This will count as one of your downloads.
You will have access to both the presentation and article (if available).
We calculate the group velocity dispersion (GVD) of different cladding modes based on the measurement of the fiber structure parameters, the hole diameter and the pitch of a presumed homogeneous hexagonal array. Based on the scanning electron image, a calculation was made of the optical guiding properties of the microstructured cladding. We compare the calculation with a method to measure the wavelength-dependent time delay. We measure the time delay of defined cladding modes with a homemade supercontinuum light source in a white light interferometric setup. To measure the dispersion of cladding modes of optical fibers with high accuracy, a time-domain white-light interferometer based on a Mach-Zehnder interferometer is used. The experimental setup allows the determination of the wavelengthdependent differential group delay of light travelling through a thirty centimeter piece of test fiber in the wavelength range from VIS to NIR. The determination of the GVD using different methods enables the evaluation of the individual methods for characterizing the cladding modes of an endlessly single-mode fiber.
Typical applications of DLIP range from in- and out coupling of light in solar cells or organic LEDs over improvement of tribological properties in engine parts to security markings and decoration applications due to the shimmering effect of the periodic textures. On laboratory scale, an improvement over unprocessed surfaces has been demonstrated in all of these mentioned applications. However, so far the feed rates have not sufficed to allow an industrial application of the technology.
Now, in a joint project of laser manufacturer, optics designer and engineering company, a machine platform has been developed which allows high surface processing speeds in an industrial environment. Feed rates in the range of square meters per minute (corresponding to about one billion features per second) can be achieved. With the help of this platform, DLIP can finally be lifted to industrial application.
GVD characteristics of two different large-mode-area double-clad fibers with defined launching pump laser power level were systematically analyzed. The dispersion parameters for different fiber designs and various doping levels are investigated over a broad spectral range in the emission area of Yb-doped fiber samples for controlled sets of operating parameters. The experiment utilizes a supercontinuum source developed within this laboratory as well as a Mach-Zehnder interferometer with a dual-channel spectral-detection system sensitive to wavelengths from 0.95 μm to 1.75 μm. Temporally resolved spectrograms recorded at distinct delay positions enable the detection of interference fringes for the equalization wavelength. By applying a Sellmeier polynomial fit to the wavelength dependent differential group-delay function, the GVD can be derived. The measured Yb-doped large-mode-area fibers show a variation of the doping concentration between 0.7 mass percent to 3 mass percent of ytterbium. The measurement of the Yb-doped large-mode-area fiber with or without optical load on the sample during the measurement was examined.
View contact details
No SPIE Account? Create one