The large apertures of the upcoming generation of Giant Segmented Mirror Telescopes will enable unprecedented angular resolutions that scale as ∝λ/D and higher sensitivities that scale as D4 for point sources corrected by adaptive optics (AO). However, all will have pupil segmentation caused by mechanical struts holding up the secondary mirror (European Extremely Large Telescope and Thirty Meter Telescope) or intrinsically, by design, as in the Giant Magellan Telescope (GMT). These gaps will be separated by more than a typical atmospheric coherence length (Fried Parameter). The pupil fragmentation at scales larger than the typical atmospheric coherence length, combined with wavefront sensors with weak or ambiguous sensitivity to differential piston, can introduce differential piston areas of the wavefront known as “petal modes.” Commonly used wavefront sensors, such as a pyramid wavefront sensor, also struggle with phase wrapping caused by >λ/2 differential piston wavefront error (WFE). We have developed the holographic dispersed fringe sensor (HDFS), a single pupil-plane optic that employs holography to interfere the dispersed light from each segment onto different spatial locations in the focal plane to sense and correct differential piston between the segments. This allows for a very high and linear dynamic piston sensing range of approximately ±10 μm. We have begun the initial attempts at phasing a segmented pupil utilizing the HDFS on the High Contrast Adaptive optics phasing Testbed (HCAT) and the Extreme Magellan Adaptive Optics instrument (MagAO-X) at the University of Arizona. In addition, we have demonstrated the use of the HDFS as a differential piston sensor on-sky for the first time. We were able to phase each segment to within ±λ/11.3 residual piston WFE (at λ=800 nm) of a reference segment and achieved ∼50 nm RMS residual piston WFE across the aperture in poor seeing conditions.
ELTs have the potential for imaging reflected light from habitable rocky planets around M-stars. To address that exciting science we present the PDR level optical-mechanical design for a high-contrast coronagraphic instrument for the 25.4m Giant Magellan Telescope (GMT) called GMagAO-X. It is a first light extreme adaptive optics (ExAO) coronagraphic instrument which mounts to the sector D folded port of the GMT. To meet the strict ExAO fitting and servo error requirement (<90nm rms WFE), GMagAO-X must have 21,000 actuator DM capable of >2KHz update speeds. To minimize wavefront/segment piston error GMagAO-X has an interferometric beam combiner on a vibration isolated table, as part of this 21,000 actuator “parallel DM”. Segment/petal piston errors are continuously sensed by a novel Holographic Dispersed Fringe Sensor (HDFS). In addition to a coronagraph, it has a post-coronagraphic Lyot Low Order WFS (LLOWFS) to sense non-common path (NCP) errors. The LLOWFS drives a non-common path DM (NCP DM) to correct those NCP errors. GMagAO-X obtains high-contrast science and wavefront sensing in the visible or the NIR. Here we present our successful, externally reviewed (Feb. 2024), PDR optical-mechanical design that satisfies GMagAO-X’s top-level science requirements and is compliant with the GMT instrument requirements/ICDs and only requires COTS parts and readily available 2-5 inch sized optics. We have also prototyped the parallel DM and the HDFS phasing sensor on the HCAT testbed. We show initial phased HCAT testbed results for the parallel DM and initial on-sky phasing results for HDFS.
MagAO-X is the extreme coronagraphic adaptive optics (AO) instrument for the 6.5-meter Magellan Clay telescope and is currently undergoing a comprehensive batch of upgrades. One innovation that the instrument features is a deformable mirror (DM) dedicated for non-common path aberration correction (NCPC) within the coronagraph arm. We recently upgraded the 97 actuator NCPC DM with a 1000 actuator Boston Micromachines Kilo-DM which serves to (1) correct non-common path aberrations which hamper performance at small inner-working angles, (2) facilitate focal-plane wavefront control algorithms (e.g., electric field conjugation) and (3) enable 10kHz correction speeds (up from 2kHz) to assist post-AO, real-time low-order wavefront control. We present details on the characterization and installation of this new DM on MagAO-X as part of our efforts to improve deep contrast performance for imaging circumstellar objects in reflected light. Pre-installation procedures included use of a Twyman-Green interferometer to build an interaction matrix for commanding the DM surface, in closed-loop, to a flat state for seamless integration into the instrument. With this new NCPC DM now installed, we report on-sky results from the MagAO-X observing run in March to May 2024 for the Focus Diversity Phase Retrieval and implicit Electric Field Conjugation algorithms for quasistatic speckle removal and in-situ Strehl ratio optimization, respectively.
All high-contrast imaging instruments are plagued by non-common path aberrations (NCPA). MagAO-X has a unique second-stage Adaptive Optics (AO) system that contains a dedicated deformable mirror (DM) that is not seen by the main AO wavefront sensor for NCPA compensation. Our second stage AO system decouples the focal plane wavefront control from the main AO loop that is driven by a pyramid wavefront sensor. This Non-Common Path Aberration Correction DM (ncpcDM) has been recently upgraded from an ALPAO-97 to a Boston Micromachine Kilo-DM. The large increase in the number of actuators on the ncpcDM enables high-order focal plane wavefront control algorithms such as implicit Electric Field Conjugation (iEFC). We developed iEFC on MagAO-X to create a data-driven approach to coronagraphic dark hole digging. Our preliminary results indicate that iEFC together with the second-stage AO system can improve the raw contrast of MagAO-X by one to two orders of magnitude with an even larger gain expected after post-processing. We will review the focal-plane wavefront sensing and control strategies of MagAO-X and present the first on-sky results of iEFC with the second-stage AO system.
