Understanding the proximity effect is crucial to fabricating repeatable sub-100 nm features for magnetic recording devices. Top down CD-SEM measurements have been used to measure the proximity effect parameters in negative and positive resists at dimensions below 100 nm. The goal of this work is to experimentally determine the values of the parameters α, β and η and what they depend on.
KEYWORDS: Critical dimension metrology, Metrology, Data modeling, 3D metrology, Semiconducting wafers, 3D modeling, Systems modeling, Lithography, Photoresist processing, Data storage
We have implemented 3D-SEM metrology to measure resist height as a function of dose for negative e-beam resists. Converting the resist height to a dissolution rate produces a new way to determine resist contrast. We have used this method to demonstrate improved aspect ratios for a low contrsat resist compared to a high contrast resist. We have also found that increasing the cross-linker concentration causes an increase in the resist dissolution rate and contrast. We have measured this change in contrast using the 3D-SEM technique for three resists systems with varying cross-linker concentration. We have plotted the dissolution rate as a function of e-beam exposure intensity, and used this information to model how contrast effects the final resist profile. Both the model and the experimental data suggest that the higher contrast resist gives a straighter side-wall angle with a negligible effect on the final CD.
We have implemented traditional CD-SEM metrology complimented with the 3D imaging capability of the VERASEM 3D CD-SEM from Applied Materials. 3D imaging is performed by tilting the SEM beam to capture images at two unique angles. Reconstruction of these images allows for the determination of resist thickness and sidewall angle at the same point the critical dimension, CD, is measured. These three output parameters provide the user with automated multi-metric lithographic process control. We have used these techniques to characterize e-beam lithography of isolated lines in ~0.6μm of negative resist at CDs between ~50 and ~100 nm. The flexibility of our e-beam lithography system allows us to expose an array of identical features with 30 distinct dose values over a small area of a wafer. We have characterized the resist CD and thickness as a function of small incremental decreases in dose. As the dose decreases so does the CD of the isolated resist line at a rate of ~1 nm per 1μC/cm2 of area exposure. At a nominally high dose where the isolated line CD is ~100 nm the resist is measured by 3D imaging to be close to full thickness. The main observation is that the resist thickness erodes at a rate of ~5 nm in height per every 1nm decrease in CD down to the resolution limit of 50-60 nm. As the dose is further lowered the resist is then completely washed away. This subtle but significant loss in resist etch mask integrity could not have been observed by traditional top-down CD-SEM metrology alone. This also demonstrates the tilt capability of the VERASEM 3D to measure very thin resist films of ~100 nm. Additionally, we have successfully used this methodology to characterize this effect as a function of isolated line length from ~0.5-2.0μm, and resist thickness from ~0.25-0.6 μm. The CD is strongly correlated with the total isolated line length due to the e-beam proximity effect, while the resist erosion rate remains fairly constant. The resist erosion rate is also similar for the resist films regardless of initial thickness. However, we also confirm the trend that identical area doses produce larger CDs for thicker resist films with some subtle effects for the thinner films.
An electron beam lithography method for printing and plating sub-50 nm isolated trenches with a high aspect ratio has been developed for the nanofabrication of magnetic thin film heads. To eliminate the issues of resist footing and resist residue in the narrow trench process, we put a thin dissolution layer of polymethylglutarimide (PMGI) as an undercoat layer between a seed layer and a resist layer. The undercoat dissolution layer competely cleared off the seed layer by the developer solution such that the sides of the narrow trench are vertical, particularly at the bottom of the narrow trench, thus facilitating plating the narrow trench with a high magnetic moment material. In this work, the narrow trenches were electroplated with both 1.0T NiFe and 1.8T CoNiFe. Three key issues in our trench process will be discussed here, including: 1) critieria for the selection of the undercoat dissolution layer materials; 2) processing conditions control , e.g. the thickness and the bake temperature of the dissolution layer to achieve vertical and smooth sidewalls; and 3) PEB delay on the narrow trench CD control, pattern degeneration, and the results from the resist top coat (RTC) experiments. With our new narrow trench process, we demonstrated the capability of fabricating narrow electrodeposited magnetic write structures with a CD of 35 nm in 0.35 μm resist (AR=10:1) and a CD of 30 nm in 0.25 μm resist (AR=8:1).
Electron beam lithography has been implemented with a commercially available DUV chemically amplified positive resist. Post exposure delay stability in vacuum was found to be non-critical. Post exposure delay after removal from vacuum in our clean room is a critical variable, with a change in critical dimension of approximately 0.6 nm per minute of PEB delay. This result was achieved without amine filtration. Wafers were transported in cassettes from the e- beam exposure tool to an FSI Polaris 2000 photocluster tool. The PEB delay effect on critical dimensions can be significantly reduced by using a water soluble protective top coat with a slight change in nominal does. E-beam lithography was performed with a Leica VB6 operating at 50eV, using a n 800 micrometers field, and a 12.5 nm minimum grid size. The original CAD had a negative bias added to compensate for any proximity effect, to take advantage of dose control to achieve targeted line width, and to optimize exposure latitude. Characterization with a dual beam FIB/SEM to obtain cross-sectional SEM images, typically demonstrate a foot on plated structures from the initial resist profile. A 30 percent decease in nominal dose was observed on device wafers compared to scout wafers. Device wafers have metal structures buried below the approximate 100 nm thick plating seed layer that also cause profile changes. This is presumably due to the back scattering of the electrons from the initial area of exposure. Plating rates in isolated trenches also show a strong dependence o n the critical dimension of the narrow resist trench. Plated structures with critical dimensions of 80 nm in 0.65 microns of resist were fabricated.
