Detection of analytes in aqueous solution with high specificity and sensitivity is of paramount importance in many fields of science, ranging from biomedicine, environmental control, and food quality assessment. Surface-enhanced Raman scattering (SERS) has proven to be a cutting-edge analytical technique for this purpose, by combining the high selectivity of Raman features with the high sensitivity deriving from the plasmonic amplification of Raman signals. Herein, we report a facile and quite effective approach to fabricate large-area Ag-based SERS substrates, exhibiting a porous, coral-like nanotexture. Due to their intrinsic large surface-area and high hot-spot density, the produced substrates appear quite promising for the detection of analytes at trace levels. The nanoporous substrates are produced by Solid-State Dewetting (SSD) of thin Ag-films. In particular, ~30 nm thickness Ag-films are first deposited on glass coverslips by magnetron sputtering. Then, marked roughening is induced by exposing the films to an Inductively Coupled Plasma (ICP) discharge, using synthetic air as feeding gas. The performances of our SERS substrates are characterized in terms of morphology and enhancement factor using CV as probe molecule.
The phenomenon of inclusions or microvacuoles in intraocular lenses (IOL), often referred to glistenings due to their appearance when visualized in slit-lamp exams, is main cause of decreased visual in people after IOL implantation. For this reason, there is a huge request by the market of new polymers able to reduce, or even eliminate, the formation of such microvacuoles. In such frame, the use of advanced optical techniques, able to provide a deeper insight on the glistering formation, is strongly required. In particular, Raman spectroscopy (RS) is ideally suited for the analysis of polymers, due to its well-know sensitivity to highly polarizable chemical groups, commonly found in the polymer chains backbones. Moreover, the combination of RS with optical microscopy (Raman micro-spectroscopy) paves the way for real, information-rich chemical mapping of polymeric materials (Raman imaging). In this paper, we analyze the formation of microvacuoles in IOLs following a thermal treatment. In particular, we performed a chemical mapping of a single microvacuole, which allowed us to infer on its effective chemical composition. In order to investigate on the reversibility of glistenings formation, this analysis was repeated as function of time after thermal treatment, in different IOL environments. It turns out that this phenomenon is partially reversible, with an almost complete disappearance of microvacuoles in a dry environment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.