Metal Artifacts remain a problem in Cone-Beam CT (CBCT) imaging, especially reducing clinical value in trauma applications by obscuring the important area around implants. Building on existing Metal Artifact Avoidance (MAA) algorithms, we formulate a metric based on the scatter fraction, introduce a shape model which reduces computational requirements and analyze the feasibility of using only two scout views as prior information.
Driven by the observation that orbit optimization requires knowledge of the position, extent, and orientation of metallic objects in the volume of interest (VOI), we devise a shape model in the form of ellipsoids. Reconstructing an ellipsoid from two projection images is not unambiguously possible using analytic methods. By interpreting the problem as probability density estimation, a maximum likelihood fit can be recovered using a Gaussian Mixture Model (GMM). This parametric representation of metal objects is used to efficiently calculate metal pathlength maps for candidate projections on tilted circular trajectories through analytic forward projection. The scatter fraction behind the metal object is modelled as a function of metal pathlength to score views and choose artifact minimizing tilted trajectories.
Given two projection images of simulated ellipsoidal objects, the GMM accurately estimates the position and longest axis length within millimeter tolerance. Depending on the orientation relative to the two acquired scout views, an estimation error within the scout-view plane is observed. The generalization on measured data and the shape model hypothesis is verified in a phantom study showing a good correspondence of the modelled metric and observed reduction of artifacts in the tilted CBCT scans.
The severity of Metal Artifacts can be reduced by optimizing trajectories on low-fidelity shape models. These surrogate representations can be efficiently estimated from two views for most relative object orientations, but a well-defined ‘blind spot’ remains. The reconstruction error was found to have little effect on tilted orbit optimization if the tilt-axis is contained in the scout-view plane.Methods: Important aspects of CBCT angiography were investigated, weighting tradeoffs among the magnitude of iodine enhancement (peak contrast), the degree of data consistency, and the degree of data sparsity. Simulation studies were performed across a range of CBCT half-scan acquisition speed ranging ~3 – 17 s. Experiments were conducted using a CBCT prototype and an anthropomorphic neurovascular phantom incorporating a vessel with contrast injection with a time-attenuation (TAC) injection giving low data consistency but high peak contrast. Images were reconstructed using filtered back-projection (FBP), penalized likelihood (PL), and the RoD algorithm. Data were evaluated in terms of root mean square error (RMSE) in image enhancement as well as overall image noise and artifact.
Results: Feasibility was demonstrated for 3D angiographic assessment in CBCT images acquired across a range of data consistency and sparsity. Compared to FBP, the RoD method reduced the RMSE in reconstructed images by 50.0% in simulation studies (fixed peak contrast; variable data consistency and sparsity). The improvement in RMSE compared to PL reconstruction was 28.8%. The phantom experiments investigated conditions of low data consistency, RoD provided a 15.6% reduction in RMSE compared to FBP and a 16.3% reduction compared to PL, showing the feasibility of RoD method for slow-rotating CBCT-A system.
Conclusions: Simulations and phantom experiments show the feasibility and improved performance of the RoD approach compared to FBP and PL reconstruction, enabling 3D neuro-angiography on a slowly rotating CBCT system (e.g., 17.1s for a half-scan). The algorithm is relatively robust against data sparsity and is sensitive in detecting low levels of contrast enhancement from the baseline (mask) scan. Tradeoffs among peak contrast, data consistency, and data sparsity are demonstrated clearly in each experiment and help to guide the development of optimal contrast injection protocols for future preclinical and clinical studies.
Methods: The prototype CMOS-based CBCT involves a DALSA Xineos3030 detector (99 μm pixels) with 400 μm-thick CsI scintillator and a compact 0.3 FS rotating anode x-ray source. We compare the performance of CMOS CBCT to an a- Si:H FPD scanner built on a similar gantry, but using a Varian PaxScan2530 detector with 0.137 mm pixels and a 0.5 FS stationary anode x-ray source. Experimental studies include measurements of Modulation Transfer Function (MTF) for the detectors and in 3D image reconstructions. Image quality in clinical scenarios is evaluated in scans of a cadaver ankle. Metrics of trabecular microarchitecture (BV/TV, Bone Volume/Total Volume, TbSp, Trabecular Spacing, and TbTh, trabecular thickness) are obtained in a human ulna using CMOS CBCT and a-Si:H FPD CBCT and compared to gold standard μCT.
Results: The CMOS detector achieves ~40% increase in the f20 value (frequency at which MTF reduces to 0.20) compared to the a-Si:H FPD. In the reconstruction domain, the FWHM of a 127 μm tungsten wire is also improved by ~40%. Reconstructions of a cadaveric ankle reveal enhanced modulation of trabecular structures with the CMOS detector and soft-tissue visibility that is similar to that of the a-Si:H FPD system. Correlations of the metrics of bone microarchitecture with gold-standard μCT are improved with CMOS CBCT: from 0.93 to 0.98 for BV/TV, from 0.49 to 0.74 for TbTh, and from 0.9 to 0.96 for TbSp.
Conclusion: Adoption of a CMOS detector in extremity CBCT improved spatial resolution and enhanced performance in metrics of bone microarchitecture compared to a conventional a-Si:H FPD. The results support development of clinical applications of CMOS CBCT in quantitative imaging of bone health.
Methods: The tradeoffs in dose and image quality were investigated as a function of analytical (FBP) and model-based iterative reconstruction (PWLS) algorithm parameters using phantoms with ICH-mimicking inserts. Image quality in clinical applications was evaluated in a human cadaver imaged with simulated ICH. Objects outside of the field of view (FOV), such as the head-holder, were found to introduce challenging truncation artifacts in PWLS that were mitigated with a novel multi-resolution reconstruction strategy. Following phantom and cadaver studies, the scanner was translated to a clinical pilot study. Initial clinical experience indicates the presence of motion in some patient scans, and an image-based motion estimation method that does not require fiducial tracking or prior patient information was implemented and evaluated.
Results: The weighted CTDI for a nominal scan technique was 22.8 mGy. The high-resolution FBP reconstruction protocol achieved < 0.9 mm full width at half maximum (FWHM) of the point spread function (PSF). The PWLS soft-tissue reconstruction showed <1.2 mm PSF FWHM and lower noise than FBP at the same resolution. Effects of truncation in PWLS were mitigated with the multi-resolution approach, resulting in 60% reduction in root mean squared error compared to conventional PWLS. Cadaver images showed clear visualization of anatomical landmarks (ventricles and sulci), and ICH was conspicuous. The motion compensation method was shown in clinical studies to restore visibility of fine bone structures, such as the subtle fracture, cranial sutures, and the cochlea as well as subtle low-contrast structures in the brain parenchyma.
Conclusion: The imaging performance of the prototype suggests sufficient quality for ICH imaging and motivates continued clinical studies to assess the diagnosis utility of the CBCT system in realistic clinical scenarios at the point of care.
View contact details