We studied the wavelength-, time-, and intensity-dependence of the 3rd-order nonlinear optical response of As2Se3 chalcogenide glass. Bulk samples were characterized using a wavelength-tunable z-scan system, over the range 1200-1600 nm. Thin film samples were characterized using an ultrafast time-resolved differential optical Kerr effect (DOKE) experiment, fed by 125 fs pulses centered at 1425 nm. The z-scans revealed only slight variation in the optical Kerr coefficient n2 over the wavelength range studied. The DOKE experiment confirmed that the nonlinear response is predominately electronic, with response time limited by the experimental setup. For the same beam intensity, DOKE and z-scan measurements were in good agreement. The optical Kerr coefficient extracted from DOKE measurements at varying pump beam intensity showed intensity-dependent behavior, which can be attributed to fifth and higher order nonlinearities.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.