Almost all current and future high-contrast imaging instruments will use a Pyramid wavefront sensor (PWFS) as primary or secondary wavefront sensor. The main issue with the PWFS is its nonlinear response to large phase aberrations, especially under strong atmospheric turbulence. In this talk, we will present closed-loop lab results of a nonlinear reconstructor for the unmodulated PWFS of MagAO-X based on Convolutional Neural Networks. We show that our nonlinear reconstructor has a dynamic range of >600 nm rms, significantly outperforming the linear reconstructor that only has a 50 nm rms dynamic range. The reconstructor behaves well in closed-loop and can obtain >80% Strehl under a large variety of conditions and reaches higher Strehl ratios than the linear reconstructor under all simulated conditions. The CNN reconstructor implementation also achieves the theoretical sensitivity limit of a pyramid wavefront sensor showing that it does not lose its sensitivity in exchange for dynamic range. The current CNN’s computational time is 690 us which enables systems to run at >1 kHz. We will also discuss the real-time implementation on MagAO-X and show preliminary on-sky tests.
The high contrast and spatial resolution requirements for directly imaging exoplanets requires effective coordination of wavefront control, coronagraphy, observation techniques, and post-processing algorithms. However, even with this suite of tools, identifying and retrieving exoplanet signals embedded in resolved scattered light regions can be extremely challenging due to the increased noise from scattered light off the circumstellar disk and the potential misinterpretation of the true nature of the detected signal. This issue pertains not only to imaging terrestrial planets in habitable zones within zodiacal and exozodiacal emission but also to young planets embedded in circumstellar, transitional, and debris disks. This is particularly true for Hα detection of exoplanets in transitional disks. This work delves into recent Hα observations of three transitional disks systems with MagAO-X, an extreme adaptive optics system for the 6.5-meter Magellan Clay telescope. We employed angular differential imaging (ADI) and simultaneous spectral differential imaging (SSDI) in combination with KLIP, a PCA algorithm in post-processing, for optimal starlight suppression and quasi-static noise removal. We discuss the challenges in protoplanet identification with MagAO-X in environments rich with scattered and reflected light from disk structures and explore a potential solution for removing noise contributions from real astronomical objects with current observation and post-processing techniques.
High-contrast imaging data analysis depends on removing residual starlight from the host star to reveal planets and disks. Most observers do this with principal components analysis (i.e. KLIP) using modes computed from the science images themselves. These modes may not be orthogonal to planet and disk signals, leading to over-subtraction. The wavefront sensor data recorded during the observation provide an independent signal with which to predict the instrument point-spread function (PSF). MagAO-X is an extreme adaptive optics (ExAO) system for the 6.5-meter Magellan Clay telescope and a technology pathfinder for ExAO with GMagAO-X on the upcoming Giant Magellan Telescope. MagAO-X is designed to save all sensor information, including kHz-speed wavefront measurements. Our software and compressed data formats were designed to record the millions of training samples required for machine learning with high throughput. The large volume of image and sensor data lets us learn a PSF model incorporating all the information available. This allows us to probe smaller star-planet separations at greater sensitivities, which will be needed for rocky planet imaging.
Refractive index changes in the Earth’s atmosphere cause differential atmospheric dispersion, an unwanted wavelength dependency in the observations of ground-based astronomical telescopes. These dispersion effects cause smearing of the telescope’s point-spread function (PSF), resulting in difficulty when performing high-contrast imaging at small inner-working angles due to reduced coronagraph light-blocking efficiency. An Atmospheric Dispersion Corrector (ADC) is used to compensate for these effects. Current approaches use analytical models to anticipate dispersion effects at different telescope zenith angles; however, uncertainties in these models lead to over- or under-correction of the true atmospheric dispersion by the ADC. As an alternative, we present a closed-loop approach to this problem using the Magellan Adaptive Optics eXtreme (MagAO-X) instrument to measure and correct for dispersion effects as they appear. Residual atmospheric dispersion can be measured from artificial speckles on our science image, which are created by sinusoidal phase patterns on the deformable mirror. We use a forward model phase retrieval approach to determine the proper correction parameters to send to the ADC. Increasing the precision of our dispersion compensation is especially important as we prepare for the next generation of ground-based observations with the Giant Magellan Telescope.