An important component of a photoresist formulation is the photoactive compound. In conventional I-line resist, it is the DNQ molecule. In chemically amplified resists, it is the photoacid generator or the PAG. This component acts as the link between the exposure tool and the photoresist system. While PAGs for the 248 nm or DUV application are plenty, there is little effort in the arena of i-line PAGs. Typically, energy transfer in i-line lithography is achieved by using a DUV PAG in conjunction with an i-line energy transfer agent called sensitizer. This combination works very well, as described by workers before. This paper describes a polymer-bound sensitizer, which while maintaining the performance characteristics of a monomeric sensitizer, also enhances the solubility characteristics and the thermal stability of the resist.
An analytical technique for measuring photoacid in chemically amplified resist using fluorescence spectroscopy has been developed. The range of detection from picograms to micrograms, offers a versatile alternative to standard practices of acid detection such as photometric bleaching by UV-Vis absorption spectroscopy. Quantum yields of photoacid generation were measured for films of poly 4-t- butoxycarbonyloxystyrene, PBOCST, and poly hydroxystyrene, PHS, containing the i-line photosensitizer anthracene. Four distinct photoacid generators, PAGs, were compared, two triphenyl sulfonium salts with triflic acid and trifluoromethyl phenyl sulfonic acid, and two sulfonate esters of an n-hydroxyimide that generate triflic acid and trifluoromethyl phenyl sulfonic acid. The ionic PAGs have a quantum yield of approximately 6 - 8 multiplied by 10-4 and the covalent PAGs range from 2 multiplied by 10-5 to 6 multiplied by 10-4. The inadequate amount of acid produced at a nominal dose of 100 mJ/cm2 requires a catalytic chain length that is impractical in standard amplified systems.
In order to perform 0.2 micrometer processes, one needs to study the diffusion of photoacid generators within the photoresist system, since diffusion during post exposure bake time has an influence on the critical dimension (CD). We have developed a new method to study the diffusion of photoacid generators within a polymer film. This new method is based on monitoring the change of the fluorescence intensity of a pH- sensitive fluorescent dye caused by the reaction with photoacid. A simplified version of this experiment has been conducted by introducing acid vapor to quench the fluorescence intensity of this pH sensor. A thin polymer film is spin cast onto the sensor to create a barrier to the acid diffusion process. During the acid diffusion process, the fluorescence intensity of this pH sensor is measured in situ, using excitation and emission wavelengths at 466 nm and 516 nm, respectively. Fluoresceinamine, the pH sensitive fluorescent dye, is covalently bonded onto the treated quartz substrate to form a single dye layer. Poly(hydroxystyrene) (Mn equals 13k, Tg equals 180 degrees Celsius) in PGMEA (5% - 18% by weight) is spin cast onto this quartz substrate to form films with varying thickness. The soft bake time is 60 seconds at 90 degrees Celsius and a typical film has a thickness of 1.4 micrometers. Trifluoroacetic acid is introduced into a small chamber while the fluorescence from this quartz window is observed. Our study focuses on finding the diffusion constant of the vaporized acid (trifluoroacetic acid) in the poly(hydroxystyrene) polymer film. By applying the Fick's second law, (It - Io)/(I(infinity ) - Io) equals erfc [L/(Dt)1/2] is obtained. The change of fluorescence intensity with respect to the diffusion time is monitored. The above equation is used for the data analysis, where L represents the film thickness and t represents the average time for the acid to diffuse through the film. The diffusion constant is calculated to be at the order of 10-10 cm2/s to 10-12 cm2/s. All the experiments are conducted at room temperature and are valid only for acid vapor. With different film thickness, it was found that the acid diffuses through the film with a similar diffusion constant. The diffusion is faster with increased solvent residue in the film (controlled by spin coating speed). The theoretical computer modeling of the local acid concentration with respect to acid diffusion is also performed.
Preliminary studies with Brewer Science CD9 ARC have shown that high-intensity ultraviolet exposure results in significant changes in film properties, including thickness, plasma etch resistance, and develop rate. This process has been studied over a range of temperatures and exposure conditions, and their results are interpreted in terms of competing polymer main chain scission and crosslinking reactions. The process represents a path to improved etch performance, and the possibility exists for use of Brewer ARC in a bi-layer portable conformable mask resist scheme.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.