Sparse CT reconstruction continues to be an area of interest in a number of novel imaging systems. Many different approaches have been tried including model-based methods, compressed sensing approaches, and most recently deep-learning-based processing. Diffusion models, in particular, have become extremely popular due to their ability to effectively encode rich information about images and to allow for posterior sampling to generate many possible outputs. One drawback of diffusion models is that their recurrent structure tends to be computationally expensive. In this work we apply a new Fourier diffusion approach that permits processing with many fewer time steps than the standard scalar diffusion model. We present an extension of the Fourier diffusion technique and evaluate it in a simulated breast cone-beam CT system with a sparse view acquisition.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.