nm. The fluorescence originates from a range of fluorescent color centers based on nitrogen, silicon, nickel and vacancy defects in the diamond lattice. The optical properties of these color centers in diamond nanoparticles are discussed in detail and the utility of nanodiamond-based multiplexed bioimaging demonstrated in experiments in-vitro.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.