The next generation of extreme adaptive optics (AO) must be calibrated exceptionally well to achieve the desired contrast for ground-based direct imaging exoplanet targets. Current wavefront sensing and control system responses deviate from lab calibration throughout the night due to non linearities in the wavefront sensor (WFS) and signal loss. One cause of these changes is the optical gain (OG) effect, which shows that the difference between actual and reconstructed wavefronts is sensitive to residual wavefront errors from partially corrected turbulence. This work details on-sky measurement of optical gain on MagAO-X, an extreme AO system on the Magellan Clay 6.5m. We ultimately plan on using a method of high-temporal frequency probes on our deformable mirror to track optical gain on the Pyramid WFS. The high-temporal frequency probes, used to create PSF copies at 10-22 λ/D, are already routinely used by our system for coronagraph centering and post-observation calibration. This method is supported by the OG measurements from the modal response, measured simultaneously by sequenced pokes of each mode. When tracked with DIMM measurements, optical gain calibrations show a clear dependence on Strehl Ratio, and this relationship is discussed. This more accurate method of calibration is a crucial next step in enabling higher fidelity correction and post processing techniques for direct imaging ground based systems.
In the past two years significant forward progress has been achieved in development of Adaptive Optics sensing and control technology needed for the observation modes of the Giant Magellan Telescope1. Most notable is the recent progress in demonstrating the accurate and stable control of segment piston in the diffraction-limited Natural Guide Star AO observation mode. Two NSF-funded testbeds have been successfully operated to validate the control algorithms for active optics, adaptive optics and segment piston in diffraction-limited observation. GMTO also built and operated wavefront sensor prototypes and integrated them with the testbeds. The testing has largely validated the wavefront sensor designs and has retired much of the fabrication and assembly risks. In parallel with the hardware demonstrations, significant progress has been achieved in both NGAO and LTAO control simulations verifying compliance with the required performance in each of these observation modes and thereby supporting the image quality budgets. In the area of design the GMTO Telescope Metrology Subsytem has passed its Preliminary Design Review and the conceptual design of the Adaptive Optics Test Camera has been completed. Finally, a Delta Preliminary Design phase for the LTAO hardware has begun.
The Natural Guide-star Adaptive Optics (NGAO) mode of the Giant Magellan Telescope (GMT) is one of the two diffraction-limited AO modes under development by GMTO and its partner institutions. It will use the Adaptive Secondary Mirror (ASM) for wavefront correction, and a Natural Guide star Wavefront Sensor (NGWS) unit featuring two visible-light sensing channels to measure wavefront aberrations, including phasing errors between the seven segments of the GMT. The first NGWS channel features a modulated pyramid wavefront sensor (PWFS) and the second NGWS channel features a Holographic Dispersed Fringe Sensor (HDFS), which unambiguously detects segment piston errors as large as ~10 microns in wavefront. To test the performance of this novel wavefront sensing architecture, a prototype of the NGWS was built and integrated with the High Contrast AO Testbed (HCAT) and the MagAO-X system in the laboratories of the Center of Astronomical Adaptive Optics (CAAO) of the University of Arizona. The INAF Arcetri AO group designed and built the first NGWS channel, while GMTO designed and built the second NGWS channel in collaboration with CAAO. We report in this contribution the results of the laboratory experiments conducted over two two-week runs held in 2023 that demonstrate the capability of the NGWS to sense and correct for wavefront and phasing errors under the presence of mild atmospheric disturbances using the GMT NGAO control algorithms adapted to the testbed.
MagAO-X is the coronagraphic extreme adaptive optics system for the 6.5m Magellan Clay Telescope. We report the results of commissioning the first phase of MagAO-X. Components now available for routine observations include: the >2kHz high-order control loop consisting of a 97 actuator woofer deformable mirror (DM), a 2040 actuator tweeter DM, and a modulated pyramid wavefront sensor (WFS); classical Lyot coronagraphs with integrated low-order (LO) WFS and control using a third 97-actuator non-common path correcting (NCPC) DM; broad band imaging in g, r, i, and z filters with two EMCCDs; simultaneous differential imaging in Hα; and integral field spectroscopy with the VIS-X module. Early science results include the discovery of an Hα jet, images of accreting protoplanets at Hα, images of young extrasolar giant planets in the optical, discovery of new white dwarf companions, resolved images of evolved stars, and high-contrast images of circumstellar disks in scattered light in g-band (500nm). We have commenced an upgrade program, called “Phase II”, to enable high-contrast observations at the smallest inner working angles possible. These upgrades include a new 952 actuator NCPC DM to enable coronagraphic wavefront control; phase induced amplitude apodization coronagraphs; new fast cameras for LOWFS and Lyot-LOWFS; and real-time computer upgrades. We will report the status of these upgrades and results of first on-sky testing in March-May 2024.
The upcoming Extremely Large Telescopes have the angular resolution and light collecting area that is necessary to observe biosignatures in the atmospheres of Earth-like planets. High-contrast imaging instruments will play a large role in this because observing planets directly overcomes many of the observational limitations of other exoplanet detection techniques. The influence of the bright star can be significantly reduced by spatially resolving the dim planet, allowing characterization of the planet and its atmosphere. However, the required wavefront sensing, and control (WFS&C) technologies have yet to be proven on-sky. The Magellan Adaptive Optics eXtreme (MagAO-X) instrument is a new visible to near-infrared high-contrast imaging system that operates as a testbed for the development and testing of WFS&C techniques.
