This paper, originally published on September 15, 2016, was retracted from the SPIE Digital Library on October 5, 2016, due to a high degree of similarity between specific portions of the text of the paper to the following publications:
J. Tchahame, J. Beugnot, A. Kudlinski, and T. Sylvestre, "Multimode Brillouin spectrum in a long tapered birefringent photonic crystal fiber," Opt. Lett. 40, 4281-4284 (2015). doi: 10.1364/OL.40.004281
W. W. Ke, X. J. Wang and X. Tang, "Stimulated Brillouin Scattering Model in Multi-Mode Fiber Lasers," in IEEE Journal of Selected Topics in Quantum Electronics, vol. 20, no. 5, pp. 305-314, Sept.-Oct. 2014. doi: 10.1109/JSTQE.2014.2303256.
In this paper, we have calculated the highly efficient generation of the slow light based on the Stimulated Brillouin scattering (SBS) in a small core As2Se3 chalcogenide PCF. A Brillouin gain coefficient, gB. of 9.05 10-9 m.W-1 is found around the acoustic frequency of 8.08 GHz in small core diameter of 1.69 μm with 1.5 μm2 effective mode area at 1550 nm. A Brillouin gain of 77.3 dB was achieved with only 10 mW pump power in a 10-m fiber length, which leads to the optical time delay of 94 ns. In terms of the proposed figure of merit, it shows 2.77 dB/mW/m which is about 110 times more efficient than conventional single-mode fibers. These fibers are expected to have potential applications in realization of compact slow light devices.
A new design of all-normal and near-zero flattened dispersion based on chalcogenide nanophotonic crystal fiber (PCF) has been proposed to generate smooth and ultra-broadband supercontinuum (SC) in the midinfrared (IR) region. With the optimized geometric parameters, the As2Se3 nano-PCF has been found to be suitable for two-octave supercontinuum generation (SCG). We designed a nano-PCF having a flat top dispersion curve with a maximum value of −2.3 [ps/(nm km)] and a large nonlinear coefficient equal to 7250 (W km)−1 around the wavelength of 5.24 μm. By numerical simulations, we predict the generation of a very broadband SC in the mid-IR region extending from 2 to 10 μm in only 2-mm fiber lengths by using a femtosecond laser having a full-width at half-maximum of 50 fs and a relatively low energy of E=80 pJ. The generated SC demonstrates perfect coherence property over the entire bandwidth. SC generation extended into the mid-IR spectral region has potential usefulness in a variety of applications requiring a broad and mid-IR spectrum, such as WDM sources, fiber sensing, IR spectroscopy, fiber laser, and optical tomography coherence.
A new design of the As2Se3 microfiber has been presented. With the optimized geometric parameters: pitch Λ= 0.8 μm
and five different air filling ratios varying from 0.4 to 0.95, the structure exhibits an all normal dispersion with a flat top
equal to -2.3 [ps/(nm.km)], a confinement loss less than 10-2 dB/km, and a large nonlinear coefficient equal to 7250 (w.
km)-1. Using the generalized nonlinear Schrödinger equation, we generate a very broadband supercontinuum (SC) in the
mid-infrared region. By pumping the fiber at λp=5.24 μm with a femtosecond laser having 50 fs as a width with a
relatively low energy of E=80 pJ, we generate a large spectrum extending from 2 μm to 10 μm in only 2 mm fiber
length. The generated SC demonstrates perfect coherence property over the entire bandwidth. SC generation extended
into the mid-infrared (IR) spectral region have potential usefulness in a variety of applications requiring a broad mid-IR
spectrum such as fiber sensing, IR spectroscopy, fiber laser, optical tomography coherence.
An equiangular spiral (ES) photonic crystal fiber (PCF) design in tellurite glass has been presented. The structure
parameters have been tailored for zero dispersion wavelength (ZDW) at λZDW=1570 nm. The fiber structure has high
nonlinearity (γ = 2000 w-1 Km-1) at 1550 nm wavelength with very low and flat dispersion -0.152 [ps/(nm×km)]. We have generated supercontinuum using only 2 mm length of tellurite ES PCF with low input pulse energy of 200 pJ by
pumping at 1550 nm. The proposed fiber may be a suitable candidate for nonlinear applications.
A novel design of single polarization single mode (SPSM) photonic nanowire is proposed. Using a cladding structure
with circular air holes, a new design of a photonic nanowire with ultra-wideband range of 740 nm for SPSM operation is
obtained. The numerical results show that the SPSM-nanowire is low-loss within the wavelengths ranging from 1.17 μm
to 1.91 μm, the confinement loss of the slow-axis mode is less than 0.15 dB/km and the fast-axis mode is unguided. This
fiber has greater advantages in polarization sensitive applications, such as fiber optic gyroscopes, fiber optic current
sensors, high-power fiber lasers, and coherent optical communications.
Supercontinuum (SC) generation in six core hexagonal lattice photonic crystal fiber (PCF) made of As2Se3-based chalcogenide glass was numerically investigated. The fiber was excited by 50 fs input pulse with hyperbolic secant field profile with tunability range of 2.5-5.5 μm. We obtained a flat-top normal dispersion profile when choosing Λ=1 μm and d=0.9 μm. By pumping near the zero dispersion wavelength, a high coherent SC spanning over 4 μm was generated with a launched pulse energy of E= 100 pJ in only 1 cm fiber length. The generated SC is therefore ideal for applications in ultrafast science, metrology, coherent control, non-destructive testing, spectroscopy, and optical coherence tomography in the mid-infrared region.
A new design of aperiodic As2Se3-based chalcogenide photonic crystal fibers (PCF) is proposed in order to obtain broadband, mid-IR, and coherent supercontinuum (SC) sources. The proposed fibers possess an ultra-flattened dispersion curve over a wide wavelength range. The significance of this work is that it provides a new type of midinfrared SC source with flat shape, broadband and high coherence properties by femtosecond pumping the As2Se3-based PCF. The generated SC in the designed fibers cover a broadband range extending from 2 μm to more than 8 μm with a low input energy of 120 pJ and a short fiber length of 16 mm. In this context, many applications can be performed such as fiber lasers, pulse compression and multi-wavelength optical sources in the mid-infrared region.
In this paper, we propose a new design of all-normal and ultra-flat dispersion As2Se3-based chalcogenide photonic crystal fibers (PCF). The generation of supercontinuum (SC) in the designed fibers is investigated, which has flat and
smooth profile, covers a broad range extending from 2 to 8 μm. The significance of this work is that it provides a new
type of mid-infrared SC source with flat shape, broadband and high coherence properties by pumping the As2Se3-based PCF. Thus many applications can be performed such as fiber lasers, pulse compression and multi-wavelength optical
sources in the mid-infrared region.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.