A comprehensive education of optical engineers is of paramount importance to the development of the industry. While optical sciences and engineering curricula are set up to teach theoretical concepts comprehensively, there appears to be a lack of required coursework that teaches students how to use industry-standard software that they will inevitably use in their careers. The Practical Optics Workshop (POW) is an initiative at the University of Arizona’s Wyant College of Optical Sciences to support the education of students that use optical design software. POW’s aim is to bridge the gap between the theory of optical system design and the problems the optical engineers of the future will face daily. POW has principally engaged students through short workshop sessions and optical design problems through inquiry-based learning activities. However, during the COVID-19 pandemic new activities have been designed to support self-paced and virtual learning to ensure the accessibility of Optical Design software education. We present the status of POW’s current initiatives and how they have impacted student learning, as well as the design of future initiatives that POW is developing for a self-paced curriculum.
The 25.4m Giant Magellan Telescope (GMT) will be amongst the first in a new series of segmented extremely large telescopes (ELTs). The 25.4 m pupil is segmented into seven 8.4 m circular segments in a flower petal pattern. At the University of Arizona we have developed a novel pupil slicer that will be used for ELT extreme adaptive optics (ExAO) on the up and coming ExAO instrument, GMagAO-X. This comes in the form of a six-sided reflective pyramid with a hole through the center known as a “hexpyramid”. By passing the GMT pupil onto this reflective optic, the six outer petals will be sent outward in six different directions while the central segment passes through the center. Each segment will travel to its own polarization independent flat fold mirror mounted on a piezoelectric piston/tip/tilt controller then onto its own commercial 3,000 actuator deformable mirror (DM) that will be employed for extreme wavefront control. This scheme of seven DMs working in parallel to produce a 21,000 actuator DM is a new ExAO architecture that we named a “parallel DM,” in which the hexpyramid is a key optical component. This significantly surpasses any current or near future actuator count for any monolithic DM architecture. The optical system is designed for high-quality wavefront (λ/10 surface PV) with no polarization errors and no vignetting. The design and fabrication of the invar mechanical mounting structure for this complex optical system is described in this paper.
The Giant Magellan Telescope (GMT) design consists of seven circular 8.4-m diameter mirror segments that are separated by large > 30 cm gaps, making them susceptible to fluctuations in optical path differences (piston) due to flexure, segment vibrations, wind buffeting, temperature effects, and atmospheric seeing. If we wish to utilize the full 25.4-m diffractionlimited aperture of the GMT for high-contrast natural guide star adaptive optics (NGSAO) science (e.g., direct imaging of habitable zone earth-like planets around late type stars), the seven mirror segments must be co-phased to well within a fraction of a wavelength. The current design of the GMT involves seven adaptive secondary mirrors, a dispersed fringe sensor, and a pyramid wavefront sensor (PyWFS) to measure and correct the total path length between segment pairs, but these methods need to be tested “end-to-end” in a lab environment if we hope to officially retire the GMT high risk item of phasing performance. We present the design and working prototype of a “GMT High-Contrast Adaptive Optics phasing Testbed” (p-HCAT) which leverages the existing MagAO-X ExAO instrument to demonstrate segment phase sensing and simultaneous AO-control for high-contrast GMT NGSAO science. We present the first test results of closed-loop piston control with one GMT segment using MagAO-X’s PyWFS and a novel Holographic Dispersed Fringe Sensor (HDFS) with and without simulated atmospheric turbulence. We show that the PyWFS alone was able to successfully control piston without turbulence within 12-33 nm RMS for 0 λ/D – 5 λ/D modulation, but was unsuccessful at controlling segmented piston with generated ∼ 0.6 arcsec and ∼ 1.2 arcsec seeing turbulence due to non-linear modal cross-talk and poor pixel sampling of the segment gaps on the PyWFS detector. We report the success of an alternate solution to control segmented piston using the novel HDFS while controlling all other modes with the PyWFS purely as a slope sensor (piston mode removed). This “second channel” WFS method worked well to control piston to within 50 nm RMS and ± 10 μm dynamic range under simulated 0.6 arcsec and 1.2 arcsec atmospheric seeing conditions. These results suggest that a PyWFS alone is not an ideal piston sensor for the GMT and likely other Giant Segmented Mirror Telescopes (GSMTs) as well. Therefore, an additional “second channel” piston sensor, such as the novel HDFS, is strongly suggested.
GMagAO-X is the ExAO coronagraphic instrument for the 25.4m GMT. It is designed for a slot on the folded port of the GMT. To meet the strict ExAO fitting and servo error requirement (<90nm rms WFE), GMagAO-X must have 21,000 actuator DM capable of ≥2KHz correction speeds. To minimize wavefront/segment piston error GMagAO-X has an interferometric beam combiner on a vibration isolated table, as part of this “21,000 actuator parallel DM”. Piston errors
are sensed by a Holographic Dispersed Fringe Sensor (HDFS). In addition to a coronagraph, it has a post-coronagraphic Low Order WFS (LLOWFS) to sense non-common path (NCP) errors. The LLOWFS drives a non-common path DM (NCP DM) to correct those NCP errors. GMagAO-X obtains high-contrast science and wavefront sensing in the visible and/or the NIR. Here we present our successful externally reviewed (Sept. 2021) CoDR optical-mechanical design that satisfies GMagAO-X’s top-level science requirements and is compliant with the GMT instrument requirements and only requires COTS parts.
One of the greatest technical challenges of the doubly-segmented Giant Magellan Telescope is the accurate and stable control of segment piston in the diffraction limited observation mode. To address this challenge, in collaboration with the University of Arizona, Smithsonian Astrophysical Observatory and the Istituto Nazionale di Astrofisica, GMTO is executing a project to optimize and validate segment piston control strategies and algorithms using a pair of testbeds. The testbeds provide disturbances to simulate atmospheric turbulence and differential atmospheric dispersion. In addition to the phasing demonstration, the testbeds offer the opportunity to validate hardware designs for the Acquisition & Guiding Wavefront Sensor (AGWS) and the Natural Guide Star Wavefront Sensor (NGWS) and to mitigate their fabrication and assembly risks. Significant progress is reported in the design of the AGWS and NGWS prototypes as well as preliminary test results from the testbeds.
The search for exoplanets is pushing adaptive optics systems on ground-based telescopes to their limits. Currently, we are limited by two sources of noise: the temporal control error and non-common path aberrations. First, the temporal control error of the AO system leads to a strong residual halo. This halo can be reduced by applying predictive control. We will show and described the performance of predictive control with the 2K BMC DM in MagAO-X. After reducing the temporal control error, we can target non-common path wavefront aberrations. During the past year, we have developed a new model-free focal-plane wavefront control technique that can reach deep contrast (<1e-7 at 5 λ/D) on MagAO-X. We will describe the performance and discuss the on-sky implementation details and how this will push MagAO-X towards imaging planets in reflected light. The new data-driven predictive controller and the focal plane wavefront controller will be tested on-sky in April 2022.
We present a status update for MagAO-X, a 2000 actuator, 3.6 kHz adaptive optics and coronagraph system for the Magellan Clay 6.5 m telescope. MagAO-X is optimized for high contrast imaging at visible wavelengths. Our primary science goals are detection and characterization of Solar System-like exoplanets, ranging from very young, still-accreting planets detected at H-alpha, to older temperate planets which will be characterized using reflected starlight. First light was in Dec, 2019, but subsequent commissioning runs were canceled due to COVID19. In the interim, MagAO-X has served as a lab testbed. Highlights include implementation of several focal plane and low-order wavefront sensing algorithms, development of a new predictive control algorithm, and the addition of an IFU module. MagAO-X also serves as the AO system for the Giant Magellan Telescope High Contrast Adaptive Optics Testbed. We will provide an overview of these projects, and report the results of our commissioning and science run in April, 2022. Finally, we will present the status of a comprehensive upgrade to MagAO-X to enable extreme-contrast characterization of exoplanets in reflected light. These upgrades include a new post-AO 1000-actuator deformable mirror inside the coronagraph, latest generation sCMOS detectors for wavefront sensing, optimized PIAACMC coronagraphs, and computing system upgrades. When these Phase II upgrades are complete we plan to conduct a survey of nearby exoplanets in reflected light.
The Extremely Large Telescopes will require hundreds of actuators across the pupil for high Strehl in the visible. We envision a triple-stage AO (TSAO) system for GMT/GMagAO-X to achieve this. The first stage is a 4K DM controlled by an IR pyramid wavefront sensor that provides the first order correction. The second stage contains the high-order parallel DM of GMagAO-X that has 21000 actuators and contains an interferometric delay line for phasing of each mirror segment. This stage uses a Zernike wavefront sensor for high-order modes and a Holographic Dispersed Fringe Sensor for segment piston control. Finally, the third stage uses a dedicated 3K dm for non-common path aberration control and the coronagraphic wavefront control by using focal plane wavefront sensing and control. The triple stage architecture has been chosen to create simpler decoupled control loops. This work describes the performance of the proposed triple-stage AO architecture for ExAO with GMagAO-X.
We present the conceptual design of GMagAO-X, an extreme adaptive optics system for the 25 m Giant Magellan Telescope (GMT). We are developing GMagAO-X to be available at or shortly after first-light of the GMT, to enable early high contrast exoplanet science in response to the Astro2020 recommendations. A key science goal is the characterization of nearby potentially habitable terrestrial worlds. GMagAO-Xis a woofer-tweeter system, with integrated segment phasing control. The tweeter is a 21,000 actuator segmented deformable mirror, composed of seven 3000 actuator segments. A multi-stage wavefront sensing system provides for bootstrapping, phasing, and high order sensing. The entire instrument is mounted in a rotator to provide gravity invariance. After the main AO system, visible (g to y) and near-IR (Y to H) science channels contain integrated coronagraphic wavefront control systems. The fully corrected and, optionally, coronagraphically filtered beams will then be fed to a suite of focal plane instrumentation including imagers and spectrographs. This will include existing facility instruments at GMT via fiber feeds. To assess the design we have developed an end-to-end frequency-domain modeling framework for assessing the performance of GMagAO-X. The dynamics of the many closed-loop feedback control systems are then modeled. Finally, we employ a frequency-domain model of post-processing algorithms to analyze the final post-processed sensitivity. The CoDR for GMagAO-X was held in September, 2021. Here we present an overview of the science cases, instrument design, expected performance, and concept of operations for GMagAO-X.
MagAO-X is an extreme adaptive optics (ExAO) instrument for the Magellan Clay 6.5-meter telescope at Las Campanas Observatory in Chile. Its high spatial and temporal resolution can produce data rates of 1 TB/hr or more, including all AO system telemetry and science images. We describe the tools and architecture we use for commanding, telemetry, and science data transmission and storage. The high data volumes require a distributed approach to data processing, and we have developed a pipeline that can scale from a single laptop to dozens of HPC nodes. The same codebase can then be used for both quick-look functionality at the telescope and for post-processing. We present the software and infrastructure we have developed for ExAO data post-processing, and illustrate their use with recently acquired direct-imaging data.
The Giant Magellan Telescope (GMT) design consists of seven circular 8.4-m diameter mirrors, together forming a single 25.4-m diameter primary mirror. This large aperture and collecting area can help extreme adaptive optics (ExAO) systems such as GMT’s GMagAO-X achieve the small angular resolutions and contrasts required to image habitable zone earth-like planets around late type stars and possibly lead to the discovery of life outside of our solar system. However, the GMT primary mirror segments are separated by large >30 cm gaps, creating the possibility of fluctuations in optical path differences (piston) due to flexure, segment vibrations, wind buffeting, temperature effects, and atmospheric seeing. To utilize the full diffraction-limited aperture of the GMT for high-contrast, natural guide star-adaptive optics science, the seven mirror segments must be co-phased to well within a fraction of a wavelength. The current design of the GMT involves seven adaptive secondary mirrors, a slow (∼0.03 Hz) off-axis dispersed fringe sensor (part of the acquisition guiding and wavefront sensing system’s active optics off-axis guider), and a pyramid wavefront sensor [PyWFS; part of the natural guide star wavefront sensor (NGWS) adaptive optics] to measure and correct the total path length between segment pairs, but these methods have yet to be tested “end-to-end” in a lab environment. We present the design and working prototype of a “GMT high contrast adaptive optics phasing testbed” that leverages the existing MagAO-X ExAO instrument to demonstrate segment phase sensing and simultaneous AO-control for high-contrast GMT natural guide star science [i.e., testing the NGWS wavefront sensor (WFS) architecture]. We present the first test results of closed-loop piston control with one GMT segment using MagAO-X’s PyWFS with and without simulated atmospheric turbulence. We show that the PyWFS was able to successfully control segment piston without turbulence within 12- to 33-nm RMS for 0 λ / D to 5 λ / D modulation, but was unsuccessful at controlling segment piston with generated ∼0.6 arcsec (median seeing conditions at the GMT site) and ∼1.2 arcsec seeing turbulence due to nonlinear modal cross-talk and poor pixel sampling of the segment gaps on the PyWFS detector. These results suggest that a PyWFS alone is not an ideal piston sensor for the GMT (and likely the TMT and ELT). Hence, a dedicated “second channel” piston sensor is required. We report the success of an alternate solution to control piston using a holographic dispersed fringe sensor (HDFS) while controlling all other modes with the PyWFS purely as a slope sensor (piston mode removed). This “second channel” WFS method worked well to control segment piston to within 50 nm RMS and ±10 μm dynamic range under simulated 0.6 arcsec atmospheric seeing (median seeing conditions at the GMT site). These results led to the inclusion of the HDFS as the official second channel piston sensor for the GMT NGWS WFS. This HDFS + PyWFS architecture should also work well to control piston petal modes on the ELT and TMT telescopes.
The next generation of Giant Segmented Mirror Telescopes (GSMT) will have large gaps between the segments either caused by the shadow of the mechanical structure of the secondary mirror [European Extremely Large Telescope (E-ELT) and Thirty Meter Telescope (TMT)] or intrinsically by design [Giant Magellan Telescope (GMT)]. These gaps are large enough to fragment the aperture into independent segments that are separated by more than the typical Fried parameter. This creates piston and petals modes that are not well sensed by conventional wavefront sensors such as the Shack–Hartmann wavefront sensor or the pyramid wavefront sensor. We propose to use a new optical device, the holographic dispersed fringe sensor (HDFS), to sense and control these petal/piston modes. The HDFS uses a single pupil-plane hologram to interfere the segments onto different spatial locations in the focal plane. Numerical simulations show that the HDFS is very efficient and that it reaches a differential piston root-mean-square (rms) smaller than 10 nm for GMT/E-ELT/TMT for guide stars up to 13th J + H band magnitude. The HDFS has also been validated in the lab with Magellan adaptive optics extreme and high-contrast adaptive optics phasing testbed, the GMT phasing testbed. The lab experiments reached 5-nm rms piston error on the Magellan telescope aperture. The HDFS also reached 50-nm rms of piston error on a segmented GMT-like aperture while the pyramid wavefront sensor was compensating simulated atmosphere under median seeing conditions. The simulations and lab results demonstrate the HDFS as an excellent piston sensor for the GMT. We find that the combination of a pyramid slope sensor with an HDFS piston sensor is a powerful architecture for the GMT.
The search for exoplanets is pushing adaptive optics systems on ground-based telescopes to their limits. A major limitation is the temporal error of the adaptive optics systems. The temporal error can be reduced with predictive control. We use a linear data-driven integral predictive controller that learns while running in closed-loop. This is a new algorithm that has recently been developed. The controller is tested in the lab with MagAO-X under various conditions, where we gain several orders of magnitude in contrast compared to a classic integrator. With the current schedule, the new data-driven predictive controller will be tested on-sky in spring 2021. We will present both the lab results and the on-sky results, and we will show how this controller can be implemented with current hardware for future extremely large telescopes.
MagAO-X system is a new adaptive optics for the Magellan Clay 6.5m telescope. MagAO-X has been designed to provide extreme adaptive optics (ExAO) performance in the visible. VIS-X is an integral-field spectrograph specifically designed for MagAO-X, and it will cover the optical spectral range (450 – 900 nm) at high-spectral (R=15.000) and high-spatial resolution (7 mas spaxels) over a 0.525 arsecond field of view. VIS-X will be used to observe accreting protoplanets such as PDS70 b & c. End-to-end simulations show that the combination of MagAO-X with VIS-X is 100 times more sensitive to accreting protoplanets than any other instrument to date. VIS-X can resolve the planetary accretion lines, and therefore constrain the accretion process. The instrument is scheduled to have its first light in Fall 2021. We will show the lab measurements to characterize the spectrograph and its post-processing performance.
The MagAO-X instrument is an extreme adaptive optics system for high-contrast imaging at visible- and near-infrared wavelengths on the Magellan Clay Telescope. A central component of this system is a 2040-actuator microelectromechanical deformable mirror (DM) from Boston Micromachines Corp. that operates at 3.63 kHz for high-order wavefront control (the tweeter). Two additional DMs from ALPAO perform the low-order (the woofer) and non-common-path science-arm wavefront correction (the NCPC DM). Prior to integration with the instrument, we characterized these devices using a Zygo Verifire Interferometer to measure each DM surface. We present the results of the characterization effort here, demonstrating the ability to drive the tweeter to a flat of 6.9 nm root-mean-square (RMS) surface (and 0.56 nm RMS surface within its control bandwidth), the woofer to 2.2-nm RMS surface, and the NCPC DM to 2.1-nm RMS surface over the MagAO-X beam footprint on each device. Using focus-diversity phase retrieval on the MagAO-X science cameras to estimate the internal instrument wavefront error, we further show that the integrated DMs correct the instrument WFE to 18.7 nm RMS, which, combined with a 11.7% pupil amplitude RMS, produces a Strehl ratio of 0.94 at Hα.
The search for exoplanets is pushing adaptive optics (AO) systems on ground-based telescopes to their limits. One of the major limitations at small angular separations, exactly where exoplanets are predicted to be, is the servo-lag of the AO systems. The servo-lag error can be reduced with predictive control where the control is based on the future state of the atmospheric disturbance. We propose to use a linear data-driven integral predictive controller based on subspace methods that are updated in real time. The new controller only uses the measured wavefront errors and the changes in the deformable mirror commands, which allows for closed-loop operation without requiring pseudo-open loop reconstruction. This enables operation with non-linear wavefront sensors such as the pyramid wavefront sensor. We show that the proposed controller performs near-optimal control in simulations for both stationary and non-stationary disturbances and that we are able to gain several orders of magnitude in raw contrast. The algorithm has been demonstrated in the lab with MagAO-X, where we gain more than two orders of magnitude in contrast.
Our past GAPplanetS survey over the last 5 years with the MagAO visible AO system discovered the first examples of accreting protoplanets (by direct observation of H-alpha emission). Examples include LkCa15 b (Sallum et al. 2015) and PDS70 b (Wagner et al. 2018). In this paper we review the science performance of the newly (Dec. 2019) commissioned MagAO-X extreme AO system. In particular, we use the vAPP coronagraphic contrasts measured during MagAO-X first light. We use the Massive Accreting Gap (MAG) protoplanet model of Close 2020 to predict the H-alpha contrasts of 19 of the best transitional disk systems (ages 1-5 Myr) for the direct detection of H-alpha from accretion of hydrogen onto these protoplanets. The MAG protoplanet model applied to the observed first light MagAO-X contrasts predict a maximum yield of 46±7 planets from 19 stars (42 of these planets would be new discoveries). This suggests that there is a large, yet, unexplored reservoir of protoplanets that can be discovered with an extreme AO coronagraphic survey of 19 of the best transitional disk systems. Based on our first light contrasts we predict a healthy yield of protoplanets from our MaxProtoPlanetS survey of 19 transitional disks with MagAO-X.
The Giant Magellan Telescope design consists of seven circular 8.4 m diameter mirrors, together forming a single 24.5 m diameter primary mirror. This large aperture and collecting area can help extreme adaptive optics systems such as GMagAOX achieve the small angular resolutions and contrasts required to image habitable zone earth-like planets around late type stars and possibly lead to the discovery of life outside of our solar system. However, the GMT mirror segments are separated by large ⪆ 30 cm gaps, creating the possibility of fluctuations in optical path differences (piston) due to flexure, wind loading, temperature effects, and atmospheric seeing. In order to utilize the full diffraction-limited aperture of the GMT for high-contrast imaging, the seven mirror segments must be co-phased to well within a fraction of a wavelength. The current design of the GMT involves seven adaptive secondary mirrors, a dispersed fringe sensor (part of the AGWS), and a pyramid wavefront sensor (NGWS) to measure and correct the total path length between segment pairs, but these methods have yet to be tested “end-to-end” in a lab environment. We present the design and prototype of a “GMT High-Contrast Phasing Testbed” which leverages the existing MagAO-X ExAO instrument to demonstrate fine phase sensing and simultaneous AO-control for high-contrast GMT natural guide star science. The testbed will simulate the GMT primary and secondary mirror phasing system. It will also simulate the future GMT ExAO instrument’s (GMagAO-X) “parallel DM” tweeter concept of splitting up the GMT pupil onto several commercial DMs using a reflective hexagonal pyramid. A dispersed fringe sensor will also be implemented into the testbed for coarse piston phase-sensing along with MagAO-X’s pyramid wavefront sensor to measure and correct the fine phasing level of the GMT primary mirror segments under realistic wind load and seeing conditions.
MagAO-X is a new “extreme” adaptive optics system for the Magellan Clay 6.5 m telescope which began commissioning in December, 2019. MagAO-X is based around a 2040 actuator deformable mirror, controlled by a pyramid wavefront sensor operating at up to 3.6 kHz. When fully optimized, MagAO-X will deliver high Strehls (< 70%), high resolution (19 mas), and high contrast (< 1 × 10−4) at Hα (656 nm). We present a brief review of the instrument design and operations, and then report on the results of the first-light run.
Here we review the current optical mechanical design of MagAO-X. The project is post-PDR and has finished the design phase. The design presented here is the baseline to which all the optics and mechanics have been fabricated. The optical/mechanical performance of this novel extreme AO design will be presented here for the first time. Some highlights of the design are: 1) a floating, but height stabilized, optical table; 2) a Woofer tweeter (2040 actuator BMC MEMS DM) design where the Woofer can be the current f/16 MagAO ASM or, more likely, fed by the facility f/11 static secondary to an ALPAO DM97 woofer; 3) 22 very compact optical mounts that have a novel locking clamp for additional thermal and vibrational stability; 4) A series of four pairs of super-polished off-axis parabolic (OAP) mirrors with a relatively wide FOV by matched OAP clocking; 5) an advanced very broadband (0.5-1.7μm) ADC design; 6) A Pyramid (PWFS), and post-coronagraphic LOWFS NCP wavefront sensor; 7) a vAPP coronagraph for starlight suppression. Currently all the OAPs have just been delivered, and all the rest of the optics are in the lab. Most of the major mechanical parts are in the lab or instrument, and alignment of the optics has occurred for some of the optics (like the PWFS) and most of the mounts. First light should be in early 2019.
The Magellan Extreme Adaptive Optics (MagAO-X) is a visible-wavelength adaptive optics (AO) instrument optimized for visible light coronagraphy and exoplanet imaging with the 6.5-m Magellan Clay telescope in Chile. Extremely large telescopes such as the future Giant Magellan Telescope (GMT) will be able to image earth-like exoplanets, given an extreme AO system - such as MagAO-X - exists. MagAO-X is now under development in the lab and undergoing final integration and testing. Technical first light is planned for early 2019, with final commissioning in late 2020. A crucial component to MagAO-X is the “K-mirror,” a 3-mirror system designed to rotate the optical field with minimal image wobble or distortion about the optical axis. The K-mirror rotates on a miniature motorized stage to stabilize the pupil in the coronagraph as the telescope tracks the sky. The optical design of MagAO-X required a very compact K-mirror, resulting in a challenging opto-mechanical mount design. We present a novel solution to the compact design of a 50mm max envelope K-mirror for MagAO-X that consists of three < 1-in diameter flat mirrors, all precision glued in place. The K-mirror mount was designed in Autodesk® Fusion 360™ and a prototype was built in the Steward Observatory machine shop. Using inexpensive COTS mirrors, the K-mirror prototype was tested, aligned, and glued with optical feedback in the lab. Once the prototype had proven successful, a final K-mirror mount was fabricated and assembled with invar and precision (0.1nm rms surface roughness, super polished, λ/40 PV flat) mirrors to develop a compact Kmirror for MagAO-X. The performance of the final hardware is presented here.
MagAO-X is an entirely new extreme adaptive optics system for the Magellan Clay 6.5 m telescope, funded by the NSF MRI program starting in Sep 2016. The key science goal of MagAO-X is high-contrast imaging of accreting protoplanets at Hα. With 2040 actuators operating at up to 3630 Hz, MagAO-X will deliver high Strehls (> 70%), high resolution (19 mas), and high contrast (< 1 × 10-4 ) at Hα (656 nm). We present an overview of the MagAO-X system, review the system design, and discuss the current project status.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.